
1

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Tutorial F2
Case Studies for Software Engineers

Steve Easterbrook University of Toronto

Jorge Aranda University of Toronto

This tutorial was originally developed with:
Susan Elliott Sim University of California, Irvine
Dewayne E. Perry The University of Texas at Austin

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 2

Goals of this tutorial

 For researchers:
 differentiate case studies from other empirical methods
 a solid grounding in the fundamentals of case studies as a research method
 understand and avoid common mistakes with case studies

 For reviewers:
 guidance to judge quality and validity of reported case studies.
 criteria to assess whether research papers based on case studies are

suitable for publication

 For practitioners:
 awareness of how to interpret the claims made by researchers about new

software engineering methods and tools.
 insights into the roles practitioners can play in case studies research

2

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 3

Overview

 Session 1:
Recognising Case Studies
 9:00-9:30 Empirical Methods in SE
 9:30-9:45 Basic Elements of a case

study
9:45-10:30 Exercise: Read and
Discuss Published Case studies
10:30-11:00 Coffee break

 Session 2:
Designing Case Studies I
 11:00-11:30 Theory Building

11:30-11:45 Exercise: Identifying
theories in SE

 11:45-12:30 Planning and Data
Collection
12:30-2:00 Lunch

 Session 3:
Designing Case Studies II

2:00-2:30 Exercise: Design a Case
Study

 2:30-3:30 Data Analysis and Validity
3:30-4:00 Tea break

 Session 4:
Publishing and Reviewing Case
Studies

4:00-4:30 Exercise: Design a Case
Study (concludes)

 4:30-5:00 Publishing Case Studies
 5:00-5:15 Reviewing Case Studies
 5:15-5:30 Summary/Discussion

5:30 Finish

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

1. Empirical Methods in Software
Engineering

3

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 5

Many methods available:

 Controlled Experiments

 Case Studies

 Surveys

 Ethnographies

 Artifact/Archive Analysis (“mining”!)

 Action Research

 Simulations

 Benchmarks

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 6

Controlled Experiments
experimental investigation of a testable hypothesis, in which conditions are set

up to isolate the variables of interest ("independent variables") and test how
they affect certain measurable outcomes (the "dependent variables")

 good for
 quantitative analysis of benefits of a particular tool/technique
 (demonstrating how scientific we are!)

 limitations
 hard to apply if you cannot simulate the right conditions in the lab
 limited confidence that the laboratory setup reflects the real situation
 ignores contextual factors (e.g. social/organizational/political factors)
 extremely time-consuming!

See:
Pfleeger, S.L.; Experimental design and analysis in software engineering.

Annals of Software Engineering 1, 219-253. 1995

4

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 7

Case Studies
“A technique for detailed exploratory investigations, both prospectively and
retrospectively, that attempt to understand and explain phenomenon or test

theories, using primarily qualitative analysis”

 good for
 Answering detailed how and why questions
 Gaining deep insights into chains of cause and effect
 Testing theories in complex settings where there is little control over the

variables

 limitations
 Hard to find appropriate case studies
 Hard to quantify findings

See:
Flyvbjerg, B.; Five Misunderstandings about Case Study Research. Qualitative

Inquiry 12 (2) 219-245, April 2006

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 8

Surveys
“A comprehensive system for collecting information to describe, compare or

explain knowledge, attitudes and behaviour over large populations”

 good for
 Investigating the nature of a large population
 Testing theories where there is little control over the variables

 limitations
 Relies on self-reported observations
 Difficulties of sampling and self-selection
 Information collected tends to subjective opinion

See:
Shari Lawarence Pfleeger and Barbara A. Kitchenham, "Principles of Survey

Research,” Software Engineering Notes, (6 parts) Nov 2001 - Mar 2003

5

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 9

Ethnographies

Interpretive, in-depth studies in which the researcher immerses herself in a
social group under study to understand phenomena though the meanings

that people assign to them

 Good for:
 Understanding the intertwining of context and meaning
 Explaining cultures and practices around tool use

 Limitations:
 No generalization, as context is critical
 Little support for theory building

See:
Klein, H. K.; Myers, M. D.; A Set of Principles for Conducting and Evaluating

Interpretive Field Studies in Information Systems. MIS Quarterly 23(1) 67-
93. March 1999.

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 10

Artifact / Archive Analysis
Investigation of the artifacts (documentation, communication logs, etc) of a

software development project after the fact, to identify patterns in the
behaviour of the development team.

 good for
 Understanding what really happens in software projects
 Identifying problems for further research

 limitations
 Hard to build generalizations (results may be project specific)
 Incomplete data

See:
Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of

open source software development: Apache and mozilla. ACM
Transactions on Software Engineering and Methodology, 11(3):1-38, July
2002.

6

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 11

Action Research
“research and practice intertwine and shape one another. The researcher

mixes research and intervention and involves organizational members as
participants in and shapers of the research objectives”

 good for
 any domain where you cannot isolate {variables, cause from effect, …}
 ensuring research goals are relevant
 When effecting a change is as important as discovering new knowledge

 limitations
 hard to build generalizations (abstractionism vs. contextualism)
 won’t satisfy the positivists!

See:
Lau, F; Towards a framework for action research in information systems

studies. Information Technology and People 12 (2) 148-175. 1999.

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 12

Simulations

An executable model of the software development process, developed from
detailed data collected from past projects, used to test the effect of process

innovations

 Good for:
 Preliminary test of new approaches without risk of project failure
 [Once the model is built] each test is relatively cheap

 Limitations:
 Expensive to build and validate the simulation model
 Model is only as good as the data used to build it
 Hard to assess scope of applicability of the simulation

See:
Kellner, M. I.; Madachy, R. J.; Raffo, D. M.; Software Process Simulation

Modeling: Why? What? How? Journal of Systems and Software 46 (2-3)
91-105, April 1999.

7

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 13

Benchmarks

A test or set of tests used to compare alternative tools or techniques. A
benchmark comprises a motivating comparison, a task sample, and a set of

performance measures

 good for
 making detailed comparisons between methods/tools
 increasing the (scientific) maturity of a research community
 building consensus over the valid problems and approaches to them

 limitations
 can only be applied if the community is ready
 become less useful / redundant as the research paradigm evolves

See:
S. Sim, S. M. Easterbrook and R. C. Holt “Using Benchmarking to Advance

Research: A Challenge to Software Engineering”. Proceedings, ICSE-2003

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 14

Comparing Empirical Research Methods

Qualitative Mixed Methods Quantitative

Current events Past Events

In Context In the Lab

Control by selection Control by manipulation

Purposive Sampling Representative Sampling

Analytic Generalization Statistical Generalization

Theory Driven Data Driven

8

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 15

Comparing Empirical Research Methods

Qualitative Mixed Methods Quantitative

Current events Past Events

In Context In the Lab

Control by selection Control by manipulation

Purposive Sampling Representative Sampling

Analytic Generalization Statistical Generalization

Theory Driven Data Driven

Case Studies

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 16

Comparing Empirical Research Methods

Qualitative Mixed Methods Quantitative

Current events Past Events

In Context In the Lab

Control by selection Control by manipulation

Purposive Sampling Representative Sampling

Analytic Generalization Statistical Generalization

Theory Driven Data Driven

Experiments

9

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 17

Comparing Empirical Research Methods

Qualitative Mixed Methods Quantitative

Current events Past Events

In Context In the Lab

Control by selection Control by manipulation

Purposive Sampling Representative Sampling

Analytic Generalization Statistical Generalization

Theory Driven Data Driven

?

