
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 10:
Formal Verification

➜ Formal Methods

➜ Basics of Logic
� first order predicate logic

➜ Program proofs:
� input/output assertions
� intermediate assertions
� proof rules

➜ Practical formal methods

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Motivation
➜ Here is a specification

➜ …and here is a program

➜ does the program meet the specification?

void merge(int a[ ], a_len, b[ ], b_len, *c)
/*requires a and b are sorted arrays of integers of length a_len and b_len

respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elements of a and b.  */

void merge(int a[ ], a_len, b[ ], b_len, *c)
/*requires a and b are sorted arrays of integers of length a_len and b_len

respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elements of a and b.  */

int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
  if (a[i] < b[j]) {
    c[k] = a[i];
    i++; }
  else {
    c[k] = b[j];
    j++; };
  k++;
}

int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
  if (a[i] < b[j]) {
    c[k] = a[i];
    i++; }
  else {
    c[k] = b[j];
    j++; };
  k++;
}

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Notes on Logic
➜ We will need a suitable logic

➜ First Order Propositional Logic provides:
� a set of primitives for building expressions:

� variables, numeric constants, brackets

� a set of logical connectives:
� and (∧∧∧∧ ), or (∨∨∨∨ ), not (¬¬¬¬ ), implies (→→→→), logical equality (≡≡≡≡)

� the quantifiers:
� ∀∀∀∀  - “for all”
� ∃∃∃∃  - “there exists”

� a set of deduction rules

➜ Expressions in FOPL
� expressions can be true or false

� (x>y ∧∧∧∧  y>z) →→→→ x>z
� x=y ≡≡≡≡ y=x
� ∀∀∀∀ x,y,z ((x>y ∧∧∧∧  y>z)) →→→→ x>z)

� x+1 < x-1
� ∀∀∀∀ x (∃∃∃∃ y (y=x+z))
� x>3 ∨∨∨∨  x<-6

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

More notes on Logic
➜ Free vs. bound variables

� a variable that is not quantified is free
� a variable that is quantified is bound

� E.g. ∀∀∀∀ x (∃∃∃∃ y (y=x+z))
� x and y are bound
� z is free

➜ Closed formulae
� if all the variables in a formula are bound, the formula is closed
� a closed formula is either true or false
� the truth of a formula that is not closed cannot be determined

� (it depends on the environment)

� we can close any formula by quantifying all free variables with ∀∀∀∀
� if a formula is true for all values of its free variables then its closure is true.



5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Input/Output Assertions
➜ Pre-conditions and Post-conditions

� we could formalize:
� a requires clause as a pre-condition
� an effects clause as a post-condition

� e.g. for a program with inputs i1, i2, i3 and return value r, we could
specify the program by:

� where Pre(i1, i2, i3) is a logic statement that refers to i1, i2, i3
� The specification then says:

� “if Pre(i1, i2, i3) is true before executing the program then Post(r, i1, i2, i3)
should be true after it terminates”

� E.g.

{ Pre(i1, i2, i3) }
Program
{ Post(r, i1, i2, i3) } 

{ Pre(i1, i2, i3) }
Program
{ Post(r, i1, i2, i3) } 

{ true }
Program
{ (r=i1 ∨∨∨∨  r=i2) ∧∧∧∧  r >= i1 ∧∧∧∧  r >= i2 }

{ true }
Program
{ (r=i1 ∨∨∨∨  r=i2) ∧∧∧∧  r >= i1 ∧∧∧∧  r >= i2 }

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Strength of Preconditions
➜ Strong preconditions

� a precondition limits the range of inputs for which the program must work
� a strong precondition places fewer constraints

� the strongest possible precondition is {true}  (same as an empty “requires” clause)
� it is harder for a program to meet a spec that has a stronger precondition

� a weak precondition places more constraints
� the weakest possible precondition is {false}
� …which means that there are no conditions under which the program has to work
� every program meets this spec!!!

� precondition A is stronger than B if:  B implies A
� read implies as “is not as true as” or “is true in fewer cases than”

{ ∃∃∃∃ z (a=z*b and z>0) }
x := divide(a, b);
{ x*b=a }

{ ∃∃∃∃ z (a=z*b and z>0) }
x := divide(a, b);
{ x*b=a }

{ a>=b }
x := divide(a, b);
{ ∃∃∃∃ c (x*b+c=a and c>=0 and c<b) }

{ a>=b }
x := divide(a, b);
{ ∃∃∃∃ c (x*b+c=a and c>=0 and c<b) }

this precondition is stronger
� it doesn’t require a to be a multiple of b
� (∃∃∃∃ z (a=z*b and z>0)) implies (a>=b)

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Correctness Proofs
➜ Program correctness

� if we write formal specifications we can prove that a program meets its
specification

� “program correctness” only makes sense in relation to a specification

➜ To prove a program is correct:
�We need to prove the post-condition is true after executing the program

� (assuming the pre-condition was true beforehand)

� E.g.

Step 1: for z>0 to be true after the assignment, x*y>0 must have been true
before it

Step 2: for x*y>0 to be true before the assignment, the precondition must
imply it.

Step 3: show that (x>0 and y>0) implies x*y>0  (after closure)

{ x>0 and y>0 }
z := x*y;
{ z>0 }

{ x>0 and y>0 }
z := x*y;
{ z>0 }

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Weakest Pre-conditions
➜ The general strategy is:

1) start with the post-condition
2) work backwards through the program line-by-line
3) find the weakest pre-condition (WP) that guarantees the post-condition
4) prove that the actual pre-condition implies WP

� i.e. the actual pre-condition is weaker than the “weakest pre-condition”, WP

➜ For example

1) for Post to be true after S2, then x<1 must be true before S2
2) for x<1 to be true after S1, then 0<1 must be true before S1
3) (0<1) is the weakest precondition for this program
4) So is (true implies 0<1) true?

