
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 19:
Software Architectures

➜ Architectural Styles
� pipe and filter
� object oriented
� event based
� layered
� repositories
� process control

➜ Why choice of style matters
� the KWIC example

➜ Architectural Description Languages

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Pipe-and-filter

➜ Examples:
� UNIX shell commands
� Compilers:

� Lexical Analysis -> parsing -> semantic analysis -> code generation

� Signal Processing

➜ Interesting properties:
� filters don’t need to know anything about what they are connected to
� filters can be implemented in parallel
� behaviour of the system is the composition of behaviour of the filters

� specialized analysis such as throughput and deadlock analysis is possible

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe

pipe

pipe

pipe

pipe pipe

pipe

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Object Oriented Architectures

➜ Examples:
� abstract data types
� object broker systems (e.g. CORBA)

➜ Interesting properties
� data hiding (internal data representations are not visible to clients)
� can decompose problems into sets of interacting agents

➜ Disadvantages
� objects must know the identity of objects they wish to interact with

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

Source: Adapted from Shaw & Garlan 1996, p22-3.

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Event based (implicit invocation)

➜ Examples
� debugging systems (listen for particular breakpoints)
� database management systems (for data integrity checking)
� graphical user interfaces

➜ Interesting properties
� announcers of events don’t need to know who will handle the event
� Supports re-use, and evolution of systems (add new agents easily)

➜ Disadvantages
� Components have no control over ordering of computations

broadcast
medium

agent

agent

agent

agent

announce
event

announce
event

listen for
event

listen for
eventbroadcast

medium

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278



5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

kernal

Layered Systems

➜ Examples
�Operating Systems
� communication protocols

➜ Interesting properties
� Support increasing levels of abstraction during design
� Support enhancement (add functionality) and re-use
� can define standard layer interfaces

➜ Disadvantages
�May not be able to identify (clean) layers

kernal

utilities
application layer

users

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Repositories

➜ Examples
� databases
� blackboard expert systems
� programming environments

➜ Interesting properties
� can choose where the locus of control is (agents, blackboard, both)
� reduce the need to duplicate complex data

➜ Disadvantages
� blackboard becomes a bottleneck

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Process Control

➜ Examples
� aircraft/spacecraft flight control systems
� controllers for industrial production lines, power stations, etc.
� chemical engineering

➜ Interesting properties
� separates control policy from the controlled process
� handles real-time, reactive computations

➜ Disadvantages
� Difficult to specify the timing characteristics and response to disturbances

processcontroller

input variables

controlled
variables

control
parameters

manipulated
variables

se
nso

rs

actuators

Source: Adapted from Shaw & Garlan 1996, p27-31.

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Parnas’ KWIC example
➜ KWIC = KeyWord In Context

� Task is to build a contextualized index for the text
� Input is a set of lines of text
�Output is the set of all circular shifts of all lines, in alphabetical order

➜ Parnas identifies two different architectures:
1) shared data model 
2) data abstraction model

➜ Possible design changes:
� change of input format
� decision to store all text in memory
� decision to index rather than copy
� decision to alphabetize rather than search

➜ Different architectures support different changes:
� 1) good for adding functionality; poor for change in data rep, reusability
� 2) good for changing data rep, reusability; poor for change in functionality

} see next slide

Source: Adapted from Parnas 1972. See also van Vliet, 1999 Pp258-270



9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

KWIC architecture solutions
1) Shared Data model

2)Data abstraction model

Master
control

input circular
shift alphabetizer output

Text array word index Alphabetized
index

Raw
text

Formatted
output

setchar

deline

words

char

cschar

setup

ith

alph

Circular
shifterLine storage Alphabetizer

input
output

Master
controlRaw

text Formatted
output

Source: Adapted from Shaw & Garlan 1996, p34-8. See also van Vliet, 1999 Pp258-270

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Describing Architectures
➜ Kinds of language

�Module Interconnection Languages
� describe a system configuration separately from the components (programs)
� mainly concerned with name binding

� Programming languages constructs
� e.g. UNIX pipes, Java Event handlers, Ada rendezvous
� Permit new forms of interaction beyond procedure call
� Do not permit creation of new abstractions, descriptions of architectural patterns

� Architectural Description Languages (ADLs)
� Provide a language for describing components and connectors
� Connectors treated as first class objects
� Definition of roles & relationships (rather than algorithms & data structures)
� E.g. Unicon (Shaw); Darwin (Kramer)

➜ Things to describe
� Components

� computation; memory; object managers; process controllers; comms links
� Connectors

� procedure call; dataflow; implicit invocation; message passing; shared data; 
instantiation

Source: Adapted from Shaw & Garlan 1996, chapters 7 & 8. See also van Vliet, 1999, Pp270-281

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd 
Edition)” Wiley, 1999.

chapter 10 provides an excellent introduction to software architectures. van 
Vliet uses Parnas’ KWIC example to motivate the entire chapter, and then 
covers the work of Shaw and Garlan quite thoroughly. Reading this chapter 
will save you having to refer to the originals, which are:

Shaw, M. and Garlan, D. “Software Architecture: Perspectives on 
an emerging discipline”, 1996, Prentice Hall.

This book defined the field of software architecture. Most of this lecture is 
adapted from this book.

Parnas, D. L. “On the Criteria to be used in Decomposing Systems 
into Modules”. 1972, Communications of the ACM, Vol 15, No 12

This paper, although dated, was the first to describe how the choice of 
software architecture affects modifiability. The KWIC example comes from 
this paper.


