
Appears in P. Quintas (ed.) “Social Dimensions of Systems Engineering: People, processes, policies and
software development”. London: Ellis Horwood, pp144-164, 1993.

- 1 -

Negotiation and the Role of the Requirements Specification1

STEVE EASTERBROOK
School of Cognitive and Computing Sciences

University of Sussex,
Falmer, Brighton, BN1 9QH

<Easterbrook@uk.ac.susx.cogs>

The term requirements engineering describes the processes leading to the production of a
requirements specification. Much of software engineering research takes the existence of this
document for granted, concentrating instead on the downstream areas of software development.
In this chapter, we argue that the problems of requirements engineering deserve greater study.
To understand why this is so, we consider the role of the specification in the software
engineering process, and describe issues which must be addressed during specification
construction. The difficulties of requirements engineering come from many directions,
including the sheer quantity of knowledge involved, the inherent uncertainty, and the need for
negotiation where there are conflicting requirements. We conclude that a prescriptive
framework to support negotiation of requirements is highly desirable, and describe a number of
objectives for such a framework.

1 . Introduction

The phase of the software engineering process that begins with an informal statement of need
and produces a requirements specification is generally referred to as requirements analysis.
Ideally, the resulting document should contain all the information about the requirements that
might be needed during the design stage, although in practice, the clients’ perceived needs will
change during the lifecycle of the system. If the requirements aren't clearly defined, the result is
uncertainty throughout the software life-cycle.

The importance of the requirements specification implies that a great deal of effort should be
invested in the creation of such a document (Boehm, 1981). Creating the specification is far
more than just analysis: it involves eliciting relevant knowledge; understanding the task and its
social and organisational context; negotiating with the client over the scope, contents and
language; resolving conflicting requirements; and synthesising appropriate structures for
describing the result. Use of the term Requirements Engineering has been proposed to indicate
the complexity of this process, and to convey the message that specifications need to be
carefully constructed.

We will begin by examining the importance of requirements engineering in the software
process, concentrating particularly on the roles played by the specification. We will then
consider how specifications are constructed and validated, and discuss the difficulties. Finally,
we propose that requirements engineering be seen as a process of negotiation, in which the
importance of conflict is recognised and addressed.

2 . The Role of Specifications

Specifications have a vital role to play in the software engineering process, as precise
descriptions of needs. A specification provides a way to verify the correctness of the eventual
design and implementation. If the specification is inappropriate, verification will be pointless.

1This paper was presented to the workshop on Policy Issues in Systems and Software Development, organised by the
Science Policy Research Unit, University of Sussex, and held in Brighton, July 1991.

- 2 -

Information omitted from the specification will not be taken into account in the design process.
Ambiguities in the specification lead to uncertainty throughout the process. Misunderstandings
and errors in the specification will lead to designs which, while complying with the
specification, do not properly satisfy the needs of the users.

We can identify three important roles which the requirements specification is expected to play.
First and foremost, this specification forms a contract between the clients and the software
developers. Secondly, it is the main communication channel between the developers and the
clients. Thirdly, the specification establishes the commitment of the people who contribute to it.

The principle role of the specification is that it forms a contract between the clients and the
software developers. This contract states what is expected of each party, and in particular sets
out requirements and constraints for the deliverable software system. Balzer & Goldman
(1979) describe three criteria by which a specification should be judged, namely: it must be
clearly and unambiguously understandable by both parties; it must be testable that any
implementation satisfies the specification, and that the specification meets the needs it is
designed for; and it must be easy to modify, as the requirements will change over time. These
criteria reflect the contractual nature of specifications.

The specification also acts as a channel of communication amongst the software team. As the
main source of information about the clients’ needs, it defines what will be common knowledge
among the developers. Too often, the specification does not adequately fill this role, and a
recent field study of behavioural aspects of software developers (Curtis, Krasner, & Iscoe,
1988) concluded that many software teams depend upon a single exceptional designer. Such
designers are characterised as having a deep understanding of both the application domain and
the design process. In such cases, this designer is a better source of information than the
specification. However, the development team will not all have equal access to such a person,
and so will be working with different amounts of knowledge. Clearly, it is preferable to
express as much of this knowledge as possible in the specification, in order to ensure
dissemination.

Because of its accessibility, the specification ought to facilitate co-operation between the
various parties. However, there is evidence that it frequently fails to do this. The study
described above suggested that exceptional designers are able “to integrate different, sometimes
competing perspectives on the development process”. In other words, the specification is only
providing one perspective, and there are other important points of view which it has excluded.
This leads to two major problems, namely: whole sets of knowledge and ideas are ignored by
the specification; and the people concerned will lose faith in the specification. The software
team can become fractured, as such people attempt to exert influence in other ways, and will
become dependent on the existence of a team member with the background knowledge and
communication skills required to resolve the problem.

These problems are indicative of a third role that a specification plays: it provides a way of
securing the commitment of the contributors. As the specification is supposed to represent the
users’ needs, it affects the attitude of those users towards the development process and its
products. For this reason the specification should be (and be seen to be) representative of the
many people that contribute to it (Zave, 1982). Potential users are unlikely to co-operate in the
development, nor accept the final system if they feel their views have not been taken into
account. In the worst case, participants have to circumvent the specification in order to get an
issue raised.

We have identified three major roles of the specification. The first two of these are well known:
the specification is both a communication medium, and a yardstick by which design and
implementation are judged. In order to fulfil these two roles, the specification must be
unambiguously understandable, testable, and modifiable. The trend towards formal
specification languages is an attempt to satisfy at least the first two of these criteria. The third

- 3 -

role is as a token of commitment, and to meet this role, the specification should be
representative.

We have referred throughout this discussion to specifications as though they are of a uniform
type. In fact, several types of specification can be distinguished, which are derived in different
ways and have different uses. For example, it is common to distinguish between requirements
specifications and design specifications, where the former describes needs, and the latter
describes how those needs are to be met. While this discussion is directed at requirements
specifications, other types of specification may play similar roles within the portion of the
lifecycle in which they are used.

