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Lecture 19:
Software Architectures

➜ Architectural Styles
� pipe and filter
� object oriented
� event based
� layered
� repositories
� process control

➜ Why choice of style matters
� the KWIC example

➜ Architectural Description Languages
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Pipe-and-filter

➜ Examples:
� UNIX shell commands
� Compilers:

� Lexical Analysis -> parsing -> semantic analysis -> code generation

� Signal Processing

➜ Interesting properties:
� filters don’t need to know anything about what they are connected to
� filters can be implemented in parallel
� behaviour of the system is the composition of behaviour of the filters

� specialized analysis such as throughput and deadlock analysis is possible
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Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279
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Object Oriented Architectures

➜ Examples:
� abstract data types
� object broker systems (e.g. CORBA)

➜ Interesting properties
� data hiding (internal data representations are not visible to clients)
� can decompose problems into sets of interacting agents

➜ Disadvantages
� objects must know the identity of objects they wish to interact with
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Source: Adapted from Shaw & Garlan 1996, p22-3.
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Event based (implicit invocation)

➜ Examples
� debugging systems (listen for particular breakpoints)
� database management systems (for data integrity checking)
� graphical user interfaces

➜ Interesting properties
� announcers of events don’t need to know who will handle the event
� Supports re-use, and evolution of systems (add new agents easily)

➜ Disadvantages
� Components have no control over ordering of computations
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Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278
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kernal

Layered Systems

➜ Examples
�Operating Systems
� communication protocols

➜ Interesting properties
� Support increasing levels of abstraction during design
� Support enhancement (add functionality) and re-use
� can define standard layer interfaces

➜ Disadvantages
�May not be able to identify (clean) layers
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Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Repositories

➜ Examples
� databases
� blackboard expert systems
� programming environments

➜ Interesting properties
� can choose where the locus of control is (agents, blackboard, both)
� reduce the need to duplicate complex data

➜ Disadvantages
� blackboard becomes a bottleneck
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Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280
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Process Control

➜ Examples
� aircraft/spacecraft flight control systems
� controllers for industrial production lines, power stations, etc.
� chemical engineering

➜ Interesting properties
� separates control policy from the controlled process
� handles real-time, reactive computations

➜ Disadvantages
� Difficult to specify the timing characteristics and response to disturbances
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Source: Adapted from Shaw & Garlan 1996, p27-31.
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Parnas’ KWIC example
➜ KWIC = KeyWord In Context

� Task is to build a contextualized index for the text
� Input is a set of lines of text
�Output is the set of all circular shifts of all lines, in alphabetical order

➜ Parnas identifies two different architectures:
1) shared data model 
2) data abstraction model

➜ Possible design changes:
� change of input format
� decision to store all text in memory
� decision to index rather than copy
� decision to alphabetize rather than search

➜ Different architectures support different changes:
� 1) good for adding functionality; poor for change in data rep, reusability
� 2) good for changing data rep, reusability; poor for change in functionality

} see next slide

Source: Adapted from Parnas 1972. See also van Vliet, 1999 Pp258-270
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KWIC architecture solutions
1) Shared Data model

2)Data abstraction model
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Source: Adapted from Shaw & Garlan 1996, p34-8. See also van Vliet, 1999 Pp258-270
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Describing Architectures
➜ Kinds of language

�Module Interconnection Languages
� describe a system configuration separately from the components (programs)
� mainly concerned with name binding

� Programming languages constructs
� e.g. UNIX pipes, Java Event handlers, Ada rendezvous
� Permit new forms of interaction beyond procedure call
� Do not permit creation of new abstractions, descriptions of architectural patterns

� Architectural Description Languages (ADLs)
� Provide a language for describing components and connectors
� Connectors treated as first class objects
� Definition of roles & relationships (rather than algorithms & data structures)
� E.g. Unicon (Shaw); Darwin (Kramer)

➜ Things to describe
� Components

� computation; memory; object managers; process controllers; comms links
� Connectors

� procedure call; dataflow; implicit invocation; message passing; shared data; 
instantiation

Source: Adapted from Shaw & Garlan 1996, chapters 7 & 8. See also van Vliet, 1999, Pp270-281
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