
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 5:
Decomposition and Abstraction

➜ Decomposition
�When to decompose
� Identifying components
�Modelling components

➜ Abstraction
� Abstraction by parameterization
� Abstraction by specification
� Pre-conditions and Post-conditions

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Decomposition
➜ Large problems can be tackled with “divide and

conquer”

➜ Decompose the problem so that:
� Each subproblem is at (roughly) the same level of detail
� Each subproblem can be solved independently
� The solutions to the subproblems can be combined to solve the original

problem

➜ Advantages
� Different people can work on different subproblems
� Parallelization may be possible
�Maintenance is easier

➜ Disadvantages
� the solutions to the subproblems might not combine to solve the original

problem
� Poorly understood problems are hard to decompose

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Decomposition Examples
➜ Decomposition can work well:

� E.g. designing a restaurant menu

➜ Decomposition doesn’t always work
� E.g. writing a play:

➜ Decomposition isn’t always possible
� for very complex problems (e.g. Managing the economy)
� for impossible problems (e.g. Turning water into wine)
� for atomic problems (e.g. Adding 1 and 1)

Choose a set of
character parts

write character 1’s part

write character 2’s part

write character 3’s part

 …etc…

merge

Choose style
and theme

Design appetizers menu

Design entrees menu

Design desserts menu

Design drinks menu

Assemble
and edit

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How to decompose
➜ Step 1: Identify components

� a good decomposition minimizes dependencies between components
� coupling - a measure of inter-component connectivity
� cohesion - a measure of how well the contents of a component go together

� information hiding
� having modules keep their data private
� provide limited access procedures
� this reduces coupling

“Lksdfkiroer
erte;roifgkd
peoritlkgpeo
werp;tlkpoig
rtmnkm;km”

[a, c, fg, e];
[df, 4, rt, 5];
[qw, 1, t, 6]
[c, fg, 8, 1];

Private
data

Private
data

.x=?

“42!”

module a module b

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How to decompose (cont.)
➜ Step 2: Model the components

� At the design level

� At the coding level

dataflow diagrams
structure charts

object diagrams

procedure specifications

procedure declarations
float sqrt(int);

float sqrt(int x){
/* requires: x is a positive integer

effects: returns an approximation
of the square root of x to within
±10-4 */

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Abstraction
➜ Abstraction is the main tool used in reasoning about

software

➜ Why? It allows you to:
� ignore inconvenient detail
� treat different entities as though they are the same
� simplify many types of analysis

➜ Example abstractions
graph

directed graph undirected
graph

tree DAG

A file

A sequence of
bits on a disk

set
membership

A program that takes an
integer and a list returns

the index of the first
occurrence of the element
or null if the element does

not occur in the list
...

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

example

Can I replace A with B?

if we could abstract away all the detail…

found = false;
i = lowbound(a);
while (i < highbound(a)+1){

if (a[i] == e) {
z = i;
found = TRUE;

}
i = i + 1;

}

found = false;
i = lowbound(a);
while (i < highbound(a)+1){

if (a[i] == e) {
z = i;
found = TRUE;

}
i = i + 1;

}

found = false;
i = highbound(a);
while (i > lowbound(a)-1){

if (a[i] == e) {
z = i;
found = TRUE;

}
i = i - 1;

}

found = false;
i = highbound(a);
while (i > lowbound(a)-1){

if (a[i] == e) {
z = i;
found = TRUE;

}
i = i - 1;

}

A B

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Using Abstraction
➜ Abstraction can help with Decomposition

� e.g. To manage the economy, try focussing on some abstracted features
such as inflation, growth, GDP, etc.

� Abstraction allows us to ignore inconvenient details

➜ In programming:
� Abstraction is the process of naming compound objects and dealing with

them as single entities
� (i.e. ignoring their details)

➜ Abstraction doesn’t solve problems…
� …but it allows us to simplify them

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Abstraction by Parameterization
➜ The program fragment:

x * x - y * y

computes the difference of the squares of two specific variables, x and y.

➜ The abstraction:
int squares (int x, int y) {

return(x * x - y * y);

}

describes a set of computations which act on any two (integer) variables to
compute the difference of their squares

Note: locally the variables are called x and y for convenience

➜ The specific computation:
result = squares(big, small);

uses the abstraction ‘squares’ on two specific variables (‘big’ and ‘small’)

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Abstraction by Specification
➜ Abstraction by parameterization…

� …allows us to express infinitely many computations
� …but does not tell us about the intention of those computations

➜ We need to capture the intention
� e.g. consider what is true before and after a computation

� we can abstract away from a computation (or a plan, program, function,
etc) by talking about what it achieves

before
unsorted

array

after
sorted
array

function for
sorting arrays

specification
this function can be used whenever we have an

array. After it is applied, the array will be
sorted into ascending order

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Pre-conditions and Post-conditions
➜ The two forms of abstraction are complementary

� parameterization allows us to perform a computation on any arbitrary
variables (values)

� specification allows us to ignore how it is done

➜ Unfortunately…
� only abstraction by parameterization is built into our programming languages

� as function (procedure) definitions

�We can overcome this using comments:

int strlen (char s[]) {
/* precondition: s must contain a character array,

delimited by the null character;
postcondition: returns the length of s as an integer;

*/
int length = 0;
while (s[length])

length++;
return(length); }

int strlen (char s[]) {
/* precondition: s must contain a character array,

delimited by the null character;
postcondition: returns the length of s as an integer;

*/
int length = 0;
while (s[length])

length++;
return(length); }

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Summary
➜ Decomposition allows us to simplify difficult design

tasks

➜ A good decomposition
�minimizes coupling between components
�maximizes cohesion within components
� permits information hiding

➜ Methods provide…
� … techniques for decomposing problems
� … notations for describing the components

➜ Abstraction allows us to ignore detail
� by parameterization: allows us to describe and name sets of computations
� by specification: allows us to ignore how the computation is done

13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)”

Wiley, 1999.
� Chapter 11 provides an introduction to the concepts in this lecture, especially section 11.1. However,

van Vliet does not go into much detail about documenting procedural and data abstractions in the
style I use in this and the next two lectures. For this you’ll need:

Liskov, B. and Guttag, J., “Program Development in Java: Abstraction,
Specification and Object-Oriented Design”, 2000, Addison-Wesley.

� See especially chapters 1 and 3. I draw on Liskov’s ideas extensively for advice on program design in
this course. The commenting style I use (“requires”, “effects”, etc) is Liskov’s. If you plan to do any
extensive programming in Java, you should buy this book. If you don’t buy it, borrow it and read the
first few chapters.