Surveys

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 18

Comparing Empirical Research Methods

Qualitative Mixed Methods Quantitative

Current events Past Events

In Context In the Lab

Control by selection Control by manipulation

Purposive Sampling Representative Sampling

Analytic Generalization Statistical Generalization

Theory Driven Data Driven

Ethnographies

10

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 19

Comparing Empirical Research Methods

Qualitative Mixed Methods Quantitative

Current events Past Events

In Context In the Lab

Control by selection Control by manipulation

Purposive Sampling Representative Sampling

Analytic Generalization Statistical Generalization

Theory Driven Data Driven

Artifact / Archive Analysis

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 20

Myths about Case Study Research

1. General, theoretical (context-independent) knowledge is more valuable
than concrete, practical (context-dependent) knowledge.

2. One cannot generalize on the basis of an individual case; therefore,
the case study cannot contribute to scientific development.

3. The case study is most useful for generating hypotheses; that is, in the
first stage of a total research process, whereas other methods are
more suitable for hypothesis testing and theory building.

4. The case study contains a bias toward verification, that is, a tendency
to confirm the researcher’s preconceived notions.

5. It is often difficult to summarize and develop general propositions and
theories on the basis of specific case studies.

[See: Flyvbjerg, B.; Five Misunderstandings about Case Study Research.
Qualitative Inquiry 12 (2) 219-245, April 2006]

Not true
Inco

rrec
t

No!

Don’t b
elieve

 it! W
rong!

11

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

2. Basic Elements of a Case Study

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 22

Overview

 Differentiating the Case Study Method

 When to use Case Studies

 Types of Case Study

 Key elements of Case Study Design

 Quality Criteria for good Case Study Research

12

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 23

When should you use a case study?

 When you can’t control the variables

 When there are many more variables than data points

 When you cannot separate phenomena from context
 Phenomena that don’t occur in a lab setting
 E.g. large scale, complex software projects
 Effects can be wide-ranging.
 Effects can take a long time to appear (weeks, months, years!)

 When the context is important
 E.g. When you need to know how context affects the phenomena

 When you need to know whether your theory applies to a
specific real world setting

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 24

Why conduct a case study?

 To gain a deep understanding of a phenomenon
 Example: To understand the capability of a new tool
 Example: To identify factors affecting communication in code inspections
 Example: To characterize the process of coming up to speed on a project

 Objective of Investigation
 Exploration- To find what’s out there
 Characterization- To more fully describe
 Validation- To find out whether a theory/hypothesis is true

 Subject of Investigation
 An intervention, e.g. tool, technique, method, approach to design,

implementation, or organizational structure
 An existing thing or process, e.g. a team, releases, defects

13

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 25

Misuses of the term “Case Study”

 Not a case history
 In medicine and law, patients or clients are “cases.” Hence sometimes they

refer to a review of interesting instance(s) as a “case study”.

 Not an exemplar
 Not a report of something interesting that was tried on a toy problem

 Not an experience report
 Retrospective report on an experience (typically, industrial) with lessons

learned

 Not a quasi-experiment with small n
 Weaker form of experiment with a small sample size
 Uses a different logic for designing the study and for generalizing from

results

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 26

How can I tell it’s a case study?

 Has research questions set out from the beginning of the
study

 Data is collected in a planned and consistent manner

 Inferences are made from the data to answer the research
questions

 Produces an explanation, description, or causal analysis of
a phenomenon
 Can also be exploratory

 Threats to validity are addressed in a systematic way

14

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 27

Parts of a Case Study Research Design

 A research design is a “blueprint” for a study
 Deals more with the logic of the study than the logistics
 Plan for moving from questions to answers
 Ensures data is collected and analyzed to produce an answer to the initial

research question
 (Analogy: research design is like a system design)

 Five parts of a case study research design
1. Research questions
2. Propositions (if any)
3. Unit(s) of analysis
4. Logic linking the data to the propositions
5. Criteria for interpreting the findings

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 28

Part 1: Study Questions

 Study design always starts with research questions
 Clarify precisely the nature of the research question
 Ensure the questions can be answered with a case study
 Generally, should be “how” and “why” questions.
 Identify and interpret the relevant theoretical constructs

 Examples:
 “Why do 2 organizations have a collaborative relationship?”
 "Why do developers prefer this tool/model/notation?"
 "How are inspections carried out in practice?“
 "How does agile development work in practice?"
 "Why do programmers fail to document their code?“
 "How does software evolve over time?“
 "Why have formal methods not been adopted widely for safety-critical software?“
 "How does a company identify which software projects to start?"

15

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 29

Types of Case Studies

 Explanatory
 Adjudicates between competing

explanations (theories)
 E.g. How important is

implementation bias in requirements
engineering?
 Rival theories: existing architectures

are useful for anchoring, vs. existing
architectures are over-constraining
during RE

 Descriptive
 Describes sequence of events and

underlying mechanisms
 E.g. How does pair programming

actually work?
 E.g. How do software immigrants

naturalize?

 Causal
 Looks for causal relationship

between concepts
 E.g. How do requirements errors

and programming errors affect
safety in real time control systems?
 See study by Robyn Lutz on the

Voyager and Galileo spacecraft

 Exploratory
 Used to build new theories where

we don’t have any yet
 Choose cases that meet particular

criteria or parameters
 E.g. Christopher Columbus’ voyage

to the new world
 E.g. What do CMM level 3

organizations have in common?

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 30

Part 2: Study Propositions

 Propositions are claims about the research question
 State what you expect to show in the study
 Direct attention to things that should be examined in the case study
 E.g. “Organizations collaborate because they derive mutual benefits”

 Propositions will tell you where to look for relevant evidence
 Example: Define and ascertain the specific benefits to each organization

 Note: exploratory studies might not have propositions
 …but should lead to propositions for further study
 …and should still have a clearly-stated purpose and clearly-stated criteria

for success

 Analogy: hypotheses in controlled experiments

16

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 31

Part 3: Unit of Analysis

 Defines what a “case” is in the case study
 Choice depends on the primary research questions
 Choice affects decisions on data collection and analysis
 Hard to change the unit of analysis once the study has started (but can be

done if there are compelling reasons)
 Note: good idea to use same unit of analysis as previous studies (why?)

 Often many choices:
 E.g. for an exploratory study of extreme programming:

 Unit of analysis = individual developer (case study focuses on a person’s
participation in the project)

 Unit of analysis = a team (case study focuses on team activities)
 Unit of analysis = a decision (case study focuses on activities around that

decision)
 Unit of analysis = a process (e.g. case study examines how user stories are

collected and prioritized)
 …

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 32

Examples of Units of Analysis

 For a study of how software immigrants naturalize
 Individuals?
 … or the Development team?
 … or the Organization?

 For a study of pair programming
 Programming episodes?
 … or Pairs of programmers?
 … or the Development team?
 … or the Organization?

 For a study of software evolution
 A Modification report?
 … or a File?
 … or a System?
 … or a Release?
 … or a Stable release?

17

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 33

Why Defining your Unit of Analysis matters

 Clearly bounds the case study
 …and tells you which data to collect

 Makes it easier to compare case studies
 …incomparable unless you know the units of analysis are the same

 Avoid subjective judgment of scope:
 e.g. disagreement about the beginning and end points of a process

 Avoids mistakes in inferences from the data
 E.g. If your study proposition talks about team homogeneity…
 …Won’t be able to say much if your units of analysis are individuals

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 34

Part 4: Linking Logic

 Logic or reasoning to link data to propositions

 One of the least well developed components in case
studies

 Many ways to perform this
 …none as precisely defined as the treatment/subject approach used in

controlled experiments

 One possibility is pattern matching
 Describe several potential patterns, then compare the case study data to

the patterns and see which one is closer

18

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 35

Part 5: Interpretation Criteria

 Criteria for interpreting a study’s findings
 I.e. before you start, know how you will interpret your findings

 Also a relatively undeveloped component in case studies
 Currently there is no general consensus on criteria for interpreting case

study findings
 [Compare with standard statistical tests for controlled experiments]

 Statistical vs. Analytical Generalization
 Quantitative methods tend to sample over a population
 Statistical tests then used to generalize to the whole population
 Qualitative methods cannot use statistical generalization
 Hence use analytical generalization

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 36

Generalization
Statistical Generalization

 First level generalization:
 From sample to population

 Well understood and widely
used in empirical studies

 Can only be used for
quantifiable variables

 Based on random sampling:
 Standard statistical tests tell you if

results on a sample apply to the
whole population

 Not useful for case studies
 No random sampling
 Rarely enough data points

Analytical Generalization

 Second level generalization:
 From findings to theory

 Compares qualitative findings
with the theory:
 Does the data support or refute the

theory?
 Or: do they support this theory

better than rival theories?

 Supports empirical induction:
 Evidence builds if subsequent case

studies also support the theory (&
fail to support rival theories)

 More powerful than statistical
techniques
 Doesn’t rely on correlations
 Examines underlying mechanisms

19

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 37

Analytical and Statistical Generalization

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 38

How can I evaluate a case study?

Same criteria as for other empirical research:

 Construct Validity
 Concepts being studied are operationalized and measured correctly

 Internal Validity
 Establish a causal relationship and distinguish spurious relationships

 External Validity
 Establish the domain to which a study’s findings can be generalized

 Empirical Reliability
 Demonstrate that the study can be repeated with the same results

20

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Exercise:
Read and Discuss Published Case
Studies

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Theory Building

21

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 41

Scientific Method

 No single “official” scientific method
http://dharma-haven.org/science/myth-of-scientific-method.htm

 However, there are commonalities

WorldTheory

Observation

Validation

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 42

High School Science Version

1. Observe some aspect of the universe.

2. Invent a tentative description, called a hypothesis, that is
consistent with what you have observed.

3. Use the hypothesis to make predictions.

4. Test those predictions by experiments or further
observations and modify the hypothesis in the light of your
results.

5. Repeat steps 3 and 4 until there are no discrepancies
between theory and experiment and/or observation.

22

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 43

Scientific Inquiry

Prior Knowledge
(Initial Hypothesis)

Observe
(what is wrong with
the current theory?)

Theorize
(refine/create a
better theory)

Design
(Design empirical tests

of the theory)

Experiment
(manipulate the variables)

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 44

(Comparison: The Engineering Cycle)

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate

the variables)

23

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 45

Some Characteristics of Science

 Science seeks to improve our understanding of the world.

 Explanations are based on observations
 Scientific truths must stand up to empirical scrutiny
 Sometimes “scientific truth” must be thrown out in the face of new findings

 Theory and observation affect one another:
 Our perceptions of the world affect how we understand it
 Our understanding of the world affects how we perceive it

 Creativity is as important as in art
 Theories, hypotheses, experimental designs
 Search for elegance, simplicity

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 46

Some Definitions

 A model is an abstract representation of a phenomenon or
set of related phenomena
 Some details included, others excluded

 A theory is a set of statements that provides an explanation
of a set of phenomena
 Ideally, the theory has predictive power too

 A hypothesis is a testable statement that is derived from a
theory
 A hypothesis is not a theory!

In software engineering, there are few “Theories”
 Many “small-t” theories, philosophers call these folk theories

24

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 47

Science and Theory

 A (scientific) Theory is:
 more than just a description - it explains and predicts
 Logically complete, internally consistent, falsifiable
 Simple and elegant.

 Components
 concepts, relationships, causal inferences

 E.g. Conway’s Law- structure of software reflects the structure of the team that builds it. A
theory should explain why.

 Theories lie at the heart of what it means to do science.
 Production of generalizable knowledge
 Scientific method <-> Research Methodology <-> Proper Contributions for a

Discipline

 Theory provides orientation for data collection
 Cannot observe the world without a theoretical perspective

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 48

Meta-theories (theories about theory)
 Logical Positivism:

 Separates discovery from validation
 Logical deduction, to link theoretical

concepts to observable phenomena
 Scientific truth is absolute, cumulative,

and unifiable
 Popper:

 Theories can be refuted, not proved;
 only falsifiable theories are scientific

 Campbell:
 Theories are underdetermined;
 All observation is theory-laden, biased

 Quine:
 Terms used in scientific theories have

contingent meanings
 Cannot separate theoretical terms from

empirical findings
 Kuhn:

 Science characterized by dominant
paradigms, punctuated by revolution

 Lakatos:
 Not one paradigm, but many

competing research programmes
 Each has a hard core of assumptions

immune to refutation
 Feyerabend:

 Cannot separate scientific discovery
from its historical context

 All scientific methods are limited;
 Any method offering new insight is ok

 Toulmin:
 Evolving Weltanschauung determines

what is counted as fact;
 Scientific theories describe ideals, and

explain deviations
 Laudan:

 Negative evidence is not so significant
in evaluating theories.

 All theories have empirical difficulties
 New theories seldom explain

everything the previous theory did

25

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 49

Empirical Approach

Solution
Creation

ValidationQuestion
Formulation

Research Methodology

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 50

Empirical Approaches

 Three approaches
 Descriptive
 Relational
 Experimental/Analytical

26

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 51

Empirical Approaches

 Descriptive
 Goal: careful mapping out a situation in order to describe what is

happening
 Necessary first step in any research

 Provides the basis or cornerstone
 Provides the what

 Rarely sufficient – often want to know why or how
 But often provides the broad working hypothesis

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 52

Empirical Approaches

 Relational
 Need at least two sets of observations so that some phenomenon

can be related to each other
 Two or more variables are measured and related to each other
 Coordinated observations -> quantitative degree of correlation
 Not sufficient to explain why there is a correlation

27

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 53

Empirical Approaches

 Experimental/Analytical
 Focus on identification of cause and effect — what leads to what?
 Want “X is responsible for Y”, not “X is related to Y”
 Need to manipulate the variables

 Two approaches:
 Set up treatments with different values of key variables
 Select existing cases with “theoretically” interesting properties

 Many potential problems
 Cause-and-effect is hard to prove conclusively

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 54

Concepts and Terminology

 Aspects of empirical reasoning
 Empirical principles: accepted truths justified on the basis of observations
 Deductive-statistical reasoning – universal laws
 Inductive-statistical reasoning – probabilistic assertions

 They deal with uncertainty
 They are not absolute, invariant rules of nature

 Behavioral sciences are not sufficient to determine
exactitude
 Human values and individual states of mind
 Unique nature of the situation which is usually not static
 Historical and social factors

28

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 55

Validity

 In software engineering, we worry about various issues:
 Validation – is the software doing what is needed?
 is it doing it in an acceptable or appropriate way?
 Verification – is it doing what the specification stated?
 are the structures consistent with the way it should perform?

 In empirical work, worried about similar kinds of things
 Are we testing what we mean to test
 Are the results due solely to our manipulations
 Are our conclusions justified
 What are the results applicable to

 The questions correspond to different validity concerns
 The logic of demonstrating causal connections
 The logic of evidence

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Exercise:
Identifying theories in SE

29

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Planning and Data Collection

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 58

Elements of a Case Study

 Research questions

 Propositions (if any)

 Unit(s) of analysis

 Logic linking the data to the propositions

 Criteria for interpreting the findings

30

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 59

Types of Research Question

 Existence:
 Does X exist?

 Description and Classification
 What is X like?
 What are its properties?
 How can it be categorized?

 Composition
 What are the components of X?

 Relationship
 Are X and Y (cor)related?

 Descriptive-Comparative
 How does X differ from Y?

 Causality
 Does X cause Y?
 Does X prevent Y?

 Causality-Comparative
 Does X cause more Y than does Z?
 Is X better at preventing Y than is Z?

 Causality-Comparative Interaction
 Does X cause more Y than does Z

under one condition but not others?

 Notes:
 Don’t confuse “causes” & “enables”
 Don’t confuse “causes” & “correlates”

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 60

Case Study Designs

 4 types of designs
(based on a 2x2 matrix)
 Single-case vs. Multiple-

case design
 Holistic vs. Embedded

design

Basic Types of Designs for Case Studies (Yin, page 40)

31

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 61

Holistic vs. Embedded Case Studies

 Holistic case study: Examines
only the global nature of one unit
of analysis (not any subunits)
 E.g: a case study about an

organization

 Embedded case study: Involves
more than one unit of analysis
by paying attention to subunit(s)
within the case
 E.g: a case study about a single

organization may have conclusions
about the people (subunits) within
the organization

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 62

Holistic Designs

 Strengths
 Convenient when no logical subunits can be defined
 Good when the relevant theory underlying the case study is holistic in

nature

 Weaknesses
 Can lead to abstract studies with no clear measures or data
 Harder to detect when the case study is shifting focus away from initial

research questions

32

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 63

Embedded Designs

 Strengths
 Introduces higher sensitivity to “slippage” from the original research

questions

 Weaknesses
 Can lead to focusing only on the subunit (i.e. a multiple-case study of the

subunits) and failure to return to the larger unit of analysis

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 64

Rationale for Single-Case Designs

 As you might guess, a single-case design uses a single
case study to address the research questions

 5 reasons to use a single-case design
 It represents the critical case in testing a well-formulated theory

 The case meets all of the conditions for testing the theory thoroughly
 It represents an extreme or unique case

 Example: a case with a rare disorder
 It is the representative or typical case, i.e. informs about common

situations/experiences
 Gain insights on commonplace situations

 The case is revelatory –a unique opportunity to study something previously
inaccessible to observation
 Opens a new topic for exploration

 The case is longitudinal – it studies the same case at several points in time
 The corresponding theory should deal with the change of conditions over time

33

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 65

Multiple-Case Designs

 Useful when literal or theoretical replications provide
valuable information

 Advantages
 Evidence is considered more compelling
 Overall study is therefore regarded as more robust

 Disadvantages
 Difficulty to find an appropriate number of relevant cases
 Can require extensive resources and time

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 66

Replication in Multiple-Case Studies

 Select each case so that it either:
 Predicts similar results (literal replication)
 Predicts contrasting results but for predictable reasons (theoretical

replication)

 If all cases turn out as predicted, there is compelling
support for the initial propositions
 Otherwise the propositions must be revised and retested with another set of

cases

 The theoretical framework of the study should guide the
choices of replication cases

34

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 67

How Many Cases?

 How many literal replications?
 It depends on the certainty you want to have about your results
 Greater certainty with a larger number of cases

 Just as with statistical significance measures
 2 or 3 may be sufficient if they address very different rival theories and the

degree of certainty required is not high
 5, 6, or more may be needed for higher degree of certainty

 How many theoretical replications?
 Consider the complexity of the domain under study

 If you are uncertain whether external conditions will produce different results,
you may want to include more cases that cover those conditions

 Otherwise, a smaller number of theoretical replications may be used

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 68

Replication Logic vs. Sampling Logic

 Consider multiple-cases analogous to multiple experiments
 Not analogous to multiple subjects in a single experiment!

 Replication logic (used in case studies) is different from
sampling logic (used in surveys)
 Sampling logic requires defining a pool of potential respondents, then

selecting a subset using a statistical procedure
 Responses from the subset are supposed to accurately reflect the

responses of the entire pool

 Sampling logic does not fit with case studies
 Case studies are not the best method for assessing the prevalence of

phenomenon in a population
 Case studies would have to cover both the phenomenon of interest and its

context
 Too many variables, which leads to way too many cases!

35

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 69

Replication Approach for Multiple-Case Studies

Case Study Method (Yin page 50)

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 70

Multiple-Case Designs: Holistic or Embedded

 A multiple-case study can
consist of multiple holistic or
multiple embedded cases
 But there is no mixing of embedded

and holistic cases in the same study

 Note that for embedded studies,
subunit data are not pooled
across subunits
 Used to draw conclusions only for

the subunit’s case

36

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 71

Selecting Case Study Designs – Single or Multiple?

