
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 18:
Specifications

➜ What is a Specification
� Purpose
� Audience
� Different specs for different project types

➜ Criteria for good specifications
� clarity, consistency, completeness
�measurable & traceable
� operational vs. definitional specs

➜ Standards for specifications
� IEEE standard for SRS

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

What is a Specification?
➜ A specification is an agreement…

� …between the producer of a service…
� …and the consumer of that service

➜ Software must be specified precisely…
� …if there is a danger of misunderstanding (or forgetting) the consumer’s

needs
� …if more than one person’s needs are represented
� …if more than one person will be developing the software

Agreement between
Producer Consumer

Requirements
Specification

Development
Contractor Purchaser

Design
Specification Implementor System

architect
Module
specification

Programmer writing
the module

Programmer using
the module

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Uses of specifications
➜ Statement of user needs

� communicates understanding of those needs to everyone involved
� acts as a check that the real needs have been captured

� must be understandable by the owners of those needs!

➜ Statement of implementation constraints
� a point of reference for the developers
� can be used to justify development goals and resources

➜ Documentation of a product
� a point of reference for product maintainers

� must be updated when the product is updated

� baseline for change requests

➜ A legal contract
� a point of reference for verification and certification

� must be possible to determine whether the specification was met
� must be updated whenever changes are negotiated

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Choosing appropriate Spec types
➜ Consider two different projects:

A) Small project, 1 programmer, 6 months
programmer talks to customer, then writes up a 5-page memo

B) Large project, 50 programmers, 2 years
team of analysts model the requirements, then document them in a 500-page SRS

Project A Project B

Purpose of spec?
Crystalizes programmer’s
understanding; feedback

to customer

Build-to document; must
contain enough detail for

all the programmers

Management
view?

Spec is irrelevant; have
already allocated

resources

Will use the spec to
estimate resource needs
and plan the development

Readers?
Primary: Spec author;
Secondary: Customer

Primary: all programmers
+ V&V team; Secondary:

managers, customers

Source: Adapted from Blum 1992, p154-5

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Desiderata for Specifications
➜ Valid (or “correct”)

� expresses actual requirements

➜ Complete
� Specifies all the things the system

must do
� ...and all the things it must not do!
� Responses to all classes of input
� Structural completeness, and no

TBDs!!

➜ Consistent
� doesn’t contradict itself (i.e. is

satisfiable)
� Uses all terms consistently
� Note: timing and logic are especially

prone to inconsistency

➜ Necessary
� doesn’t contain anything that isn’t

“required”

➜ Unambiguous
� every statement can be read in

exactly one way
� define confusing terms in a glossary

➜ Verifiable
� a process exists to test satisfaction

of each requirement
� “every requirement is specified

behaviorally”

➜ Understandable (Clear)
� by non-computer specialists

➜ Modifiable
� Carefully organized, with minimal

redundancy
� Traceable!

Source: Adapted from the IEEE-STD-830-1993. See also van Vliet 1999, pp225-226

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Restrictiveness vs. Generality
➜ Specificand Sets

� A specification describes a set of acceptable behaviours
� The set of all implementations that meet a specification are its specificand

set
� There are always an infinite number of possible implementations
� E.g.

➜ Restrictiveness:
� a specification should rule out any implementation that is unacceptable to its

users

➜ Generality:
� a specification should be general enough so that few of the acceptable

implementations are excluded.
� In particular the more desirable (e.g. elegant, efficient) implementations should

not be excluded.
� Examine every condition in the spec and ask if it’s really needed

procedure foo(x: int) returns y:int
effects: x = y

procedure foo(x: int) returns y:int
effects: x = y

This specification is
trivial, but its

specificand set is
still infinite!

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Ambiguity
➜ Is this ambiguous?

➜ Can test by trying to translate it:

� if you get different answers from different people, then it is ambiguous.

“The system shall report to the operator all faults that originate in
critical functions or that occur during execution of a critical sequence

and for which there is no fault recovery response.”

“The system shall report to the operator all faults that originate in
critical functions or that occur during execution of a critical sequence

and for which there is no fault recovery response.”

Originate in critical functions F T F T F T F T

Occur during critical seqeunce F F T T F F T T

No fault recovery response F F F F T T T T

Report to operator? ? ? ? ? ? ? ? ?

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Consistency and Completeness
➜ Consistency:

� an inconsistent specification contradicts itself and therefore cannot be
satisfied

� inconsistency may depend on context:

� In practice, inconsistency is hard to test for.