2.1. Constructing Specifications

As the specification has several important roles to play, it needs to be carefully constructed. It
will be read by a number of different people, with widely differing backgrounds, and so must
be accessible to them. Presentation is therefore important. It is essential that the specification
should answer the types of question that various groups of people are likely to ask of it. In
other words, it should be easy to interrogate. Above all the specification should be regarded as
a designed artefact, itself created to fill certain needs.

Throughout the life of a project, pressures will arise for changes to the specification. These
have many causes, from understanding gained in attempting to satisfy the current specification,
to changes in the environment of the system. Where such changes are incorporated, the
specification should be modified accordingly, in order that it remain up-to-date. If the
specification is not up-to-date it will fail in its communicative role. Specifications, therefore,
must be easy to annotate and modify. Although some would argue that the contractual nature of
specifications implies that they should not change, it is clearly preferable to negotiate a change
in the specification than to deliver software which does not meet the evolving needs of the user
organisation.

The specification’s role as a source of information, and the need to allow modifications,
indicate that the notion of a requirements specification as a large printed document is too
inflexible. Rather, the specification should be seen as a form of repository, and it should
include some form of database or knowledge base. Work on knowledge-based systems has
provided some useful ideas both for modelling requirements (e.g. Borgida, Greenspan &
Mylopoulos (1985)) and for reasoning with the specification (e.g. Reubenstein (1990)). A
knowledge based component can also facilitate access to and management of the body of
information gathered during requirements engineering. Such a component can be used to
interrogate the specification throughout the lifecycle.

2.2. Validating Specifications

The specification must be sufficiently precise to determine whether subsequent designs and
implementations meet it, a process known as verification. If the specification is in a formal
language, the verification process can be mathematically rigorous (Bjorner, 1987), and to a
certain degree, automated.

However, verification does not ensure that the specification is correct. The specification must
be validated with regard to the actual, evolving needs of the client. This process is particularly
difficult, as there is no definitive statement of those needs: the requirements specification is the
first precise description of those needs. Because of this, validation cannot be formalised, and
must remain a subjective human activity, requiring input and discussion by the originators of
the needs (Blum, 1985).

Validation can only proceed if the participants can relate the specification to their needs, and is
only successful if the specification is relevant to those needs. An important facility for
validation is traceability (Alford, 1977). If components of the specification can be traced back

- 4 -

to the original statements that inspired them, then the participants can assess the relevance more
readily. Also, if a statement has been misinterpreted, this can be traced through to those parts of
the specification which are based on the error and these can be modified.

Validation is an important part of requirements engineering. As it requires the originators’
participation, it is likely to be considerably smoother if those people have participated
throughout the requirements process. Such an involvement means that the requirements can be
validated as they evolve, rather than when they have been refined into a specification.

2.3. Design Capture and Rationale

Often the ability to trace a component of the specification back to an originating statement is not
enough to understand its purpose. For this, the process that led to the current specification
needs to be recorded. Given that specifications are designed artefacts, then recording the
derivation is a form of design capture. The design history must record the decisions made and
their rationales in order to be of use.

Decision capture can be problematic, as rationales tend to be idiosyncratic (Kaplan, 1989).
Analysts are experts in their jobs, and may have difficulty explaining their actions to others
who need to understand the specification. Furthermore, explanations are usually tailored to a
particular audience. If the analyst is recording a rationale, it is not clear to whom it should be
aimed. Also, understanding decisions involves making the goals of the participants clear,
which is difficult as these goals are often unconscious, and involve many implicit assumptions.
There needs to be a way to prompt for these goals, and to encourage all participants to think
about the decisions involved.

While it is unlikely that requirements engineering can be automated, some degree of automation
might be introduced for recording the process. Where interactive tools are used, the operations
can be recorded, automatically, as a basis for the attachment of rationales, using a machine-in-
the-loop (Green, Luckham, Balzer, Cheatham, & Rich, 1983). To a certain extent, such tools
can prompt for the rationales underlying the operations being carried out, and automatically
record these. The entire process history represents a documentation of the requirements
engineering process, and should be stored with the specification as a supplementary source of
information. However, storing and manipulating this documentation is a huge knowledge
management task, from which the analyst should be freed.

2.4. Exploration and Replay

While software engineering aims to produce higher quality software, it is not always possible
to get it right first time (Brooks, 1975). All models of the software lifecycle allow for a degree
of feedback and revision. The causes are well known: no-one has perfect foresight to predict
what they will want in the future; clients are not even certain about what they want now, nor
what is possible; and the consequences of particular requirements cannot be foreseen (Swartout
& Balzer, 1982). Furthermore, the introduction of a new system itself generates new
requirements.

All these problems suggest that some form of exploration is desirable. For the later stages of
software engineering, exploratory programming has been proposed. The specification process,
on the other hand is naturally an exploratory process, in which the participants explore their
requirements. Such an exploration is essential, because analysts will be unsure of the clients
needs, and the clients will be unsure of what is possible. Once an initial specification is
produced, clients will want to explore how it relates to their needs before accepting it.

A useful tool for exploration is the ability to re-trace steps, undoing previous actions. This
allows the participants to explore the consequences of a particular development without having
to commit themselves to it. In a large project, however, this can be problematic since the action

- 5 -

to be undone may have been originated by someone else, on a previous date. The facility
therefore depends on the accurate recording of rationales and the ability to trace dependencies.

A related facility to the undo operation is the ability to replay parts of the process. This can
allow re-use of previous, similar systems, by replaying their development, making changes
where necessary. It can also simplify program evolution, as alterations can be made to the
specification, and the development process replayed to generate a new implementation. Again,
this depends on the capture of rationales and tracing of dependencies.

3 . Difficulties

Specification construction is a difficult task. It is of a type of problem that has been termed
wicked: it is ill-structured and open-ended, and the knowledge available is incomplete (Rittel &
Webber, 1973). Most importantly, there is no notion of a finished specification, and the only
criteria for stopping is some form of satisfaction.

Five major areas of difficulty can be identified as contributing to the problems associated with
the formulation of requirements. The knowledge sources are diverse and vary greatly in the
quality of information and exposition; the actual knowledge takes many different forms; the
contents of the specification need to be negotiated; conflicts need to be resolved; and the
knowledge itself is uncertain and unstable. The problems are compounded by the nature of the
software engineering process itself, in that the sheer size of the process makes effective
communication vital, for which a solid common understanding of the problem is needed.
Furthermore, the resulting specification must be (to some degree) consistent and complete.

