
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 13:
Representing software designs

➜ Viewpoints

➜ Structural representations
� e.g. dependency graphs

➜ Functional representations
� e.g. dataflow diagrams

➜ Behavioral representations
� e.g. statecharts

➜ Data Modeling representations
� e.g. entity relationship diagrams

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Representing Designs
➜ From abstractions to systems

� abstractions allow us to ignore implementation details of procedures and
data structures

� for large systems we need to abstract away even more detail
� we need to represent higher level abstractions

➜ Design representations will:
� help us to see the big picture
� allow us to communicate our designs with others

� customers, managers, other developers, …
� people with varying technical expertise

� allow us to measure various quality attributes
� completeness, consistency, complexity, …

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Viewpoints (a.k.a. “projections”)
➜ A viewpoint

� tells you which details you can ignore when forming an abstraction
� defines which details are relevant and which are not
� a viewpoint has:

� an owner (the person interested in this abstraction)
� a domain (the area of interest)
� a representation scheme

➜ Example: Building a house
� Useful viewpoints:

� the architect’s viewpoint (plan views, elevations, etc)
� the plumber’s viewpoint (routing diagrams for pipework, fittings layouts, etc)
� the electrician’s viewpoint (wiring diagrams, etc)
� the buyer’s viewpoint (artist’s impression, floorplans, etc)
� etc…

� These must all be consistent eventually!

➜ Viewpoints can overlap
� Some aspects of a design are common to several viewpoints

Source: Adapted from Easterbrook & Nuseibeh, 1996

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Key Software Design Viewpoints
➜ Structural viewpoints

� domain: static properties (structure) of the software
� representations: structure charts, dependency graphs, etc.

➜ Functional viewpoints
� domain: the tasks performed by the software, information flow
� representations: dataflow diagrams, procedural abstractions, etc.

➜ Behavioral viewpoints
� domain: cause and effect within the program
� representations: state transition diagrams, statecharts, petri nets, etc.

➜ Data-modeling viewpoints
� domain: the data objects and the relationships between them
� representations: entity relationship diagrams, object hierarchies

Ownership?
� Each of these viewpoints will be of interest to different people

� e.g. structural viewpoints are of interest to managers for planning purposes
� e.g. functional viewpoints are of interest to requirements analysts and users

Source: Adapted from Budgen, 1994

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Notational forms
➜ Text

� often hard to see the big picture
� natural language is ambiguous
� best used in small chunks (e.g. for executive summaries)

➜ Diagrams
� good for showing relationships and structure…
� …if they’re kept simple:

� small number of symbols (e.g. 2 types of box, 2 types of arrow)
� must represent an abstraction (e.g. a flow chart contains nearly all the detail of

code, so is not an abstraction)
� should be easy to sketch informally!

➜ Mathematical Expressions (formal specifications)
� very precise, very concise
� but require much training
� cannot (yet?) express all viewpoints (e.g. timing is difficult to express)

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

➜ Example notations
Structure charts

� hierarchical decomposition of
program

Dependency graphs
� show the (static) control flow

Structural notations
➜ Objects modeled

� usually program components
� compilation units,
� modules,
� procedures
� …

➜ Relationships modeled
� structural relationships

between components
� static relationships only

� “calls/controls”
� “uses”
� …

Note: structural notations deal
with structure of the program,
not structure of the data.

See also: van Vliet 1999, section 11.1.5 and 11.2.2

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

The Dependency Graph

➜ Notes:
� all edges must be directed
� all nodes must be labelled with the name of the procedure
� only one edge between any two nodes (no matter how many times the

procedure is called)
� recursive procedures (& data abstractions) use themselves

➜ Useful for:
� debugging, integration, measuring coupling

p

q r

e
d

p

e

Key
procedure

data abstraction

‘uses’

‘weakly uses’
(refers to but
does not use)

See also: van Vliet 1999, pp311-314

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

➜ Example notations
� Dataflow diagrams

� show processes that transform
data

� Procedural abstractions
� (although these combine

structural viewpoint info too!)