➜ Completeness
� internally complete:

� all terms are defined
� no TBDs

� Complete with respect to the requirements
� i.e. describes all services needed by the users

� In practice, completeness is nearly impossible to achieve
� aim for balance between generality and restrictiveness

The text should be kept in lines of equal length specified by the user.
Spaces should be inserted between words to keep the line lengths equal.
A line break should only occur at the end of a word

The text should be kept in lines of equal length specified by the user.
Spaces should be inserted between words to keep the line lengths equal.
A line break should only occur at the end of a word

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Operational vs. Definitional
➜ An Operational Specification…

� describes an abstraction in terms of its intended behaviour
� by describing how it might work
e.g.

➜ A Declarative Specification…
� describes an abstraction in terms of the desired properties of the

implementation
� by describing some properties it must obey
e.g.

➜ Declarative specifications are better
�More general (less implementation bias)
� Easier to verify

procedure search(list a, int x) returns int
effects: returns i such that a[i]=x;
signals: NOT_IN if there is no such i.

procedure search(list a, int x) returns int
effects: returns i such that a[i]=x;
signals: NOT_IN if there is no such i.

procedure search(list a, int x) returns int
effects: examines each element of a in turn and returns
the index of the first one that is equal to x.

signals: NOT_IN if it reaches the end of the list
without finding x.

procedure search(list a, int x) returns int
effects: examines each element of a in turn and returns
the index of the first one that is equal to x.

signals: NOT_IN if it reaches the end of the list
without finding x.

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Modifiability and Traceability
➜ Modifiability

� well-structured, indexed, cross-referenced, etc.
� redundancy reduces modifiability

� avoid or clearly mark as such

� An SRS is not modifiable if it is not traceable...

➜ Traceability
� Backwards: each requirement traces to a source

� e.g. a requirement in the system spec; a stakeholder; etc

� Forwards: each requirement traces to parts of the design that satisfy that
requirement

�Note: traceability links are two-way; hence other documents must trace
into the SRS

� Every requirement must have a unique label.

➜ Useful Annotations
� E.g. relative necessity and relative stability

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

IEEE Standard for SRS
1 Introduction

� Purpose
� Scope
� Definitions, acronyms, abbreviations
� Reference documents
� Overview

2 Overall Description
� Product perspective
� Product functions
� User characteristics
� Constraints
� Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

1 Introduction
� Purpose
� Scope
� Definitions, acronyms, abbreviations
� Reference documents
� Overview

2 Overall Description
� Product perspective
� Product functions
� User characteristics
� Constraints
� Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

Identifies the product, &
application domain

Describes contents and structure
of the remainder of the SRS

Describes all external interfaces:
system, user, hardware, software;
also operations, site adaptation,

and hardware constraints

Summary of major functions

Anything that will limit the
developer’s options (e.g. regulations,

reliability, criticality, hardware
limitations, parallelism, etc)

All the requirements go in here (I.e.
this is the body of the document).
IEEE STD provides 8 different

templates for this section

Source: Adapted from IEEE-STD-830-1993 See also, van Vliet 1999, pp226-231

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

IEEE STD Section 3 (example)
3.1 External Interface

Requirements
3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communication Interfaces

3.2 Functional Requirements
this section organized by mode, user

class, feature, etc. For example:
3.2.1 Mode 1

3.2.1.1 Functional Requirement 1.1
…

3.2.2 Mode 2
3.2.1.1 Functional Requirement 1.1
…

...
3.2.2 Mode n

...

3.3 Performance Requirements
Remember to state this in measurable

terms!

3.4 Design Constraints
3.4.1 Standards compliance
3.4.2 Hardware limitations
etc.

3.5 Software System
Attributes

3.5.1 Reliability
3.5.2 Availability
3.5.3 Security
3.5.4 Maintainability
3.5.5 Portability

3.6 Other Requirements

Source: Adapted from IEEE-STD-830-1993. See also, Blum 1992, p160

13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)”
Wiley, 1999.

Section 9.2 covers most of the material in this lecture, and gives a good introduction to the IEEE
standards.

IEEE-STD-830-1993
Is the current IEEE standard that covers software specifications. It is available electronically through
the IEEE electronic library (access via U of T library website for the campus-wide subscription)

Blum, B. “Software Engineering: A Holistic View”. Oxford University
Press, 1992

Provides some additional insights into how to write good specifications.