3.1. Requirements Formulation

Before the specification can be constructed, the necessary groundwork must be laid, which
involves knowledge elicitation and the formulation of the requirements. Both of these are
difficult tasks. Elicitation of knowledge forms a major part of the process, whether or not it will
eventually form a knowledge base. There are a number of well known problems in elicitation
(Gaines, 1987), caused by the tenuous nature of knowledge, the difficulties people have in
articulating it, and the element of irrelevant or misleading statements. Like knowledge
engineering, requirements engineering involves the extraction and representation of information
through some form of interaction with the domain experts, in this case the clients. Both have
the same set of techniques available for extracting the information, including various types of
interview, observing people in action (and subsequent debriefing), tutoring, and case analysis.
Most of the information gathered in this way is needed throughout the lifecycle of the software.

Finkelstein & Finkelstein (1983) describe the processes involved in requirements formulation.
There are three basic systematic methods: the use of check lists; lateral (or divergent) idea
generation; and formal specification languages. Decomposition and abstraction are important
parts of the process, removing barriers to innovation. The primitive concepts used in design
come from a number of sources, including: existing designs, analogy, convergent deduction,
and divergent thinking2.

Specification construction can be seen as an evolutionary process. The incremental steps either
add more detail, or clarify existing parts by introducing exceptional case behaviour or retracting
incorrect or over-simplified statements (Feather, 1987). We have also noted that specifications
are designed artefacts, and hence the specification process involves design. Dubois &
Hagelstein (1987) point out that requirements engineering differs from typical software design
tasks in that the latter involve artefacts such as programs, and are done exclusively by

2 See also Carter et. al. [1984] for a particularly graphic and entertaining account of requirements formulation

- 6 -

specialists, while requirements engineering involves real world concepts, and requires
extensive communication with non-experts.

3.2. Nature of the Knowledge Sources

There are many people involved with the development of a large software system, both in its
design and use. Whilst these people can be broadly classed into groups, such as users (often of
several types), management and software developers, these groupings will not enforce
conformity of the individual members. Each person is a potential source of knowledge, and
might contribute a unique insight. Additionally, people are not the only sources of knowledge:
valuable information may be found in manuals, memos, and other documents.

Much of the knowledge is difficult to elicit because the subjects need to untangle it, and the
analyst needs to know how to organise it. For example, it is hard to disentangle the
requirements from the goals and perspectives (and associated opinions and biases) of the
people involved. It is usual for example to restrict the specification to what is desired rather
than how it is to be achieved, to distinguish between functional and non-functional
requirements, and to distinguish the system model from its environment. People who are not
conversant with analysis techniques will be unable to make such distinctions, and so cannot
disentangle the various contributions they are making. They will certainly be unlikely to offer
information in a form that neatly fits with the organisational structure the analyst is developing.

Each user has a specific idea about what they want from the resulting system and how it will
help (or hinder) them, and so are most concerned to influence its design. These individual goals
colour their perspective of the requirements, and cause them to introduce systematic bias into
their responses. Furthermore, organisations have goals and policies which may inhibit their
members, again biasing their responses. This contrasts with knowledge elicitation for expert
systems, where the expert is unlikely to have any particular requirements concerning the
resulting system, and so can provide more objective responses. Unfortunately, knowledge
acquisition research has shown that even disinterested experts are not free from bias (Meyer &
Booker, 1989), and it is likely that most of these forms of bias also crop up in requirements
elicitation.

The analysts themselves are also sources of knowledge, providing a great deal of experience
about requirements for similar systems, and knowledge about the likely effects of particular
decisions. There is inevitably a temptation for the analyst to impose his or her own preferences
in the specification, and studies have shown that convincing the clients that a chosen solution is
suitable is the largest part of the analyst’s job (Fickas, Collins, & Olivier, 1987). Even where
the analyst has experience of the domain in question, that knowledge will be of a subtly
different flavour to that of the client, and there will be differences in the detailed requirements
of the particular situation. The analyst must be careful, therefore, to blend his or her knowledge
with others’ contributions.

It is often difficult to compare the knowledge offered by different subjects, because their
experience varies, both in type and level. Kolodner (1984) points out that experience changes
the way a person reasons, and that the key difference between experts and novices lies not so
much in the level of knowledge, but the ability to apply knowledge more effectively. Dreyfus &
Dreyfus (1986) describe the process of evolution from novice to expert, and suggest that
novices use simple heuristic rules, while experts internalise their knowledge. This implies that
domain experts are less able to explain their behaviour than novices. Also, people have a
tendency to tailor their explanations to the hearer, so for example a layman would receive a
superficial answer, while an expert would receive a detailed response (Compton & Jansen,
1989). All these factors combine to make it very difficult to compare knowledge elicited from
people with different levels of experience.

Another reason knowledge is difficult to compare is that subjects use different assumptions,
and these assumptions are not always obvious. While some sources will articulate what others

- 7 -

have tacitly assumed, it is not always clear when this has happened, nor is it always obvious
when people have made assumptions that others would not agree with. As there are a large
number of assumptions accompanying any communication act, ranging from assumptions that
the hearer understands the language of discourse, to very specific assumptions about the
domain, it is impossible to identify all of them.

3.3. Nature of the Knowledge Involved

Many areas of knowledge need to be taken into account. In a large-scale project, the
information required includes knowledge about software engineering methodologies and the
target machine’s architecture, as well as application domain knowledge. Furthermore, for
maintenance purposes, knowledge about the target software and the design history are also
needed. Much of this knowledge is specific to a particular project; for example, knowledge
about the needs which gave rise to the current study, knowledge about typical user behaviour,
knowledge about performance requirements of the various components of the system, and
knowledge about the software development process (its goals, its progress, its restrictions,
etc.). In his excellent survey of the use of AI in software engineering, Barstow (1987)
describes the roles played by these types of knowledge and argues that AI techniques could
greatly assist with the handling of this knowledge.