� Pseudo-code

Functional notations
➜ Objects modeled

� Program components
� modules,
� procedures,

� Processes
� these do not necessarily

correspond to components of
the program

➜ Relationships modeled
� information flow
� inputs and outputs

� “communicates with”.
� “sends data to”
� “received data from”

See also: van Vliet 1999, sections 11.2.1 and 11.2.2

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

The Dataflow Diagram (DFD)

➜ Notes:
� every process, flow, and datastore must be labeled
� representation is hierarchical

� each process will be represented separately as a lower level DFD
� processes are normally numbered for cross reference
� processes transform data

� can’t have the same data flowing out of a process as flows into it

Key
process

dataflow (no
control implied)

data store

external entity

system boundary

1.
determine
form of
travel

2.
check

schedule

3.
reserve
seats

4.
issue

tickets

Timetables

Fare tables

customer

booking
system

booking
system customer

travel
request

customer
query

schedule

proposed
itinerary

proposed
itinerary

booked
itinerary

fares

tickets

booking
confirmation

booking
request

See also: van Vliet 1999, pp322-325

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

➜Statecharts
� like an STD but with superstates

and conditional transitions

➜Petri nets
� for modeling process

synchronization

Behavioral notations
➜ Objects modeled

� Dynamic properties
� events, states, actions,

conditions

➜ Relationships modeled
� cause and effect
� sequencing / parallelism

➜ Example notations
� State Transition Diagrams

� model the program as a finite
state machine

See also: van Vliet 1999, sections 9.3.2 and 12.2.2

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

busy

Statecharts

➜ Notes:
� all states and transitions must be labeled
� transitions may be conditional (conditions shown in brackets)
� states can be grouped into superstates:

� transitions out of superstates may be taken from any substate
� transitions into superstates go to the default substate

Key
state

transition

superstate

default initial
state

idle
ringing
tone

dial
tone

connectedengaged
tone

replace
receiver

lift
receiver

dial
(callee
busy)

dial
(callee idle)

callee
replaces
receiver

callee
lifts
receiver

idle

dial
tone

Source: Adapted from Easterbrook & Nuseibeh, 1996

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Data modelling notations
➜ Objects modeled

� any kind of data
� data types,
� objects,
� attributes of objects,
� classes,

➜ Relationships modeled
� compositional

� “part of”
� “consists of”

� classification
� “is a kind of”

➜ Example notations
� Entity Relationship Diagrams

� used in requirements modeling

� Class diagrams
� shows data abstraction hierarchy
� Note: in OOD, is used as a structural

notation for the program!!!

See also: van Vliet 1999, sections 9.3.1 and 12.2.1

13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Entity Relationship Diagram

➜ Notes:
� relationships relate entities, not their attributes
� there is no standard way to show the cardinality of relationships

Key
entity

attribute

relationship

1-to-1

1-to-many

many-to-many

star

film

cast

producer

director title

year

name
age

nationality

cast

film

age

See also: van Vliet 1999, section 9.3.1

14

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Summary
➜ Viewpoints help in creating abstractions

� a viewpoint is an abstraction created for a particular purpose by a
particular person

� the viewpoint tells you what information to ignore when creating the
abstraction

� each viewpoint has a suitable representation scheme

➜ Useful software design viewpoints:
� structural
� functional
� behavioral
� data modeling

➜ But a notation is not enough…
� you need a method to tell you how to use it.
�We’ll see some sample methods later in the course.

15

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd
Edition)” Wiley, 1999.

Chapter 11 covers various aspects of design, and introduces various design methods that
combine these various viewpoints. Chapter 9 introduces some of the notations used in
requirements engineering, while chapter 12 introduces notations used in object oriented
design.

Budgen, D. “Software Design”. Addison-Wesley, 1994
chapters 5 and 6 give a good overview of the idea of design viewpoints and an
introduction to the more common notations

Easterbrook, S. M. and Nuseibeh, B. A. “Using ViewPoints for
Inconsistency Management”. Software Engineering Journal, Vol 11,
No 1, Jan 1996.

There is a growing body of research on how viewpoints can be used in software
development to provide a foundation for tool support. This paper briefly introduces a
framework for managing viewpoints, and then shows how they can be used to support
evolution and consistency management in large specifications. The paper is available online
at http://www.cs.toronto.edu/~sme/papers/1996/NASA-IVV-95-002.pdf

