University of Toronto

Department of Computer Science

Lecture 17: Formal Modeling Methods

- → Formal Modeling Techniques
 - **b** Definition of FM
 - ^t♦ Why use FM?
- → Program Specification vs. Regts Modeling

→ Example Formal Methods:

→ Tips on formal modeling

© 2001 Steve Easterbrook

Department of Computer Science What are Formal Methods?

\rightarrow Broad View (Leveson)

to application of discrete mathematics to software engineering

- ♦ involves modeling and analysis
- to with an underlying mathematically-precise notation

→ Narrow View (Wina)

University of Toronto

- > a set of strings over some well-defined alphabet, with rules for distinguishing
- > E.g. formal proofs: use axioms and proof rules to demonstrate that some formula
- > ...it comes with a formal set of rules which define its syntax and semantics.
- > ...the rules can be used to analyse expressions to determine if they are
- syntactically well-formed or to prove properties about them.

© 2001, Steve Easterbrook

r extends the A

© 2001, Steve Easterbrook

befines a *total function* from modes and conditions to variable values

© 2001, Steve Easterbrook

© 2001, Steve Easterbrook

11

_

12

Inactive

_

University of Toronto

Department of Computer Science

Failure modes

Source: Adapted from Heitmeyer et. al. 1996.

Mode transition table:

Current	Powered	Cold	Тоо	Warm	Тоо	New
Mode	on	Heater	Cold	AC	Hot	Mode
NoFailure	t	@T	t	-	-	HeatFailure
	t	-	-	@T	t	ACFailure
HeatFailure	t	@F	t	-	-	NoFailure
ACFailure	t	-	-	@F	t	NoFailure

Event table:

Modes		
NoFailure	@T(INMODE)	never
ACFailure, HeatFailure	never	@T(INMODE)
Warning light =	Off	On

© 2001, Steve Easterbrook

Using Formal Methods → Selective use of Formal Methods ✤ Amount of formality can vary ♦ Need not build complete formal models > Apply to the most critical pieces > Apply where existing analysis techniques are weak ✤ Need not formally analyze every system property > E.g. check safety properties only Need not apply FM in every phase of development > E.g. use for modeling requirements, but don't formalize the system design 🌣 Can choose what level of abstraction (amount of detail) to model → Lightweight Formal Methods ✤ Have become popular as a means of getting the technology transferred ✤ Two approaches > Lightweight use of FMs - selectively apply FMs for partial modeling > Lightweight FMs - new methods that allow unevaluated predicates

Department of Computer Science

14

© 2001, Steve Easterbrook

13

University of Toronto