The analyst will, as a matter of course, use many different notations to capture the wide variety
of information (Burton & Shadbolt, 1987), as no single notation has sufficient expressive
power for the many different types of knowledge (Sloman, 1985). Even natural language is
frequently supplemented with diagrams and other devices. Where a single specification
language is to be used, the analysts will still have to handle other notations during elicitation,
because people attempt to explain their contributions in idiosyncratic ways. Indexing and cross-
referencing multiple notations is a difficult knowledge management task in itself, for which
extensive support is desirable.

As well as facts about the domain, relevant policies and preferences need to be considered, and
these are difficult to represent. They cannot be represented as specific facts, nor as verifiable
goals. Rather they are heuristic-like guidelines that restrict and channel the design process
(Anderson & Fickas, 1989). The need to choose between the diversity of methodologies
available for software engineering strengthens the role of institutional policy and individual
preference in the decision process.

Finally, the sheer volume of knowledge compounds these problems, and makes the
management of the knowledge difficult. Whilst consistency checking can be handled in a small
knowledge base, as the size increases such checking rapidly succumbs to the combinatorial
explosion. When a huge amount of information is involved, consistency checking is
prohibitively difficult. In requirements elicitation, inconsistencies occur frequently, usually
indicating a conflict between the interested parties. In such cases, the conflict represents the
need for an explicit decision by the analyst, which should not be taken until all the appropriate
information has been gathered. since as far as possible, all alternatives must be captured and
accommodated, the project timetable must allow the analyst to delay these decisions as far as is
necessary.

There is currently a paucity of computer support available to the analyst to manage this
knowledge. This requires meta knowledge: knowledge about how to manage knowledge. Most
existing software tools are geared to producing manual notations to represent the information.
This means that most of the meta knowledge needed is held in the software practitioners' heads:
only a small proportion is explicitly stored in the documentation. This increases problems of
communication across the software team. If the analyst never formally records such meta
knowledge, it can only be passed on by word of mouth to others involved with the software
life-cycle.

- 8 -

3.4. Negotiation

Because of the diversity of sources and types of knowledge which input to the requirements
specification, there will be many differences of opinion. Requirements engineering can be seen
as resolution of the expression of various constraints and goals of the people involved, and
integration of these into a single consistent specification. Conventional analysis techniques do
not address the resolution process directly, and so it usually begins in the analyst’s head. Part
of the analyst’s skill involves the juggling of competing requirements and negotiating with the
client.

Each participant brings a number of preconceptions or biases into the specification process,
which are adapted as the process proceeds. One of the reasons for this adaptability is that
clients are not always sure of what they want or what is feasible. The analyst’s expertise can be
used to guide them into understanding their needs better, as part of the analysis process.

However, too often the analyst takes this as an opportunity to impose his or her own solution.
This arises from the view of analysis as a process of translating user intent into formal or semi-
formal documents. The usual approach is to learn about the client, analyse the data, and then
make suggestions. Presenting these suggestions to the client takes a significant amount of time,
as the client needs to be convinced that the analyst’s interpretation is right (Fickas, et al.,
1987). As analysts naturally have preconceptions of the requirements, these will be used as a
basis of their understanding of the problem. Information gathered during elicitation is used to
construct a description which reflects these preconceptions. Unfortunately, there is a danger
that this will commit the specification to one particular understanding of the requirements, and
information which conflicts with the current description will be discarded.

We prefer to treat the requirements process as a form of negotiation amongst clients and
analysts, where the analyst and clients share their knowledge, and enter into a mutual process
of making suggestions, and critiquing each other's suggestions. Unfortunately little computer
support is available for synthesising a solution from the various inputs, nor for resolving the
conflict inherent in the process.

If negotiation is used as a basis for requirements engineering, there will be points at which
explicit resolution of conflict becomes necessary. Such conflicts arise for a number of reasons,
varying from misunderstandings to differences of values. In many cases it is not obvious what
the cause of the conflict is, nor how to resolve it. Our view of requirements engineering as
negotiation emphasises the role of conflict, as a catalyst for discussion and innovation. In
section 4 we examine the process of conflict resolution in more detail.

3.5. Uncertainty

One of the main aims of software engineering has been to formalise as much of the
development process as possible, in order to reduce the arbitrary nature of software
development, and to introduce automation. This formalisation facilitates verification, which has
been advocated as a means of improving reliability. However, a formal verification can only be
used to demonstrate that an implementation fulfils the formal requirements specification; in
other words that no errors creep in during the design process.

Because of the informal nature of the business environment in which the eventual system must
operate, there will always be a degree of uncertainty in the requirements (Balzer, Goldman, &
Wile, 1978), (Lehman, 1990). In particular, the initial step in requirements engineering is an
informal statement of need, and so there can never be a guarantee that a formal specification
describes exactly what is required.

One symptom of this uncertainty is that the specification gets altered once implementation is
underway. The fact that the process of designing a specification cannot be fully separated from
the implementation has already been noted. Swartout & Balzer (Swartout & Balzer, 1982)

- 9 -

identify two main reasons for alterations to the specification once the implementation is
underway. The first of these involves physical limitations arising from implementation
decisions. The second reason is the most interesting, and is put down to lack of foresight in the
specification. The implementation may yield new insights into the requirements of a task, and
as such the entire software engineering process can be seen as one of prototype refinement
(Giddings, 1984).

Another barrier to formalisation of requirements engineering is the need for negotiation. Studies
of conflict resolution show that the most successful methods require a degree of creative input
(Fisher & Ury, 1981). Formal approaches to conflict resolution have a tendency to produce
compromise solutions which do not properly satisfy any participant’s needs (Luce & Raiffa,
1957).

The inherent uncertainty and the need for creativity means that requirements engineering can
never be fully formalised. However, there is plenty of scope for prescriptive methods and tools
to support the process. Cunningham et. al. (1985) identify a number of dangers that proposed
specification models have suffered from. These include: lack of a method; difficulty of grafting
methods onto existing procedures; stultification of creativity; and univocality, as few methods
support elicitation from many sources or their consolidation into a consistent specification.
Formal methods which do address these problems could provide a powerful framework for
requirements engineering.

4 . Conflict Resolution

Conflict can be thought of as interference in one party’s activities, needs or goals caused by the
activity of another party (Easterbrook, Beck, Goodlet, Plowman, Sharples, & Wood, 1993).
In software engineering, the specification encapsulates the needs of the participants as a set of
requirements. If two parties have opposing requirements, then any attempt to represent these
requirements in the specification will give rise to conflict, as each would exclude the other. On
the other hand, if one set of requirements is ignored completely, then a potential conflict has
been suppressed. Depending on the actions of the ‘injured’ party, the conflict may resurface
later.

