
Case Studies for Software Engineers

Dewayne E. Perry

The University of Texas at Austin

perry@ece.uexas.edu

Susan Elliott Sim

University of California, Irvine

ses@ics.uci.edu

Steve M. Easterbrook

University of Toronto

sme@cs.toronto.edu

Abstract

The topic of this full-day tutorial was the correct use

and interpretation of case studies as an empirical

research method. Using an equal blend of lecture and

discussion, it gave attendees a foundation for conducting,

reviewing, and reading case studies. There were lessons

for software engineers as researchers who conduct and

report case studies, reviewers who evaluate papers, and

practitioners who are attempting to apply results from

papers. The main resource for the course was the book

Case Study Research: Design and Methods by Robert K.

Yin. This text was supplemented with positive and

negative examples from the literature.

1. Introduction
Case studies are a powerful and flexible empirical

method. They are used for primarily for exploratory

investigations, both prospectively and retrospectively,

that attempt to understand and explain phenomenon or

construct a theory. They are generally observational or

descriptive in nature, though they can be relational as

well. They can also be used in the validation of research

results. Due to this dexterity, they have become popular

in software engineering and are frequently used in papers

to understand, to understand explain or to demonstrate the

capabilities of a new technique, method, tool, process,

technology or organizational structure. Unfortunately,

they are usually not used to their full potential, and often

not used correctly. The aim of this full-day tutorial was to

teach software engineering researchers and professionals

how to effectively design, conduct, evaluate and read case

studies.

2. Characteristics of Case Studies
A case study is an empirical method. By this we mean

a defined, scientific, method for posing research

questions, collecting data, analyzing the data, and

presenting the results. Each of these steps is planned from

the outset of the study and do not come about through

serendipity. Case studies are well-suited to “how” and

“why” questions in settings where the researcher does not

have control over variables and there is a focus on

contemporary events.

Unfortunately, there is a great deal of confusion

regarding the term “case study” within software

engineering. Some of these misuses of the term are

understandable because it has different meanings in

different settings or disciplines. For the remainder of this

Section, we will clarify what case studies are not.

A case study is not an exemplar or case history. The

term case study is frequently used in medicine and law.

Patients or clients are referred to as “cases,” so a study of

interesting instances of these are sometimes called case

studies [1]. However, empirical studies conducted using a

case study method are very different from the interesting

examples that practitioner-researchers encounter. In

addition, a report on something interesting that was

attempted by researchers on a toy problem is not a case

study.

A case study is not an experience report. The latter

is a retrospective report on an experience that was

particularly illuminating and best examples of these

include lessons learned. However, even exploratory case

studies need to start out with a research question and

systematically collect and analyze data to answer the

initial question. This confusion is very common as the

Experience Reports track of ICSE 2003 had a session on

Case Studies.

A case study is not a quasi-experimental design

with n=1. While some quasi-experimental studies are

conducted in the field, they still retain control over some

independent variables, so that time series designs, non-

equivalent before-after designs, and ex post facto designs

can be brought to bear on the research question [2].

Finally, a case study is equivalent in scope to a single

experiment, and both need a series of studies to fully

understand a phenomenon and produce results that

generalize.

3. Goals of the Tutorial
The purpose of this tutorial was to help software

engineers understand and avoid and identify common

mistakes with case studies by giving them a solid

grounding in the fundamentals and principles of case

studies as a research method. For researchers, our goal

was to provide them a starting point for learning how to

conduct case studies. When they return to their home

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

institutions, they would be able to find, assess, and apply

appropriate resources in designing their studies. For

reviewers, our goal was to provide them with guidance on

how to judge the quality and validity of reported case

studies. Reviewers They would be able to use the criteria

presented in this tutorial to assess whether research

papers based on case studies are suitable for publication,

allowing them to raise the quality of publications and give

appropriate feedback to authors. For practitioners, our

goal was to provide a better awareness of how to interpret

the claims made by researchers about new software

engineering methods and tools. We also aimed to offer

practitioners deeper insights into the roles they can play

in designing and conducting case studies in collaborative

research projects, and the ability to read case studies more

effectively and be better able to identify results suitable

for use in their workplace.

4. Format and Curriculum
During this full-day tutorial, time was divided evenly

between lecture and discussion. The lectures drew on our

experience with empirical studies, research methodology

texts, and papers from the software engineering literature.

The tutorial covered a range of topics on the design

and implementation of case studies. It started with basic

issues in common to all empirical studies, moved on to

issues ones particular to case studies, and concluded with

an examination of practical issues. Students will gain

experience designing and evaluating case studies.

The curriculum included the following topics.

• Research Methodology

o Strategies for Software Engineering

Research

o Approaches for Empirical Studies

• Case Study Fundamentals

o Exploratory Questions

o Validation

• Designing Case Studies

o Research Context

o Validity

o Ethical Issues

o Data Gathering and Analysis

• Publishing Case Studies

o Preparing Evidence

o Elements of the Report

• Reviewing Case Studies

o Replication

The primary text text used for the course tutorial was

Case Study Methods 3/e, by Robert K. Yin [3]. This book

is a respected resource on case studies and is widely cited

both inside and outside software engineering.

The lessons were reinforced by small group sessions

where participants examined and discussed case studies

that have been published in software engineering

conferences and journals.

The following papers, in our opinion, are exemplary

research case studies:

Matthias M. Müller and Walter F. Tichy, “Case Study:

Extreme Programming in a University Environment,”

presented at Twenty-third International Conference on

Software Engineering, Toronto, Canada, pp. 537-544,

12-19 May 2001.

Carolyn B. Seaman and Victor R. Basili, “An Empirical

Study of Communication in Code Inspections,”

presented at Nineteenth International Conference on

Software Engineering, Boston, MA, pp. 96-106, 17-23

May 1997.

D.N. Card, V.E. Church, and W.W. Agresti, “An

Empirical Study of Software Design Practices,” IEEE

Transactions on Software Engineering, vol. 12, no. 2,

pp. 264-271, 1986.

Sallie M. Henry and Dennis G. Kafura, “Software

Structure Metric Based on Information Flow,” IEEE

Transactions on Software Engineering, vol. 7, no. 5,

pp. 545-522, September, 1981.

During the break-out sessions, theThe tutorial was

divided into three discussion groups, each led by one of

the instructors. These smaller groups increased the

amount of interaction and allowed the material to be

tailored to the students. [At time of writing, we were

planning to have tracks for investigators, reviewers, and

practitioners, however, this may change depending on the

demographics of the tutorial attendees].

5. Conclusion
Case studies are an empirical method in their own right,

with their own established internal logic, and design

principles. Even for studies that are properly called case

studies, there are often problems with selecting a unit of

analysis, validity of results, data observation and

collection. This tutorial sought to address these issues,

because case study is a method that is well-suited to

software engineering. It is particularly appropriate when

we seek to understand how and why technology is used or

not used, functions or does not function in contemporary

settings, and where we have little or no control over the

variables. Our discipline can only be improved by the

addition of high-quality, published case studies that

employ solid methods and produce innovative results.

6. References
[1] Blanche Geer, Everett C. Hughes, Anselm L. Strauss,

and Howard Saul Becker, Boys in White: Student

Culture in Medical School: Transaction Publications,

1991.

[2] William J. Ray, Methods Toward a Science of

Behavior and Experience, Fourth Edition. Pacific

Grove, CA: Brooks/Cole Publishing Company, 1993.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

[3] Robert K. Yin, Case Study Research: Design and

Methods, 3/e. Thousand Oaks, CA: Sage Publications,

2002.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

	footer1:

