
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 20:
Software Maintenance

�Software Evolution
� Software types
� Laws of evolution

�Maintaining software
� types of maintenance
� challenges of maintenance

�Reengineering and reverse engineering

�Software Reuse

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Program Types
�S-type Programs (“Specifiable”)

� problem can be stated formally and completely
� acceptance: Is the program correct according to its specification?
� This software does not evolve.

� A change to the specification defines a new problem, hence a new program

� P-type Programs (“Problem-solving”)
� imprecise statement of a real-world problem
� acceptance: Is the program an acceptable solution to the problem?
� This software is likely to evolve continuously

� because the solution is never perfect, and can be improved
� because the real-world changes and hence the problem changes

�E-type Programs (“Embedded”)
� A system that becomes part of the world that it models
� acceptance: depends entirely on opinion and judgement
� This software is inherently evolutionary

� changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Laws of Program Evolution
�Continuing Change

� Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

� The change process continues until it is judged more cost effective to replace the
system entirely

� Increasing Complexity
� As software evolves, its complexity increases…

� …unless steps are taken to control it.

�Fundamental Law of Program Evolution
� Software evolution is self-regulating with statistically determinable trends

and invariants

�Conservation of Organizational Stability
� During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

�Conservation of Familiarity
� During the active life of a program the amount of change in successive

releases is roughly constant

Source: Adapted from Lehman 1980, pp1061-1063. See also, van Vliet, 1999, Pp59-62

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Types of Maintenance

�Corrective Maintenance
� fixing latent errors

� includes temporary patches and
workarounds

�Adaptive Maintenance
� responding to external changes

� changes in hardware platform
� changes in support software

� Perfective Maintenance
� improving the as-delivered software

� user enhancements
� efficiency improvements

� Preventative Maintenance
� Improves (future) maintainability

� Documenting, commenting, etc.

21%

25%

4%

43%

4% 3%

corrective

adaptive
user

enhancements

pe
rf
ec
tiv

e

efficiency
other

preventative

Source: Adapted from van Vliet, 1999, p449.

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Problems facing maintainers
�Top five problems:

� (Poor) quality of documentation
� user demand for enhancements and extensions
� competing demands for maintainers’ time
� difficulty in meeting scheduled commitments
� turnover in user organizations

� Limited Understanding
� 47% of software maintenance effort devoted to understanding the software

� E.g. if a system has m components and we need to change k of them…
� …there are k*(m-k) + k*(k-1)/2 interfaces to check for impact

� also, >50% of effort can be attributed to lack of user understanding
� I.e. incomplete or mistaken reports of errors & enhancements

� Low morale
� software maintenance is regarded as less interesting than development

Source: Adapted Pfleeger 1998, p423-424. See also, van Vliet, 1999, pp464-467

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Approaches to maintenance
�Maintenance philosophies

� “throw-it-over-the-wall” - someone else is responsible for maintenance
� investment in knowledge and experience is lost
� maintenance becomes a reverse engineering challenge

� “mission orientation” - development team make a long term commitment to
maintaining the software

�Basili’s maintenance process models:
�Quick-fix model

� changes made at the code level, as easily as possible
� rapidly degrades the structure of the software

� Iterative enhancement model
� Changes made based on an analysis of the existing system
� attempts to control complexity and maintain good design

� Full-reuse model
� Starts with requirements for the new system, reusing as much as possible
� Needs a mature reuse culture to be successful

Source: van Vliet,1999, pp473-475

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Software Rejuvenation
�Redocumentation

� Creation or revision of alternative representations of software
� at the same level of abstraction

� Generates:
� data interface tables, call graphs, component/variable cross references etc.

�Restructuring
� transformation of the system’s code without changing its behavior

�Reverse Engineering
� analyzing a system to extract information about the behavior and/or

structure
� also Design Recovery - recreation of design abstractions from code,

documentation, and domain knowledge
� Generates:

� structure charts, entity relationship diagrams, DFDs, requirements models

�Reengineering
� Examination and alteration of a system to reconstitute it in another form
� Also known as renovation, reclamation

Source: van Vliet, 1999, Pp455-457

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Reuse
�Software reuse aims to cut costs

� Developing software is expensive, so aim to reuse for related systems
� Successful approaches focus on reusing knowledge and experience rather than

just software products
� Economics of reuse are complex as it costs more to develop reusable software

� Libraries of Reusable Components
� domain specific libraries (e.g. Math libraries)
� program development libraries (e.g. Java AWT, C libraries)

�Domain Engineering
� Divides software development into two parts:

� domain analysis - identifies generic reusable components for a problem domain
� application development - uses the domain components for specific applications.

�Software Families
�Many companies offer a range of related software systems

� Choose a stable architecture for the software family
� identify variations for different members of the family

� Represents a strategic business decision about what software to develop

Source: van Vliet, 1999, Chapter 17

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd
Edition)” Wiley, 1999.

Chapter 14 is a very good introduction to the problems and approaches to
software maintenance. Chapter 17 covers software reuse in far more detail
than we’ll go into on this course.

Lehman, M.M. “Programs, Life Cycles, and Laws of Software
Evolution”. Proceedings of the IEEE, vol 68, no 9, 1980.

Lehman was one of the first to recognise that software evolution is a fact of
life. His experience with a number of large systems led him to formulate his
laws of evolution. This paper is included in the course readings. It is widely
cited.

Pfleeger, S. L. “Software Engineering: Theory and Practice”
Prentice Hall, 1998.

Pfleeger’s chapter 10 provides some additional data on the costs of
maintenance.