The same principle holds for descriptions of the world (“domain descriptions”). In the case of
requirements elicitation, part of the information elicited is a description of the system as it is at
present. This includes both activities that may eventually be subsumed by the system, and the
environment with which the eventual system must interact. These descriptions are rarely
objective; opposing views which might not be expressed directly will manifest themselves as
differences in these descriptions. Hence, conflicts will frequently be expressed as discrepancies
between the viewpoint descriptions.

4.1. Sources of Conflict

It has been demonstrated that conflict, as defined above, is common in group interactions
(Robbins, 1989). We can therefore assume that any application domain involving more than
one person will be subject to typical group conflicts. While it might be argued that a design
process with a single goal, perceived in the same way by all participants, might be free of
conflict, few real design processes are of this nature. This immediately suggests two possible
sources of conflict in a real-world design process: conflict between the various participants’
perceptions of the domain, and conflict between the many goals of a design.

The extent of conflict in software engineering has recently been revealed by a major field study
of software projects (Curtis, et al., 1988). Focusing on the behavioural aspects of software
design, this study identified three major problem areas: the thin spread of application domain
knowledge; fluctuating and conflicting requirements; and breakdowns in communication and
co-ordination. Each of these problem areas is a source of conflict, and each depends crucially

- 10 -

on communication between participants as a basis for any solution. A good conflict resolution
approach necessarily emphasises communication between parties.

Conflicting and fluctuating requirements have many causes, from change in the organisational
setting and business milieu, to the fact that the software will be used by different people with
different goals and different needs. Handling constant change in requirements (which has been
termed requirements maintenance (Finkelstein, Goedicke, Kramer, & Niskier, 1989)) requires
an evolutionary approach that must be based on accurate capture of rationales and process
information.

Unless the application domain with which the software deals is free of conflict, then the
resulting software must incorporate this conflict. For small programs, the domain can be
restricted until the conflict is excluded. For any large scale software, this is not practical. When
the application knowledge is spread over many people, there is likely to be much disagreement
between them, and fitting together the many contributions will inevitably lead to inconsistency.

Even if a domain appears to be free of conflict, quite often there will be areas in which there are
different ways of looking at things. While such perspectives may not be fundamentally
incompatible, they are likely to appear inconsistent, and so lead to conflict. Even if participants
are describing essentially the same concepts, the style in which these are described may vary:
even formal notation schemes allow enough variation in style so that there may be many
different ways of saying the same thing.

Other sources of conflict include: conflicts between suggested solution components; conflicts
between stated constraints; conflicts between perceived needs; conflicts in resource usage; and
discrepancies between evaluations of priority.

4.2. Consequences of Suppressing Conflict

Existing software process models generally ignore conflict. This can lead to a number of
problems. Where conflicts do occur, they are likely to get suppressed, because there is no
means of expressing them within the framework. It is possible that these conflicts will remain
suppressed, leading to dissatisfaction with the specification and the process that led to it. Often,
a single perspective will be adopted as the basis for the specification at the cost of any
alternative perspectives. In the process, useful ideas associated with the rejected perspectives
will be discarded, along with the goodwill of their originators.

If these conflicts are eventually resolved, the resolution must be carried out outside the
framework of the method and consequently is likely to be carried out at an inappropriate time,
using an undesirable means. In addition, resolution thus achieved is untraceable, making
rationales invalid, and the process irreproducible. Suppression of conflict will have serious
effects on the remainder of the software development process. In the worst case, suppressed
conflicts may lead to the breakdown of the requirements process, or the withdrawal of
participants. Failure to recognise conflict between the perspectives of the participants will cause
confusion during the requirements phase, which will then continue throughout the lifecycle.
The participants’ understanding of the specification will differ, leading to further
misunderstandings during design and implementation.

Research into group behaviour indicates that conflict can produce higher quality solutions
(Brown, 1988). Certainly, exploration of the areas where participants descriptions differ can
lead to a much better understanding of the domain (Easterbrook, 1991b). This is a strong
argument for conflict to be carefully managed in the software process, with participants
encouraged to express divergent views. This will ensure that the resulting system does not
reflect just one point of view, and does not ignore concerns which interfere with the dominant
concern.

- 11 -

In software design, effective collaboration is essential. It is vital that there be no losers from
any conflict in the specification process, as the commitment of all participants must be
maintained. Hence, encouragement of conflict must be matched with resolution methods which
strive to satisfy all parties. An integrative approach should be adopted, to ensure that when
divergent views arise they are incorporated into the process. The ultimate goal of the
requirements process should be to produce a specification which represents all concerns.

4.3. Role of Communication

The need to maintain collaboration implies that any model for conflict resolution in
requirements engineering must be based on collaborative modes of interaction. The two key
collaborative methods for conflict resolution are (integrative) negotiation and education
(Deutsch, 1973). Both of these emphasise communication between participants, and both
greatly ease conflicts based on communication problems.

Communication between participants has an important role in conflict resolution. As Robbins
(Robbins, 1974) notes, increased communication leads to decreased conflict up to a certain
level, but that too much communication can lead to increased conflict. A possible explanation is
that a certain amount of communication allows participants to discover commonalities, iron out
perceived conflicts, and correct misunderstandings. However, a high level of communication
highlights the details on which participants do disagree. Such conflicts are likely to be well-
founded, and should not be discouraged. However, arguing over trivial details can be counter-
productive, and so a balance must be struck between encouraging communication and devoting
appropriate amounts of effort to resolution of particular differences.

Comparison of descriptions derived from different sources forms an important part of the
process of eliminating errors. This can be facilitated by separating the elicitation of knowledge
descriptions from the comparison activities. In the comparison process, participants may then
compare their own descriptions with those elicited from others. By discussing areas of
divergence, underlying assumptions are revealed, as are any omissions in the descriptions.

5 . Framework

We have discussed the importance of requirements engineering, and the particular problems
relating to the process. Clearly, a model of requirements engineering is needed, which allows
the analyst to overcome the difficulties. In this section we present a set of objectives for such a
model, and for tools to support it. Note that we are not proposing automation. Case studies of
analysts at work (e.g. Fickas et al. (1987), Adelson & Soloway (1985)) have revealed that a
broad range of skills are employed by analysts. It is unlikely that the full range of these skills
can be automated.

5.1. Framework

Rather than a rigid formal process, the analyst needs a framework which can guide his or her
expertise. This framework must support the creative input and interpretative skills of the
analyst. Finkelstein & Fuks (1989) suggest that such a framework should be: flexible;
empirical (in that the model maps onto the results of observational studies); enactable; co-
operative; and that it should be able to handle conflict.

However, in order to facilitate management of the process and provide a support environment,
a degree of structuring must be introduced. An incremental, evolutionary approach is needed.
The individual steps which build the descriptions arise out of the dialogues between
participants, and a model that is overly-prescriptive will severely limit the scope of these
dialogues, possibly causing vital steps to be missed. Therefore, any automated support or
formalisation must account for, and indeed encourage dialogue as an exploration of the current
state of the specification. A result is that specification comes to be seen as a conversational
activity.

- 12 -

In order to allow the participants to control the process, the model must allow any order of
discussion. In other words, it cannot be guaranteed that needed information will be provided
immediately. Rich et al. (1987) discuss the inevitable informality of human communication,
listing abbreviation, ambiguity, poor ordering, incompleteness, and contradiction as key
features. These features represent an essential part of the human thought process, as a means of
dealing with complexity. People present ideas in the order they occur, not in an order which is
convenient to the hearer. In particular, the human mind is adept at ignoring inconvenient
consequences of particular statements with the intention of clarifying them later. Studies of
designers have shown that they frequently make notes to themselves to return later to a
particular item (Littman, 1987)

Finally, the model must allow the participants to delay the resolution of conflicts and the
making of decisions. Requirements engineering is primarily an exploratory process, involving
the gathering and formulation of knowledge. It is vital therefore, that it does not become
overly-restricted by premature decisions. A framework for the process should encourage
participants to gather all the relevant knowledge and explore all the issues before making a
decision (Easterbrook, 1991b).

5.2. Support Environment

In addition to a model for the specification process, we need to consider what kind of support
is needed. Automated tools should form an environment in which the knowledge collected can
be organised, manipulated and interrogated. We have characterised the specification as a
knowledge base, which implies that techniques from knowledge-based systems research can be
applied (Barstow, 1987). If all the knowledge is collected into an on-line knowledge base, it
can remain accessible for the remainder of the lifecycle (Harrison, 1987). This includes not just
the knowledge about the domain, but the documentation of the process itself.

We therefore envisage an environment which comprises a knowledge base containing all the
gathered information, an inference engine which defines the operations which might be carried
out on the knowledge base, and a set of tools which assist in the formulation, refinement and
presentation of the knowledge. This environment is based on the typical architecture of a
knowledge based system (Boose, 1986), and has been applied to requirements engineering
elsewhere (e.g. Reubenstein & Waters (1989)). The form of the inference engine will depend
on the notation(s) used within the knowledge base. As the knowledge base represents at any
point the current state of the specification, reasoning within the knowledge base allows
participants to test the specification.

The knowledge base will be continually added to, and hence any reasoning is non-monotonic in
that new knowledge may invalidate previous conclusions. The incremental refinement of
descriptions inevitably involves adding details such as exceptional case behaviour, to fix
problems which occur when descriptions are tested. Detailed tracing and recording of
dependencies throughout the knowledge base is therefore desirable.

As a specification evolves, it will frequently become inconsistent, and at all times will be (to
some degree) incomplete (Yue, 1987). At times there will be temporary inconsistencies, over-
generalisations, and over-simplifications. However, participants will need to manipulate the
specification as it evolves, as part of the exploratory process, and so the reasoning mechanisms
must cope with inconsistency and incompleteness. Areas of conflict, and places where more
details are needed can often be detected automatically, but the need to allow commitments to be
delayed means that participants might choose not to resolve these immediately.

Finally, the entire process should be documented automatically. We have stressed the
importance of capturing the design history, together with rationales. However, to do so
requires a lot of extra effort from the participants. They are unlikely to be persuaded to make
this effort unless a great deal of the recording process is automatic. If the series of actions made

- 13 -

using automatic tools is recorded, this can form a framework to which rationales can be
attached.

5.3. Tools

The last section described the general nature of the environment needed to support requirements
engineering. There are a number of areas in which tool support can be of particular help.

One major task in which tool support can help is in guiding participants towards those areas
which need more discussion. We noted above that automatic detection of conflicts and
identification of missing information should be possible. Given enough background knowledge
about the domain, it should also be possible to provide a degree of knowledge based critiquing
(Fickas & Nagarajan, 1988), to supplement the manual critiquing process. Maarek & Berry
(1989) note that automating the detailed clerical work of checking specifications is an ideal way
to supplement the human activity.

The critiquing process will lead to more knowledge being gathered. Tools can assist with the
incremental integration of this new information within the existing knowledge base. The
translation of natural language utterances into the appropriate notation is unlikely to be
automated, but again, clerical assistance can be given. Feedback can be given regarding the
effect of the new knowledge, for example by tracing the effects of new cases. Where the new
information was prompted by problems in the existing knowledge base, the system can keep
track of which parts have been resolved, how they were resolved, and what problems still
remain.

One advantage of automatically tracing the process is that the context of statements can be more
readily accessed. Contextual information provides important clues for interpretation and again
for validation. If the dialogues are recorded and held as a part of the knowledge base, then tools
to access these transcripts can be provided.

Conflict is an important part of the specification process, and tools to help identify and resolve
conflicts are needed. Whilst resolving conflict is essentially a human activity, a range of options
needs to be created and explored. Assistance with developing and reasoning with the options
can be provided. The system should also ensure that all relevant views are represented in the
resolution process.

Finally, tools are needed for presenting the knowledge back to the participants. This includes
assistance with building initial descriptions from the participant’s comments, and assistance
with demonstrating to the participants the current state of the specification. Several techniques
are useful for this, including animation of the specification (Kramer, Ng, Potts, & Whitehead,
1987) and summarization (Fickas, 1987).