 If you have a choice and enough resources, multiple-case
designs are preferred
 Conclusions independently arising from several cases are more powerful
 Differences in context of multiple cases with common conclusions improve

the generalization of their findings
 Capability to apply theoretical replications

 Single-case studies are often criticized due to fears about
uniqueness surrounding the case
 Criticisms may turn to skepticism about your ability to do empirical work

beyond a single-case study
 If you choose single-case design, be prepared to make an extremely strong

argument justifying your choice for the case

 However, remember that in some situations single-case
designs are the best (or only!) choice

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 72

Selecting Case Study Designs – Closed or Flexible?

 A case study’s design can be modified by new information
or discoveries during data collection
 Your cases might not have the properties you initially thought
 Surprising, unexpected findings
 New and lost opportunities

 If you modify your design, be careful to understand the
nature of the alteration:
 Are you merely selecting different cases, or are you also changing the

original theoretical concerns and objectives?
 Some dangers akin to software development’s feature creep
 Flexibility in design does not allow for lack of rigor in design
 Sometimes the best alternative is to start all over again

37

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 73

Purposive Sampling of Cases
 Extreme or Deviant Case

 E.g outstanding success/notable failures, exotic
events, crises.

 Intensity
 Information-rich cases that clearly show the

phenomenon (but not extreme)

 Maximum Variation
 choose a wide range of variation on dimensions

of interest

 Homogeneous
 Case with little internal variability - simplifies

analysis

 Typical Case
 Identify typical, normal, average case

 Stratified Purposeful
 Identify subgroups and select candidates within

each group

 Critical Case
 if it's true of this one case it's likely to be true of

all other cases.

 Snowball or Chain
 Select cases that should lead to identification of

further good cases

 Criterion
 All cases that meet some criterion,

 Theory-Based
 Manifestations of a theoretical construct

 Confirming or Disconfirming
 Seek exceptions, variations on initial cases

 Opportunistic
 Rare opportunity where access is normally

hard/impossible

 Politically Important Cases
 Attracts attention to the study

 Convenience
 Cases that are easy/cheap to study (but means

low credibility!)

 Or a combination of the above

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 74

Collecting the Evidence

 Six Sources of Evidence
 Documentation
 Archival Records
 Interviews
 Direct Observation
 Participant-observation
 Physical Artifacts

 Three Principles of Data Collection
 Use Multiple Sources of Evidence
 Create a Case Study Database
 Maintain a Chain of Evidence

38

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 75

Documentation

 Letters, memos, and other written communication

 Agendas, announcements, meeting minutes, reports of events

 Administrative documents
 Proposals, progress reports, summaries and records

 Formal studies or evaluations of the same site

 Newspaper clippings, articles in media or newsletters

 Example: Classifying modification reports as adaptive, perfective or
corrective based on documentation
 Audris Mockus, Lawrence G. Votta: Identifying Reasons for Software Changes

using Historic Databases. ICSM2000: pp. 120-130

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 76

Archival Records
 Service records

 Clients served over a period of time

 Organizational records
 Organizational charts and budgets

 Layouts
 Maps and charts

 Lists of names and relevant articles

 Survey data
 Census records

 Personal records
 Diaries, calendars, telephone lists

 Example: Study of parallel changes to source code was based on
revision control logs
 Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta: Parallel changes in large-scale software

development: an observational case study. ACM TSE Methodology 10(3): 308-337 (2001)

39

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 77

Interviews

 Open-ended interviews
 Address facts and opinions about an event
 Flexible structure of interview (or no structure at all!)

 Focused interviews
 Short period of time (about an hour)
 Similar approach as open-ended.

 Formal surveys
 Produce quantifiable data

 Example: Used semi-structured interviews to understand
the effect of distance on coordination in teams
 Rebecca E. Grinter, James D. Herbsleb, Dewayne E. Perry: The

geography of coordination: dealing with distance in R&D work. GROUP
1999: pp. 306-315

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 78

Direct Observation

 Field visits- creates opportunity for direct observation

 Photographs of site
 Need permission in order to proceed!

 Can be used to calibrate self-reports
 Example: Informal, impromptu interactions

 Example: Followed software developers around to
characterize how they spend their time
 Dewayne E. Perry, Nancy A. Staudenmayer, Lawrence G. Votta: People,

Organizations, and Process Improvement. IEEE Software 11(4): 36-45
(1994)

40

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 79

Participant-observation

 Not a passive observer, but actually participate in setting
 Employee of the company under study

 Provides an opportunity to understand the rationale and
behavior of people and organization being studied

 Example: Seaman participated in 23 code inspections over
period of five months at NASA/Goddard Space Flight
Center’s Flight Dynamics Division
 Carolyn B. Seaman, Victor R. Basili: Communication and Organization: An

Empirical Study of Discussion in Inspection Meetings. IEEE Trans.
Software Eng. 24(7): 559-572 (1998)

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 80

Physical Artifacts

 Technological tool, instrument, or device

 Artifacts can be collected or observed as part a field visit

 Works of art or types of physical evidence

 Example: Diachronic study of art records to determine
whether right-handedness was a recent or old trait
 Two rival hypotheses: Physiological predisposition vs

Social/environmental pressure
 Tested by counting unimanual tool usage in art representations
 1200 examples from 1500 BC to 1950, world sources
 92.6% used right hand
 Geo/historical distribution uniformly high
 Seems to support physiological interpretation that right-handedness is an

age-old trait

41

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 81
Reproduced from Yin 2002

Source of Evidence Strengths Weaknesses

Documentation ! Stable – can be reviewed
repeatedly

! Unobtrusive – not created as
a result of the case study

! Exact – contains exact
names, references, and
details of an event

! Broad coverage – long span
of time, many events, and
many settings

! Retrievability – can be low

! Biased selectivity, if
collection is incomplete

! Reporting bias – reflects
(unknown) bias of author

! Access – may be
deliberately blocked

Archival Records {same as above for
documentation}

! Precise and quantitative

{same as above for

documentation}
! Accessibility due to privacy

reasons

Interviews ! Targeted – focuses directly
on case study topic

! Insightful – provides
perceived causal inferences

! Bias due to poorly
constructed questions

! Response bias

! Inaccuracies due to poor
recall

! Reflexivity – interviewee
gives what interview wants
to hear

Sources of Evidence: Strengths, Weaknesses

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 82

Source of Evidence Strengths Weaknesses

Direct

Observations

! Reality – covers events in
real time

! Contextual – covers content
of event

! Time consuming

! Selectivity – unless broad
coverage

! Reflexivity – event may
proceed differently
because it is being
observed

! Cost- hours needed by
human observers

Participant

Observations

{same as above for direct
observation}

! Insightful into interpersonal
behavior and motives

{same as above for direct
observation}

! Bias due to investigator’s
manipulation of events

Physical Artifacts ! Insightful into cultural
features

! Insightful into technical
operations

! Selectivity

! Availability

Reproduced from Yin 2002

Strengths and Weaknesses Cont’d

42

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 83

Principles of Data Collection

 Use Multiple Sources of Evidence

 Create a Case Study Database

 Maintain a Chain of Evidence

These principles can be applied to
all six data collection methods

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 84

Multiple Sources of Evidence

 Triangulation of data sources

 Basic idea: Collect evidence from more than one source
pointing towards the same facts
 Warning: Collecting data from several sources does not guarantee

data triangulation!

 Example: Different approaches were used collect data
about how developers spend their time.
 Dewayne E. Perry, Nancy A. Staudenmayer, Lawrence G. Votta: People,

Organizations, and Process Improvement. IEEE Software 11(4): 36-45
(1994)
 Collected cross-sectional and direct observation data

 Marc G. Bradac, Dewayne E. Perry, Lawrence G. Votta: Prototyping a
Process Monitoring Experiment. IEEE TSE. 20(10): 774-784 (1994)
 Collected longitudinal data

43

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 85

Multiple Sources of Evidence
Convergence of Evidence (Figure 4.2)

FACT

Documents Archival Records

Open-ended
Interviews

Focus InterviewsStructured Interviews
and Surveys

Observations
(direct and participant)

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 86

Case Study Database

 A case study database provides a formal assembly of
evidence

 Elements to include:
 Case study notes

 From interviews, documents, etc.
 Categorized, complete

 Case study documents
 Annotated bibliography of the documents- facilitates storage, retrieval, help

future investigators share the database
 Tabular materials

 Survey and quantitative data
 Narratives

 Written by the researcher, providing tentative answers to the research
questions

 Connect pertinent issues

44

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 87

Chain of Evidence

 Maintaining a chain of evidence is analogous to
providing traceability in a software project

 Forms explicit links between
 Questions asked
 Data collected
 Conclusion drawn

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 88

Chain of Evidence
Maintaining a Chain of Evidence

Citations to Specific Evidentiary Sources in the Case Study D.B.

Case Study Report

Case Study Database

Case Study Protocol (linking questions to protocol topics)

Case Study Questions

45

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Lunch

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Exercise:
Design a Case Study

46

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Data Analysis and Validity

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 92

Data Analysis

 Analytic Strategies

 3 general strategies
 Relying on theoretical propositions
 Thinking about rival explanations
 Developing a case description

 5 specific analytic techniques
 Pattern matching
 Explanation building
 Time-series analysis
 Logic models
 Cross-case synthesis

 Criteria for high quality analysis

47

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 93

Characteristics of Case Study Analysis

 We have the data. Now what?
 Don’t collect the data if you don’t know how to analyze them!
 Figure out your analysis strategies when designing the case study

 Data analysis should use the evidence to address the
propositions
 Both quantitative and qualitative evidence should be analyzed

 Difficult step because strategies and techniques have not
been well defined
 Big stumbling block of many case studies

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 94

General Strategy
1. Relying on Theoretical Propositions

 Shapes the data collection plan and prioritizes the relevant
analytic strategies

 Helps to focus attention on theory-relevant data and to
ignore irrelevant data

 Helps to organize the entire case study and define rival
explanations to be examined

48

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 95

General Strategy
2. Thinking About Rival Explanations

 Especially useful when doing case study evaluations

 Attempts to collect evidence about other possible influences

 The more rivals the analysis addresses and rejects, the
more confidence can be placed in the findings

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 96

General Strategy
3. Developing a Case Description

 Serves as an alternative when theoretical proposition and
rival explanation are not applicable

 A descriptive approach may help to identify the appropriate
causal links to be analyzed

49

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 97

Analytic Technique
1. Pattern Matching

 Pattern matching compares empirically based
patterns with predicted ones
 If the patterns coincide, the results can strengthen the internal

validity of the case study
 Rival theories produce different patterns – the case study

evidence is used to determine which of them really took place

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 98

Types of Pattern Matching

 Nonequivalent dependent variables as a pattern
 Find what your theory has to say about each dependent variable
 Consider alternative “patterns” caused by threats to validity as well
 If (for each variable) the predicted values were found, your theory gains

empirical support

 Rival explanations as patterns
 Prior to data collection, articulate rival explanations in operational terms
 Each rival explanation involves a pattern that is mutually exclusive: If one

explanation is to be valid, the others cannot be

 Simpler patterns
 If there are only two different dependent (or independent) variables, pattern

matching is still possible as long as a different pattern has been stipulated
for them

 The fewer the variables, the more dramatic differences will have to be!

50

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 99

Analysis Technique
2. Explanation Building

 Special type of pattern matching

 Stipulate a presumed set of causal links

 Series of iterations in building explanation
1. Make initial theoretical statement
2. Compare the findings of the initial case against statement
3. Revise the statement
4. Compare other details of the case against the revision
5. Compare the revisions to the facts of 2nd, 3rd or more cases
6. Repeat the process if needed

 Difficult, dangerous technique!
 You may drift away from your original focus
 Need much analytic insight and emphasis in considering all evidence

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 100

Analysis Techniques
3. Time Series Analysis

 Theory and analysis are concerned with events over
time

 Types of Time Series Analyses:
 Simple Time Series

 Single variable
 Statistical tests are feasible
 Compare the tendencies found against the expected tendency, rival-theory

tendencies, and tendencies expected due to threats to validity
 Complex Time Series

 Multiple sets of relevant variables
 Statistical tests no longer feasible, but many patterns to observe

 Chronologies
 Some events must always occur before others
 Some events must always be followed by others
 Some events can only follow others after a specified interval of time
 Certain time periods in a case study have classes of events substantially

different from those of other periods

51

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 101

Analysis Technique
4. Logic Models

 Deliberately stipulate a complex chain of events over time
 Events are staged in repeated cause-effect-cause-effect patterns
 Similar to pattern matching, but focus is on sequential stages
 Logic models are analogous to other conceptual models familiar to software

engineers (SADT, statecharts, etc.)

 Four types of logic models:
 Individual-Level Logic Model

 Assumes the case study is about a single person
 Firm or Organizational-Level Logic Model

 Traces events taking place in an organization
 Alternative configuration for an Organizational-Level Logic Model

 Emphasize systemic changes that are not necessarily linear (e.g. reforming or
transforming an organization)

 Program-Level Logic Model
 Analyzes the structure of a program and its outcomes

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 102

Analysis Technique
5. Cross-Case Synthesis

 A research synthesis technique

 Guidelines
 Treat each individual case study as a separate study

 Just as you would treat different experiments separately
 Create word tables that display data, in a uniform framework, from each

case
 Examine word tables for cross-case patterns
 You will need to rely strongly on argumentative interpretation, not numeric

properties
 Numeric properties cannot be pooled since each case is different

52

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 103

Criteria for High Quality Analysis

 Present all the evidence

 Develop rival hypotheses

 Address all major rival interpretations

 Address most significant aspect of the case study

 Use prior or expert knowledge

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 104

Validity

 4 primary types of validity
 Construct Validity
 Internal Validity
 External Validity
 Reliability

53

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 105

Construct Validity

 Are we measuring what we intend to measure?
 Akin to the requirements problem: are we building the right system?
 If we don’t get this right, the rest doesn’t matter

 Constructs: abstract concepts
 Theoretical constructions
 Must be operationalized in the experiment

 Necessary condition for successful experiment

 Divide construct validity into three parts:
 Intentional Validity
 Representation Validity
 Observation Validity

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 106

Construct Validity

 Intentional Validity
 Do the constructs we chose adequately represent what we intend to study
 Akin to the requirements problem where our intent is fair scheduling but our

requirement is FIFO
 Are our constructs specific enough?
 Do they focus in the right direction?
 Eg, is it intelligence or cunningness?

