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Lecture 16:
Object Oriented Modeling Methods

➜ Basics of Object Oriented Analysis
�Notations used
�Modeling Process

➜ Variants
� Coad-Yourdon
� Shlaer-Mellor
� Fusion
� UML

➜ Advantages and Disadvantages
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Object Oriented Analysis
➜ Background

�Model the requirements in terms of objects and the services they provide
� Grew out of object oriented design

� partitions the problem in a different way from structured approaches
� Poor fit moving from Structured Analysis to Object Oriented Design

➜ Motivation
�OOA is (claimed to be) more ‘natural’

� As a system evolves, the functions (processes) it performs tend to change, but
the objects tend to remain unchanged…

� …so a structured analysis model will get out of date, but an object oriented
model will not…

� …hence the claim that object-oriented systems are more maintainable

�OOA emphasizes importance of well-defined interfaces between objects
� compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool.  But
in RE we are modeling domain objects, not the design of the new system
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Modeling primitives
➜ Objects

� an entity that has state, attributes
and services

� Interested in problem-domain objects
for requirements analysis

➜ Classes
� Provide a way of grouping objects

with similar attributes or services
� Classes form an abstraction hierarchy

though ‘is_a’ relationships

➜ Attributes
� Together represent an object’s state
� May specify type, visibility and

modifiability of each attribute

➜ Relationships
� ‘is_a’ classification relations
� ‘part_of’ assembly relationships
� ‘associations’ between classes

➜ Methods (services, functions)
� These are the operations that all

objects in a class can do…
� …when called on to do so by other

objects
�E.g. Constructors/Destructors (if
objects are created dynamically)
�E.g. Set/Get (access to the object’s
state)

➜ Message Passing
� How objects invoke services of other

objects

➜ Use Cases/Scenarios
� Sequences of message passing

between objects
� Represent specific interactions

See also: van Vliet 1999, section 12.2
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Key Principles
➜ Classification (using inheritance)

� Classes capture commonalities of a number of objects
� Each subclass inherits attributes and methods from its parent
� Forms an ‘is_a’ hierarchy

� Child class may ‘specialize’ the parent class
� by adding additional attributes & methods
� by replacing an inherited attribute or method with another

�Multiple inheritance is possible where a class is subclass of several
different superclasses.

➜ Information Hiding
� internal state of an object need not be visible to external viewers
�Objects can encapsulate other objects, and keep their services internal

� useful for forming abstractions

➜ Aggregation
� Can describe relationships between parts and the whole

See also: van Vliet 1999, section 12.2
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Information Hiding

System Model

Service 1

Service 2

Service 3

Service 4

Service 5

Service 6

Method 1

Method 2

Object 1

Method 1

Method 2

Object 3

Method 1

Method 2

Object 2

➜ Objects can contain other objects
� (compare with hierarchies of dataflow diagram in Structured Analysis)
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Nearly anything can be an object…
➜ External Entities

� …that interact with the system
being modeled

�E.g. people, devices, other systems

➜ Things
� …that are part of the domain being

modeled
�E.g. reports, displays, signals, etc.

➜ Occurrences or Events
� …that occur in the context of the

system
�E.g. transfer of resources, a control
action, etc.

➜ Roles
� played by people who interact with

the system

➜ Organizational Units
� that are relevant to the application

�E.g. division, group, team, etc.

➜ Places
� …that establish the context of the

problem being modeled
�E.g. manufacturing floor, loading
dock, etc.

➜ Structures
� that define a class or assembly of

objects
�E.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
� procedures (e.g. print, invert, etc)
� atomic attributes (e.g. blue, 50Mb,

etc)

See also: van Vliet 1999, section 12.3
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Selecting Objects
➜ Need to choose which candidate objects to include

in the analysis
� Coad & Yourdon suggest each object should satisfy (most of) the following

criteria:
� Retained information: Does the system need to remember information about this

object?
� Needed Services: Does the object have identifiable operations that change the

values of its attributes?
� Multiple Attributes: If the object only has one attribute, it may be better

represented as an attribute of another object
� Common Attributes: Does the object have attributes that are shared with all

occurrences of the object?
� Common Operations: Does the object have operations that are shared with all

occurrences of the object?