6 . Summary

This chapter has examined the importance and the difficulties of requirements engineering, and
the difficulties, concluding that a model is needed to support the process. Requirements
engineering is important because it is concerned with the production of specifications, which
play a pivotal role in a software engineering project. The specification acts as a communication
medium amongst the software team, and as a yardstick by which results of the later stages of
development will be judged. The specification should contain all the information about the
requirements needed during the remainder of the software lifecycle. It must be unambiguous,
testable, and modifiable. It must be representative of the many people whose needs it refers to.
Above all, it should be a precise description of the requirements.

Specifications need to be carefully constructed so that they are useful and usable. In particular,
we have suggested that they be treated as designed artefacts, and careful consideration given to
the role they must fill. The design process that creates specifications needs to be recorded for

- 14 -

validation, to allow traceability, and this design history must include rationale. As there is an
inevitable amount of uncertainty in requirements, exploratory approaches must be supported.

There are a number of difficulties in requirements engineering. A very large amount of
knowledge needs to be captured, covering a range of areas. A range of sources need to be
consulted to elicit this knowledge, including people with different backgrounds and different
perspectives, together with reference to various texts and similar media. The knowledge might
be represented in a number of different ways, and may be entangled with personal preferences
and biases. Specification involves negotiation between the many participants, and conflict
resolution, where there are competing needs and constraints.

All these issues point toward the need for a model of the requirements engineering process. We
presented a number of objectives for such a model. The model should provide support for the
interactions between analyst and client, and encourage them as explorations of the current state
of the specification. It is vital that during this process the participants should be in control: the
method must only guide, rather than force, the order of discussion.

Computerised support can assist this process in two main ways: documenting the information
already gained, and guiding the discussions to areas which need more exploration. The support
should form a knowledge management environment capable of accommodating knowledge
from many conflicting sources, able to reason when inconsistencies aren’t resolved
immediately, and which can guide and document the process throughout.

7 . Conclusion

Specification is a negotiation activity between a group of people consisting of analysts,
developers, users, administrators and managers. Involving all these groups of people in all
stages of the specification process will help ensure their commitment to the project, and provide
a more representative specification. Furthermore, such participation will facilitate validation as
the participants will already be familiar with the contents of the specification.

Currently, participation to the extent advocated here is difficult, particularly because existing
techniques do not provide any means to express and resolve conflicts. Without such support,
conflicts become counter-productive.

A model of requirements engineering is needed which incorporates the exploratory nature of
negotiation. Support tools based upon such a model would provide an environment in which
the participants can describe their perspectives, and compare them to others’. The comparison
process then provides a focus for resolution of conflicts, and elimination of errors and
misunderstandings, resulting in a richer, more representative specification.

Acknowledgements

This work was carried out at Imperial College, London, and forms part of the author’s PhD
thesis [(Easterbrook, 1991a). I am indebted to Anthony Finkelstein, and many other colleagues
as Imperial for useful discussions on the ideas presented here. The work was funded by the
SERC, studentship number 87311891.

References
Adelson, B., & Soloway, E. (1985). The Role of Domain Experience in Software Design. IEEE Transactions on

Software Engineering, SE-11(11), 1351-1360.
Alford, M. W. (1977). A Requirements Engineering Methodology for Real-Time Processing Requirements.

IEEE Transactions on Software Engineering,, SE-3(1), 60-69.
Anderson, J. S., & Fickas, S. (1989). A Proposed Perspective Shift: Viewing Specification Design as a

Planning Problem. In Proceedings, Fifth IEEE International Workshop on Software Specification and
Design, . Pittsburg, Penn:

- 15 -

Balzer, R., & Goldman, N. (1979). Principles of Good Software Specification and their Implications for
Specification Languages. In N. H. Gehani & A. D. McGettrick (Eds.), Software Specification Techniques
Reading, MA: Addison Wesley.

Balzer, R., Goldman, N., & Wile, D. (1978). Informality in Program Specifications. IEEE Transactions on
Software Engineering,, SE-4(2), 94-102.

Barstow, D. (1987). Artificial Intelligence and Software Engineering. In Proceedings, Ninth International
Conference on Software Engineering (ICSE-87), (pp. 200).

Bjorner, D. (1987). On the Use of Formal Methods in Software Development. In Proceedings, Ninth
International Conference on Software Engineering (ICSE-87), .

Blum, B. I. (1985). On How We Get Invalid Systems. In Proceedings, Third IEEE International Workshop on
Software Specification and Design, (pp. 20-21). London:

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.
Boose, J. H. (1986). Expertise Transfer for Expert System Design. Amsterdam: Elsevier.
Borgida, A., Greenspan, S., & Mylopoulos, J. (1985). Knowledge Representations as the Basis for

Requirements Specifications. IEEE Computer, April 1985, 82-90.
Brooks, F. P. (1975). The Mythical Man-Month: Essays on Software Engineering. Reading, MA: Addison-

Wesley.
Brown, R. (1988). Group Processes: Dynamics within and between Groups. Oxford: Basil Blackwell Ltd.
Burton, M., & Shadbolt, N. (1987). Knowledge Engineering No. Tech Report No 87-2-1). Dept of Psychology,

University of Nottingham.
Compton, P., & Jansen, R. (1989). A Philosophical Basis for Knowledge Acquisition. In Proceedings, Third

European Workshop on Knowledge Acquisition for Knowledge Based Systems (EKAW-89), . Paris:
Cunningham, R. J., Finkelstein, A. C. W., Goldsack, S., Maibaum, T. S. E., & Potts, C. (1985). Formal

Requirements Specification - The FOREST Project. In Proceedings, Third IEEE International Workshop on
Software Specification and Design, . London:

Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study of the Software Design Process for Large Systems.
Communications of the ACM, 31(11).