54

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 107

Construct Validity

 Representation Validity
 How well do the constructs or abstractions translate into observable

measures
 Two primary questions:

 Do the sub-constructs properly define the constructs?
 Do the observations properly interpret, measure or test the constructs?

 2 ways to argue for representation validity
 Face validity (that is, “looks appropriate”)

 Very weak argument!
 Strengthened by consensus of experts

 Content validity
 Check the operationalization against the domain for the construct
 The extent to which the tests measure the content of the domain being tested -

ie, cover the domain
 Both are qualitative judgments

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 108

Construct Validity

 Observation Validity
 How good are the measures themselves?
 Different aspects illuminated by

 Predictive validity
 Criterion validity
 Concurrent validity
 Convergent validity
 Discriminant validity

 Predictive Validity
 Observed measure predicts what it should predict and nothing else

 E.g., college aptitude tests are assessed for their ability to predict success in
college

 Criterion Validity
 Degree to which the results of a measure agree with those of an

independent standard
 Eg, for college aptitude, GPA or successful first year

55

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 109

Construct Validity

 Concurrent Validity
 The observed measure correlates highly with an established set of

measures
 Eg, shorter forms of tests against longer forms

 Convergent Validity
 Observed measure correlates highly with other observable measures for

the same construct
 Utility is not that it duplicates a measure but is a new way of distinguishing a

particular trait while correlating with similar measures

 Discriminant Validity
 The observable measure distinguishes between two groups that differ on

the trait in question
 Lack of divergence argues for poor discriminant validity

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 110

Internal Validity
 Can we be sure our results really follow from the data?

 Have we adequately ruled out rival hypotheses?

 Have we eliminated confounding variables?
 Participant variables
 Researcher variables
 Stimulus, procedural and situational variables
 Instrumentation
 Nuisance variables

 Confounding sources of internal invalidity
 H: History

 events happen during the study (eg, 9/11)
 M: Maturation

 older/wiser/better between during study
 I: Instrumentation

 change due to observation/measurement instruments
 S: Selection

 differing nature of participants
 effects of choosing participants

56

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 111

Internal Validity

 Demonstrating that certain conditions are in fact the cause
of other conditions
 That is, conditions not mentioned or studied are not the actual cause
 Example: if a study concludes that X causes Y without knowing some third

factor Z may have actually caused Y, the research design has failed to deal
with threats to internal validity

 Internal validity applies to explanatory and causal studies
only, not to descriptive or exploratory studies

 It is important to challenge any inferences you make during
your study as any incorrect inferences may detract from
internal validity

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 112

External Validity

 Two positions
 The generalizability of the causal relationship beyond that studied/observed

 Are the findings generalizable beyond the immediate case study?
 Eg, do studies of very large reliable real-time systems generalize to small .com

companies?
 The extent to which the results support the claims of generalizability

 Eg, do the studies of 5ESS support the claim that they are representative of real-
time ultra reliable systems

 Case studies have been criticized for offering a poor basis for
generalization
 This is contrasting case studies (which rely on analytical generalization) with survey

research (which relies on statistical generalization), which is an invalid comparison

 Generalization of the theory must be tested by replicating the findings
over several different cases.

57

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 113

Reliability

 Demonstrating that the operations of a study can be repeated with the
same results
 Note: the repetition of the study should occur on the same case, not “replicating” the

results on a different case

 “The goal of reliability is to minimize the errors and biases in a study”

 A prerequisite for reliability testing is documented procedures for the
case study

 A good guideline is to perform research so that an auditor could follow
the documented procedures and arrive at the same results

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 114

Tactics to Address Quality in Case Study Design

Case Study Tactics for the Four Design Tests (Yin, page 34)

58

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Exercise:
Design a Case Study (concludes)

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Publishing Case Studies

59

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 117

Overview of this Section

 Targeting Case Study Reports

 Composition Styles for Case Studies

 General Guidelines from Software Engineering

 Sample Paper Outlines

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 118

Targeting Case Study Reports

 more diverse audiences than other research methods
 no single report will serve all audiences simultaneously
 may need more than one version of a case study report

 A case study report is a significant communication device
 … can communicate deep insights about a phenomenon to a variety of non-

specialists
 Practitioners like case studies, so context is important

 Orient the case study report to an audience
 preferences of the potential audience should dictate the form of your case

study report
 Greatest error is to compose a report from an egocentric perspective
 Therefore: identify the audience before writing a case study report
 Recommendation: examine previous case study reports that have

successfully communicated with the identified audience

60

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 119

Formats for Written Case Study Reports

 Classic single-case study
 - a single narrative is used to describe and analyze the case

 Multiple-case version of this classic single case
 - individual cases are presented in separate chapters
 - also contain chapters that contain cross-case analysis

 Non-traditional narrative (single or multiple)
 - use question-and-answer format

 Cross-case analysis (multiple-case studies only)
 - entire report consist of cross-case analysis
 - each chapter would be devoted to a separate cross-case issue

 Note: Format should be identified during the design phase
of case study

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 120

Sequences of Studies

 Empirical studies should be performed as part of a
sequence
 Each going deeper or shedding light on a different aspect of a problem
 Can deploy different tactics, strategies, methods

 Rationales to use case study as part of a larger,
multimethod study:
1. To determine whether converging evidence might be obtained even though

different methods have been used
2. After analyzing data collected by other methods, case study might be able

to illustrate an individual case in greater depth
3. Case study may be used to elucidate some underlying process which

another method is used to define the prevalence or frequency of such
processes

61

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 121

Composition Structures for Case Studies
 Linear-Analytic Structures

 Standard approach

 Comparative Structures
 Use key features as basis for comparing several cases

 Chronological Structures
 Evidence are presented in chronological order

 Theory building Structures
 Each chapter reveal a new part of a theoretical argument

 “Suspense” Structures
 The outcome presented in the initial chapter, followed by the “suspenseful”

explanation of the outcome

 Unsequenced Structures
 The sequence of sections or chapters assumes no particular importance

 if using this structure, make sure that a complete description of the case is
presented. Otherwise, may be accused of being biased

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 122

Issues in Reporting

 When and How to Start Composing?
 Start composing early in the analytic process
 Bibliography, methodological and descriptive data about the cases being

studied are the sections which could be written early in the process

 Case Identities: Real or Anonymous?
 Anonymity at two levels: entire case and individual person within a case
 Best to disclose of the identities of both the case and individuals
 Anonymity is necessary when:

 Using the real name will cause harm to the participants
 The case report may affect the subsequent action of those that are studied

 Compromises
 Hide individual but identify the case
 Name individuals but avoid attributing any view or comment to a single individual
 The published report limited to the aggregated evidence

 Only if these compromises are impossible then the investigator should
consider making the entire case study and the informants anonymous

62

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 123

 Issues in Reporting

 Review of the Draft Case Study: A Validating Procedure
 There should be a draft report
 It should be reviewed by peers, and by the participants and informants in

the case
 The reviewers may disagree with the conclusion and interpretations, but not

the actual facts of the case
 This process increases the construct validity of the study and reduced the

likelihood of falsely reporting an event

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 124

General Guidelines from SE

Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones, David C.
Hoaglin, Khaled El Emam, and Jarrett Rosenberg, “Preliminary Guidelines for Empirical
Research in Software Engineering,” IEEE Transactions on Software Engineering, Vol. 28, No 8,
August 2002.

