
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 21:
Software Architectures

 Architectural Styles
 Pipe and filter
 Object oriented:

 Client-Server; Object Broker
 Event based
 Layered:

 Designing Layered Architectures
 Repositories:

 Blackboard, MVC
 Process control



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Analysis vs. Design
 Analysis

 Asks “what is the problem?”
 what happens in the current system?
 what is required in the new system?

 Results in a detailed understanding of:
 Requirements
 Domain Properties

 Focuses on the way human activities are conducted

 Design
 Investigates “how to build a solution”

 How will the new system work?
 How can we solve the problem that the analysis identified?

 Results in a solution to the problem
 A working system that satisfies the requirements
 Hardware + Software + Peopleware

 Focuses on building technical solutions

 Separate activities, but not necessarily sequential
 …and attempting a design usually improves understanding of the problem



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Software Architecture
 A software architecture defines:

 the components of the software system
 how the components use each other’s functionality and data
 How control is managed between the components

 An example: client-server
 Servers provide some kind of service; clients request and use services
 applications are located with clients

 E.g. running on PCs and workstations;
 data storage is treated as a server

 E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
 Consistency checking is located with the server

 Advantages:
 Breaks the system into manageable components
 Makes the control and data persistence mechanisms clearer

 Variants:
 Thick clients have their own services, thin ones get everything from servers

 Note: Are we talking about logical (s/w) or physical (h/w) architecture?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Coupling and Cohesion
 Architectural Building blocks:

 A good architecture:
 Minimizes coupling between modules:

 Goal: modules don’t need to know much about one another to interact
 Low coupling makes future change easier

 Maximizes the cohesion of each module
 Goal: the contents of each module are strongly inter-related
 High cohesion makes a module easier to understand

module module
connector

X 



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Pipe-and-filter

 Examples:
 UNIX shell commands
 Compilers:

 Lexical Analysis -> parsing -> semantic analysis -> code generation
 Signal Processing

 Interesting properties:
 filters don’t need to know anything about what they are connected to
 filters can be implemented in parallel
 behaviour of the system is the composition of behaviour of the filters

 specialized analysis such as throughput and deadlock analysis is possible

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe

pipe

pipe

pipe

pipe pipe

pipe

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Object Oriented Architectures

 Examples:
 abstract data types

 Interesting properties
 data hiding (internal data representations are not visible to clients)
 can decompose problems into sets of interacting agents
 can be multi-threaded or single thread

 Disadvantages
 objects must know the identity of objects they wish to interact with

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

Source: Adapted from Shaw & Garlan 1996, p22-3.



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Variant 1: Client Server

 Interesting properties
 Is a special case of the previous pattern object oriented architecture
 Clients do not need to know about one another

 Disadvantages
 Client objects must know the identity of the server

client

client

client

method
invocation

method
invocation

method
invocation

Server



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Variant 2: Object Brokers
server

server

broker

clientclient

client

 Interesting properties
 Adds a broker between the clients and servers
 Clients no longer need to know which server they are using
 Can have many brokers, many servers.

 Disadvantages
 Broker can become a bottleneck
 Degraded performance



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Broker Architecture Example



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Event based (implicit invocation)

 Examples
 debugging systems (listen for particular breakpoints)
 database management systems (for data integrity checking)
 graphical user interfaces

 Interesting properties
 announcers of events don’t need to know who will handle the event
 Supports re-use, and evolution of systems (add new agents easily)

 Disadvantages
 Components have no control over ordering of computations

broadcast
medium

agent

agent

agent

agent

announce
event

announce
event

listen for
event

listen for
eventbroadcast

medium

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

kernal

Layered Systems

 Examples
 Operating Systems
 communication protocols

 Interesting properties
 Support increasing levels of abstraction during design
 Support enhancement (add functionality) and re-use
 can define standard layer interfaces

 Disadvantages
 May not be able to identify (clean) layers

kernal

utilities
application layer

users

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Variant: 3-layer data access
Presentation layer

Application Logic layer

Storage layer

Java
A
W

T

A
ppl’n

Views

Contol
objects

Business
logic

Q
uery

Engine

File
M

gm
nt

D
BM

S



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Open vs. Closed Layered Architecture
 closed architecture

 each layer only uses services of the layer
immediately below;

 Minimizes dependencies between layers and
reduces the impact of a change.

 open architecture
 a layer can use services from any lower

layer.
 More compact code, as the services of lower

layers can be accessed directly
 Breaks the encapsulation of layers, so

increase dependencies between layers

Layer N
Layer N-1

Layer 2
Layer 1

Layer N
Layer N-1

Layer 2
Layer 1



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

How many layers?
 2-layers:

 application layer
 database layer
 e.g. simple client-server model

 3-layers:
 separate out the business logic

helps to make both user interface and
database layers modifiable

 4-layers:
 Separates applications from the

domain entities that they use:
boundary classes in presentation layer
control classes in application layer
entity classes in domain layer

 Partitioned 4-layers
 identify separate applications

Application (client)
Database (server)

Presentation layer (user interface)
Business Logic

Database

Presentation layer (user interface)
Applications

Domain Entities
Database

UI1 UI2 UI3 UI4

App1 App2 App3 App4

Domain Entities

Database



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Repositories

 Examples
 databases
 blackboard expert systems
 programming environments

 Interesting properties
 can choose where the locus of control is (agents, blackboard, both)
 reduce the need to duplicate complex data

 Disadvantages
 blackboard becomes a bottleneck

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Variant: Model-View-Controller

controller

controller
view

m
odel

view propagate propagate

update update

accessaccess

 Properties
 One central model, many views (viewers)
 Each view has an associated controller
 The controller handles updates from the user of the view
 Changes to the model are propagated to all the views



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Model View Controller Example



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

MVC Component Interaction



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Process Control

 Examples
 aircraft/spacecraft flight control systems
 controllers for industrial production lines, power stations, etc.
 chemical engineering

 Interesting properties
 separates control policy from the controlled process
 handles real-time, reactive computations

 Disadvantages
 Difficult to specify the timing characteristics and response to disturbances

processcontroller

input variables

controlled
variables

control
parameters

manipulated
variables

se
nso

rs

actuators

Source: Adapted from Shaw & Garlan 1996, p27-31.