Deutsch, M. (1973). The Resolution of Conflict. New Haven: Yale University Press.
Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind Over Machine: The Power of Human Intuition and Expertise in

the Era of the Computer. New York: Macmillan.
Dubois, E., & Hagelstein, J. (1987). Reasoning on Formal Requirements: A Lift Control System. In

Proceedings, Fourth IEEE International Workshop on Software Specification and Design, . Monterey, CA:
Easterbrook, S. M. (1991a) Elicitation of Requirements from Multiple Perspectives. PhD, Imperial College,

University of London.
Easterbrook, S. M. (1991b). Resolving Conflicts Between Domain Descriptions with Computer-Supported

Negotiation. Knowledge Acquisition: An International Journal, 3, 255-289.
Easterbrook, S. M., Beck, E. E., Goodlet, J. S., Plowman, L., Sharples, M., & Wood, C. C. (1993). A Survey

of Empirical Studies of Conflict. In S. M. Easterbrook (Eds.), CSCW: Co-operation or Conflict? (pp. 1-
68). London: Springer-Verlag.

Feather, M. S. (1987). The Evolution of Composite System Specifications. In Proceedings, Fourth IEEE
International Workshop on Software Specification and Design, . Monterey, CA.:

Fickas, S. (1987). Automating the Specification Process No. Technical Report No. CIS-TR-87-05). Dept of
Computer and Information Science, University of Oregon, Eugene, OR.

Fickas, S., Collins, S., & Olivier, S. (1987). Problem Acquisition in Software Analysis: A Preliminary Study
No. Technical Report No CIS-TR-87-04). Dept of Computer and Information Science, University of
Oregon, Eugene, OR.

Fickas, S., & Nagarajan, P. (1988). Being Suspicious: Critiquing Problem Specifications. In Proceedings,
Seventh AAAI National Conference on AI, (pp. 19-24).

Finkelstein, A. C. W., Goedicke, M., Kramer, J., & Niskier, C. (1989). ViewPoint Oriented Software
Development: Methods and Viewpoints in Requirements Engineering. In Proceedings, Second Meteor
Workshop on Methods for Formal Specification, . Springer-Verlag LNCS.

Finkelstein, A. C. W., & H., F. (1989). Multi-Party Specification. In Proceedings, Fifth IEEE International
Workshop on Software Specification and Design, (pp. 185-195).

Finkelstein, L., & Finkelstein, A. C. W. (1983). Review of Design Methodology. IEE Proceedings, 130, Pt
A(4).

Fisher, R., & Ury, W. (1981). Getting to Yes: Negotiating Agreement Without Giving in. London:
Hutchinson.

Gaines, B. R. (1987). An Overview of Knowledge Acquisition and Transfer. In B. R. Gaines & J. H. Boose
(Eds.), Knowledge Acquisition for Knowledge Based Systems, London: Academic Press.

- 16 -

Giddings, R. V. (1984). Accommodating Uncertainty in Software Design. Communications of the ACM,,
27(5), 428-434.

Green, C., Luckham, D., Balzer, R., Cheatham, T., & Rich, C. (1983). Report on a Knowledge-Based Software
Assistant No. Tech. Report No RADC-TR-83-195). Rome Air Development Centre.

Harrison, W. (1987). RPDE3: A Framework for Integrating Tool Fragments. IEEE Software, Nov 1987.
Kaplan, S. M. (1989). COED: Conversation-Oriented Software Environments No. University of Illinois at

Urbana-Champaign.
Kolodner, J. L. (1984). Towards Understanding of the Role of Experience in the Evolution from Novice to

Expert. In Coombs (Eds.), Developments in Expert Systems London: Academic Press.
Kramer, J., Ng, K., Potts, C., & Whitehead, K. (1987). Tool Support for Requirements Analysis No. Tech.

Report No DoC 87/3). Dept of Computing, Imperial College of Science and Technology, 180 Queens Gate,
London SW7 2AZ.

Lehman, M. M. (1990). Uncertainty in Computer Application is Certain (Software Engineering as a Control).
Communications of the ACM, May 1990, 584-586.

Littman, D. C. (1987). Modeling Human Expertise in Knowledge Engineering: Some Preliminary
Observations. In B. R. Gaines & J. H. Boose (Eds.), Knowledge Acquisition for Knowledge Based Systems
London: Academic Press.

Luce, D. L., & Raiffa, H. (1957). Games and Decisions: Introduction and Critical Survey. New York: J. Wiley
& Sons.

Maarek, Y. S., & Berry, D. M. (1989). The use of Lexical Affinities in Requirements Extraction. In
Proceedings, Fifth IEEE International Workshop on Software Specification and Design, . Pittsburg, Penn:

Meyer, M. A., & Booker, J. M. (1989). A Practical Program for Handling Bias in Knowledge Acquisition. In
Proceedings, Fourth AAAI Knowledge Acquisition For Knowledge-Based Systems Workshop, . Banff:

Reubenstein, H. B. (1990) Automated Acquisition of Evolving Informal Descriptions. Ph.D. Thesis, MIT
Artificial Intelligence Laboratory, Cambridge, MA.

Reubenstein, H. B., & Waters, R. C. (1989). The Requirements Apprentice: An Initial Scenario. In
Proceedings, Fifth IEEE International Workshop on Software Specification and Design, . Pittsburg, Penn:

Rich, C., Waters, R. C., & Reubenstein, H. B. (1987). Towards a Requirements Apprentice. In Proceedings,
Fourth IEEE International Workshop on Software Specification and Design, . Monterey, CA:

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Science, 4, 155-
169.

Robbins, S. P. (1974). Managing Organizational Conflict: A Nontraditional Approach. New Jersey: Prentice
Hall.

Robbins, S. P. (1989). Organizational Behaviour: Concepts, Controversies, and Applications (Fourth Edition
ed.). New Jersey: Prentice Hall.

Sloman, A. (1985). Why We Need Many Knowledge Representation Formalisms. In M. A. Bramer (Eds.),
Research and Development in Expert Systems (Proceedings, 4th Technical Conference of the BCS specialist
group on Expert Systems, 1984) Cambridge, UK: Cambridge University Press.

Swartout, W., & Balzer, R. (1982). On the Inevitable Intertwining of Specification and Implementation.
Communications of the ACM, 25(7), 438-440.

Yue, K. (1987). What Does It Mean To Say That a Specification Is Complete? In Proceedings, Fourth IEEE
International Workshop on Software Specification and Design, . Monterey, CA.:

Zave, P. (1982). An Operational Approach to Requirements Specification for Embedded Systems. IEEE
Transactions on Software Engineering,, SE-8(3), p250-269.

