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Lecture 20:
Software Maintenance

�Software Evolution
� Software types
� Laws of evolution

�Maintaining software
� types of maintenance
� challenges of maintenance

�Reengineering and reverse engineering

�Software Reuse
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Program Types
�S-type Programs (“Specifiable”)

� problem can be stated formally and completely
� acceptance: Is the program correct according to its specification?
� This software does not evolve.

� A change to the specification defines a new problem, hence a new program

� P-type Programs (“Problem-solving”)
� imprecise statement of a real-world problem
� acceptance: Is the program an acceptable solution to the problem?
� This software is likely to evolve continuously

� because the solution is never perfect, and can be improved
� because the real-world changes and hence the problem changes

�E-type Programs (“Embedded”)
� A system that becomes part of the world that it models
� acceptance: depends entirely on opinion and judgement
� This software is inherently evolutionary

� changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063
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Laws of Program Evolution
�Continuing Change

� Any software that reflects some external reality undergoes continual change 
or becomes progressively less useful

� The change process continues until it is judged more cost effective to replace the 
system entirely

� Increasing Complexity
� As software evolves, its complexity increases… 

� …unless steps are taken to control it.

�Fundamental Law of Program Evolution
� Software evolution is self-regulating with statistically determinable trends 

and invariants

�Conservation of Organizational Stability
� During the active life of a software system, the work output of a 

development project is roughly constant (regardless of resources!)

�Conservation of Familiarity
� During the active life of a program the amount of change in successive 

releases is roughly constant

Source: Adapted from Lehman 1980, pp1061-1063. See also, van Vliet, 1999, Pp59-62
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Types of Maintenance

�Corrective Maintenance
� fixing latent errors

� includes temporary patches and 
workarounds

�Adaptive Maintenance
� responding to external changes

� changes in hardware platform
� changes in support software

� Perfective Maintenance
� improving the as-delivered software

� user enhancements
� efficiency improvements

� Preventative Maintenance
� Improves (future) maintainability

� Documenting, commenting, etc.

21%

25%

4%

43%

4% 3%

corrective

adaptive
user

enhancements

pe
rf
ec
tiv

e

efficiency
other

preventative

Source: Adapted from van Vliet, 1999, p449.

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Problems facing maintainers
�Top five problems:

� (Poor) quality of documentation
� user demand for enhancements and extensions
� competing demands for maintainers’ time
� difficulty in meeting scheduled commitments
� turnover in user organizations

� Limited Understanding
� 47% of software maintenance effort devoted to understanding the software

� E.g. if a system has m components and we need to change k of them…
� …there are k*(m-k) + k*(k-1)/2 interfaces to check for impact

� also, >50% of effort can be attributed to lack of user understanding
� I.e. incomplete or mistaken reports of errors & enhancements

� Low morale
� software maintenance is regarded as less interesting than development

Source: Adapted Pfleeger 1998, p423-424. See also, van Vliet, 1999, pp464-467
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Approaches to maintenance
�Maintenance philosophies

� “throw-it-over-the-wall” - someone else is responsible for maintenance
� investment in knowledge and experience is lost
� maintenance becomes a reverse engineering challenge

� “mission orientation” - development team make a long term commitment to 
maintaining the software

�Basili’s maintenance process models:
�Quick-fix model

� changes made at the code level, as easily as possible
� rapidly degrades the structure of the software

� Iterative enhancement model
� Changes made based on an analysis of the existing system
� attempts to control complexity and maintain good design

� Full-reuse model
� Starts with requirements for the new system, reusing as much as possible
� Needs a mature reuse culture to be successful

Source: van Vliet,1999,  pp473-475
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Software Rejuvenation
�Redocumentation

� Creation or revision of alternative representations of software
� at the same level of abstraction

� Generates:
� data interface tables, call graphs, component/variable cross references etc.

�Restructuring
� transformation of the system’s code without changing its behavior

�Reverse Engineering
� analyzing a system to extract information about the behavior and/or 

structure
� also Design Recovery - recreation of design abstractions from code, 

documentation, and domain knowledge
� Generates:

� structure charts, entity relationship diagrams, DFDs, requirements models

�Reengineering
� Examination and alteration of a system to reconstitute it in another form
� Also known as renovation, reclamation

Source: van Vliet, 1999, Pp455-457
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Reuse
�Software reuse aims to cut costs

� Developing software is expensive, so aim to reuse for related systems
� Successful approaches focus on reusing knowledge and experience rather than 

just software products
� Economics of reuse are complex as it costs more to develop reusable software

� Libraries of Reusable Components
� domain specific libraries (e.g. Math libraries)
� program development libraries (e.g. Java AWT, C libraries)

�Domain Engineering
� Divides software development into two parts:

� domain analysis - identifies generic reusable components for a problem domain
� application development - uses the domain components for specific applications.

�Software Families
�Many companies offer a range of related software systems

� Choose a stable architecture for the software family
� identify variations for different members of the family

� Represents a strategic business decision about what software to develop

Source: van Vliet, 1999, Chapter 17
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