Pre
S1
S2

Post

Pre
S1
S2

Post

{ true }
x := 0;
y := 1
{ x<y }

{ true }
x := 0;
y := 1
{ x<y }



9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Proof rules
➜ Proof rules

� tell us how to find weakest preconditions for different programs
� we need a proof rule for each programming language construct

➜ Proof rule for assignment
� e.g. for

� ...the weakest precondition is Post with all free occurrences of x replaced
by e

➜ Proof rule for sequence
� e.g. for

� …if WP2 is the weakest precondition for S2, then the weakest precondition
for the whole program is the same as the weakest precondition for
{ Pre } S1 { WP2 }

{ Pre }
x := e;
{ Post }

{ Pre }
x := e;
{ Post }

{ Pre }
S1; S2
{ Post }

{ Pre }
S1; S2
{ Post }

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Hoare Notation
➜ We can express proof rules more concisely

� e.g. using Hoare notation:

� this means “if claim1 and claim2 have both been proved, then conclusion
must be true”

➜ E.g. for sequence:

➜ E.g. for if statements:

� find the weakest precondition for S1 and the weakest precondition for S2.
� Then show ((Pre and c) implies WP S1) and ((Pre and not(c)) implies WP S2)

claim1, claim2, ...
conclusion

{Pre}S1{Q},  {Q}S2{Post}
{Pre}S1; S2{Post}

{Pre and c}S1{Post},  {Pre and not(c)}S2{Post}
{Pre}if (c) then S1 else S2{Post}

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Proving an IF statement
 E.g.

1) the first branch:

to find the weakest precondition,
substitute x for max:

WP1 = {(x=x or x=y) and (x>=x) and (x>=y)}
= {(true or x=y) and true and (x>=y)}
= {(true) and (x>=y)}
= {x>=y}

which is okay because
(Pre and c) implies WP1,
{true and x>y} implies {x>=y}

{ true }
if (x>y) then
  max := x;
else
  max := y;
{ (max=x or max=y) and max>=x and max>=y) }

{ true }
if (x>y) then
  max := x;
else
  max := y;
{ (max=x or max=y) and max>=x and max>=y) }

2) the second branch:

to find the weakest precondition,
substitute y for max:
WP2 = {(y=x or y=y) and (y>=x) and (y>=y)}

= {(y=x or true) and (y>=x) and true}
= {(true) and (y>=x)}
= {y>=x}

which is okay because
(Pre and not(c)) implies WP2,
{true and not(x>y)} implies {y>=x}

{ true and x>y }
max := x;
{ Post }

{ true and x>y }
max := x;
{ Post }

{ true and not(x>y) }
max := y;
{ Post }

{ true and not(x>y) }
max := y;
{ Post }

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Practicalities
➜ Program proofs are not (currently) widely used:

� they can be tedious to construct
� they tend to be longer than the programs they refer to
� they could contain mistakes too!
� they require mathematical expertise
� they do not ensure against hardware errors, compiler errors, etc.
� they only prove functional correctness (i.e. not termination, efficiency,…)

➜ Practical formal methods:
� Just use for small parts of the program

� e.g. isolate the safety-critical parts

� Use to reason about changes to a program
� e.g. prove that changing a statement preserves correctness

� Automate some of the proof
� use proof checkers and theorem provers

� Use formal reasoning for other things
� test properties of the specification to see if we got the spec right
� ie. use for validation, rather than verification



13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Other approaches
➜ Model-checking

� A model checker takes a state-machine model and a temporal logic property
and tells you whether the property holds in the model

� temporal logic adds modal operators to propositional logic:
� e.g. �x - x is true now and always (in the future)
� e.g. �x - x is true eventually (in the future)

� The model may be:
� of the program itself (each statement is a ‘state’)
� an abstraction of the program
� a model of the specification
� a model of the domain

�Model checking works by searching all the paths through the state space
� …with lots of techniques for reducing the size of the search

�Model checking does not guarantee correctness…
� it only tells you about the properties you ask about
� it may not be able to search the entire state space (too big!)

� …but is (generally) more practical than proofs of correctness.

14

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)” Wiley,
1999.

Section 15.4 gives a very brief introduction to program proofs, and includes some pointers to more
readings. The rest of chapter 15 covers some other uses of formal analysis for specifications. In
particular, section 15.5 is a nice summary of the arguments in favour of formal methods.

Easterbrook, S. M., Lutz, R., Covington, R., Kelly, J., Ampo, Y. & Hamilton, D.
“Experiences Using Lightweight Formal Methods for Requirements Modeling”. IEEE
Transactions on Software Engineering, vol 24, no 1, pp1-11, 1998

Provides an overview of experience with practical formal methods for requirements validation. Is
available from my web page (http://www.cs.toronto.edu/~sme/papers/)

F. Schneider, S. M. Easterbrook, J. R. Callahan and G. J. Holzmann, "Validating
Requirements for Fault Tolerant Systems using Model Checking" Third IEEE
Conference on Requirements Engineering, Colorado Springs, CO, April 6-10, 1998.

Presents a case study of the use of model checking for validating requirements. Is available from my
web page (http://www.cs.toronto.edu/~sme/papers/)