�Note: External entities that produce or consume information essential to
the system are nearly always objects

�Many candidate objects will be eliminated or combined

Source: Adapted from Pressman, 1994, p244
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Variants
➜ Coad-Yourdon

� Developed in the late 80’s
� Five-step analysis method

➜ Shlaer-Mellor
� Developed in the late 80’s
� Emphasizes modeling information and state, rather than object interfaces

➜ Fusion
� Second generation OO method
� Introduced message sequence charts

➜ Unified Modeling Language (UML)
� Third generation OO method
� An attempt to combine advantages of previous methods

See also: van Vliet 1999, section 12.3
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Coad-Yourdon
➜ Five Step Process:

1. Identify Objects & Classes (i.e. ‘is_a’ relationships)
2. Identify Structures (i.e. ‘part_of’ relationships)
3. Define Subjects

� A more abstract view of a large collection of objects
� Each classification and assembly structure become one subject
� Each remaining singleton object becomes a subject (although if there a many of

these, look for more structure!)
� Subject Diagram shows only the subjects and their interactions

4. Define Attributes and instance connections
5a. Define services - 3 types:

� Occur (create, connect, access, release) These are omitted from the model as
every object has them

� Calculate (when a calculated result from one object is needed by another)
� Monitor (when an object monitors for a condition or event)

5b. Define message connections
� These show how services of one object are used by another
� Shown as dotted lines on object and subject diagrams
� Each message may contain parameters

Source: Adapted from Pressman, 1994, p242 and Davis 1990, p98-99
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Coad Object diagrams

patient
Name
Date of Birth
Height
Weight

In-patient
Room
Bed
Physician

Out-patient
Last visit
next visit
physician

patient
Name
Date of Birth
Height
Weight

heart
Natural/artif.
Orig/implant
normal bpm

eyes
Natural/artif.
Vision
number

kidney
Natural/artif.
Orig/implant
number

classification assembly

object

attributes optional
One-to-one

One-to-many

mandatory

services

Source: Adapted from Davis, 1990, p67-68
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Shlaer-Mellor
➜ Three analysis models:

� Information Model
� models objects, relationships, and attributes of objects and relationships
� uses associative objects to represent relationships between other objects.
� E.g. ‘title’ is an object that represents the relationship between ‘owner’ and ‘car’

� State model
� Uses StateCharts to show the lifecycle of each object
� Each object may be continuous or born-and-die (object is created & destroyed)

� Process model
� representation of each service (‘action’) of an object
� Uses standard Dataflow Diagrams to show information used

1. HOME (H)
* address
* Unit at address
• square feet
• property tax fee

1. HOME
OWNER (HO)
* Owner name
• address

1. OWNERSHIP (O)
* Address (R1)
* Unit at Address (R1)
* Owner name (R1)
• Date purchased

owns Is owned by

Identifier

Associative Object
One or more

Exactly one
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Fusion
➜ Combines several OO

methods

➜ Analysis phase:
�Object model

� like Shlaer-Mellor
�Operation model

� formal definition of each operation,
� including pre- and post- conditions

� Lifecycle model
� specifies admissible sequences of

interactions between system &
environment

� Interaction model
� = operation model + lifecycle model

➜ Message Sequence Charts
� help to develop the interaction

model

Message Sequence Charts

User System External
system

Event 1

Event 2

Response

Event 3

Response

Response
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Unified Modeling Language (UML)
➜ Third generation OO method

� Booch, Rumbaugh & Jacobson are principal authors
� Still in development
� Attempt to standardize the proliferation of OO variants

� Is purely a notation
� No modeling method associated with it!

� But has been accepted as a standard for OO modeling
� But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

➜ Has a standardized meta-model
� Class diagrams
� Use case diagrams
�Message trace diagrams
�Object message diagrams
� State Diagrams (uses Harel’s statecharts)
�Module Diagrams
� Platform diagrams
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Evaluation of OOA
➜ Advantages of OO analysis for RE

� Fits well with the use of OO for design and implementation
� Transition from OOA to OOD ‘smoother’ than from SA to SD (but is it?)

� Removes emphasis on functions as a way of structuring the analysis
� Avoids the fragmentary nature of structured analysis

� object-orientation is a coherent way of understanding the world

➜ Disadvantages
� Emphasis on objects brings an emphasis on static modeling

� although later variants have introduced dynamic models

�Not clear that the modeling primitives are appropriate
� are objects, services and relationships really the things we need to model in RE?

� Strong temptation to do design rather than problem analysis
� Too much marketing hype

� and false claims - e.g. no evidence that objects are a more natural way to think
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