 Empirical Context

 Study Design

 Conducing the Case Study and Data Collection

 Analysis

 Presentation of Results

 Interpretation of Results

63

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 125

Sample Paper Outline 1

1. Introduction

2. The Traditional Inspection
Approach
2.1 Software Inspection Basics
2.2 Inspection Challenges

2.2.1 The Defect Detection Activity…
2.2.2 The Defect Collection Activity…

3. Changes to the Inspection
Implementation at
DaimlerChrysler
3.1 Case Study Environment
3.2 Defect Detection Approach
3.3 Defect Collection Approach

4. Analysis Approach
4.1 Some Misconceptions in Inspection

Data Analysis
4.2 A Model for Explaining the Number

of Defects Detected
4.3 Measurement
4.4 Analysis Approach

5. Results
5.1 Descriptive Statistics
5.2 Correlation and Regression

Analysis
5.3 Path Analysis Results

6. Threats to Validity
6.1 Threats to Internal Validity
6.2 Threats to External Validity

7. Conclusion

Oliver Laitenberger, Thomas Beil, and Thilo Schwinn, “An Industrial Case Study to Examine a Non-Traditional Inspection
Implementation for Requirements Specifications,” Empirical Software Engineering: An International Journal, vol. 7, no. 4,
pp. 345-374, 2002.

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 126

Sample Paper Outline 2

1. Introduction

2. Method
2.1 Research Setting
2.2 Data Collection
2.3 Data Analysis

3. Results
3.1 Mentoring

3.1.1 Evidence
3.1.2 Implications

3.2 Difficulties Outside of the Software
System

3.2.1 Evidence
3.2.2 Implications

3.3 First Assignments
3.3.1 Evidence
3.3.2 Implications

3.4 Predictors of Job Fit
3.4.1 Evidence
3.4.2 Implications

4. Applications of the Patterns

5. Conclusions

Appendix A: Question Sets

Appendix B: Variables Used in
Analysis

Susan Elliott Sim and Richard C. Holt, “The Ramp-Up Problem in Software Projects: A Case Study of How Software
Immigrants Naturalize,” presented at Twentieth International Conference on Software Engineering, Kyoto, Japan, pp.
361-370, 19-25 April, 1998.

64

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 127

Sample Paper Outline 3

1. Introduction

2. Related Work
2.1 Configuration Management
2.2 Program Analysis
2.3 Build Coordination
2.4 Empirical Evaluation

3. Study Context
3.1 The System Under Study
3.2 The 5ESS Change Management

Process

4. Data and Analysis
4.1 Levels of Parallel Development
4.2 Effects of Parallel Development on

a File
4.3 Interfering Changes
4.4 Multilevel Analysis of Parallel

Development
4.5 Parallel Versions

5. Validity

6. Summary and Evaluation
6.1 Study Summary
6.2 Evaluation of Current Support
6.3 Future Directions

Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta, “Parallel Changes in Large Scale Software Development: An
Observational Case Study,” presented at Twentieth International Conference on Software Engineering, pp. 251-260, 19-
25 April 1998.

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Reviewing Case Studies

65

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 129

What Makes an Exemplary Case Study?

 The exemplary case study goes beyond the
methodological procedures

 Mastering the techniques does not guarantee an
exemplary case study

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 130

Characteristics of an Exemplary Case Study

 1. The Case Study Must Be Significant
 The case should be unusual and of general public interest
 The issue are important, either in theory or practical terms

 Relevant to scientific understanding or to policy decisions
 Prior to selecting a case study, the contribution should be described in

detail assuming that the intended case study were to be completed
successfully

 2. The Case Study Must be “Complete”
 Completeness can be characterized in at least three ways:

 The boundaries of the case are given explicit attention
 Exhaustive effort is spent on collecting all the relevant evidence
 The case study was not ended because of nonresearch constraints

66

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 131

Characteristics of an Exemplary Case Study

 3. The Case Study Must Consider Alternative Perspectives
 The case study should include consideration of rival propositions and the

analysis of the evidence in terms of such rivals
 This can avoid the appearance of a one-sided case

 4. The Case Study Must Display Sufficient Evidence
 The report should include the most relevant evidence so the reader can

reach an independent judgment regarding the merits of the analysis
 The evidence should be convince the reader that the investigator “knows”

his or her subject
 The investigator should also show the validity of the evidence being

presented

 5. The Case Study Report is Engaging
 A well-written case study report should entice the reader to continue

reading

28th International Conference
on Software Engineering

© 2006 Easterbrook, Sim, Perry, Aranda

Summary

67

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 133

Case Study as a Research Method
 The case study is a distinct research method

 Has its own research designs
 It is not a subset or variant of research designs used for other strategies

 Scientific
 Synergistic relationship between theory and data
 Starting a case study requires a theoretical orientation, which drives data

collection

 Useful for answering “how” and “why” questions
 In contrast to who, what, when, how many, how much
 How, why = explanatory, descriptive

 Does not require control over events
 More observational

 Focus on contemporary events
 Less historical

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 134

Key Message

 A case study is an empirical inquiry that
 Investigates a contemporary phenomenon within its real-life context,

especially when
 The boundaries between phenomenon and context are not clearly evident.

 The case study inquiry
 Copes with the technically distinctive situation in which there will be many

more variables of interest that data points,
 Relies on multiple sources of evidence, with data needing to converge in a

triangulating fashion,
 Benefits from the prior development of theoretical propositions to guide data

collection and analysis.

68

Tutorial F2 Case Studies for Software Engineers © 2006 Easterbrook, Sim, Perry, Aranda 135

Further Reading

 Yin, R. K. (2002) Case Study Research: Design and
Methods (3rd Edition). CA:Sage.

 Stake, R.E. (1995). The art of case study research.
Thousand Oaks, CA:Sage.

 Ragin, C.C., & Becker, H.S. (Eds.). (1992). What is a
case? Exploring the foundations of social inquiry.
Cambridge, UK: Cambridge University Press.

