
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 20:
Software Evolution

 Basics of Software Evolution
 Laws of software evolution
 Requirements Growth
 Software Aging

 Basics of Change Management
 Baselines, Change Requests and Configuration Management

 Software Families - The product line approach

 Requirements Traceability
 Importance of traceability
 Traceability tools



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Program Types
 S-type Programs (“Specifiable”)

 problem can be stated formally and completely
 acceptance: Is the program correct according to its specification?
 This software does not evolve.

 A change to the specification defines a new problem, hence a new program

 P-type Programs (“Problem-solving”)
 imprecise statement of a real-world problem
 acceptance: Is the program an acceptable solution to the problem?
 This software is likely to evolve continuously

 because the solution is never perfect, and can be improved
 because the real-world changes and hence the problem changes

 E-type Programs (“Embedded”)
 A system that becomes part of the world that it models
 acceptance: depends entirely on opinion and judgement
 This software is inherently evolutionary

 changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare

P-type

real world

PROGRAM

abstract
view of worldrequirements

specification

model

E-type

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to

change

change

change

S-type

Source: Adapted from Lehman 1980, pp1061-1063



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
 Continuing Change

 Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

 change continues until it is judged more cost effective to replace the system

 Increasing Complexity
 As software evolves, its complexity increases…

 …unless steps are taken to control it.

 Fundamental Law of Program Evolution
 Software evolution is self-regulating

 …with statistically determinable trends and invariants

 Conservation of Organizational Stability
 During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

 Conservation of Familiarity
 The amount of change in successive releases is roughly constant



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Requirements Growth
Davis’s model:

User needs evolve continuously
Imagine a graph showing growth

of needs over time
May not be linear or continuous

(hence no scale shown)
Traditional development always
lags behind needs growth
 first release implements only

part of the original requirements
 functional enhancement adds new

functionality
eventually, further enhancement

becomes too costly, and a
replacement is planned

 the replacement also only
implements part of its
requirements,

and so on...

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy 
req

uir
em

en
ts

fir
st 

rel
eas

e

en
ha

nce
men

t p
ha

se

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
en

t d
eli

ver
ed

en
ha

nce
men

t p
ha

se

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Software Aging
 Causes of Software Aging

 Failure to update the software to meet changing needs
 Customers switch to a new product if benefits outweigh switching costs

 Changes to software tend to reduce its coherence

 Costs of Software Aging
 Owners of aging software find it hard to keep up with the marketplace
 Deterioration in space/time performance due to deteriorating structure
 Aging software gets more buggy

 Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
 Design for change
 Document the software carefully
 Requirements and designs should be reviewed by those responsible for its

maintenance
 Software Rejuvenation…

Source: Adapted from Parnas, 1994



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Software “maintenance”
Maintenance philosophies

 “throw-it-over-the-wall” - someone else is responsible for maintenance
 investment in knowledge and experience is lost
 maintenance becomes a reverse engineering challenge

 “mission orientation” - development team make a long term commitment to
maintaining/enhancing the software

 Basili’s maintenance process models:
 Quick-fix model

 changes made at the code level, as easily as possible
 rapidly degrades the structure of the software

 Iterative enhancement model
 Changes made based on an analysis of the existing system
 attempts to control complexity and maintain good design

 Full-reuse model
 Starts with requirements for the new system, reusing as much as possible
 Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Managing Requirements Change
Managers need to respond to requirements change

 Add new requirements during development
 But not succumbing to feature creep

 Modify requirements during development
 Because development is a learning process

 Remove requirements during development
 requirements “scrub” for handling cost/schedule slippage

 Key techniques
 Change Management Process
 Release Planning
 Requirements Prioritization (previous lecture!)
 Requirements Traceability
 Architectural Stability (next week’s lecture)



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Change Management
 Configuration Management

 Each distinct product is a Configuration Item (CI)
 Each configuration item is placed under version control
 Control which version of each CI belongs in which build of the system

 Baselines
 A baseline is a stable version of a document or system

 Safe to share among the team
 Formal approval process for changes to be incorporated into the next

baseline

 Change Management Process
 All proposed changes are submitted formally as change requests
 A review board reviews these periodically and decides which to accept

 Review board also considers interaction between change requests



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Towards Software Families
 Libraries of Reusable Components

 domain specific libraries (e.g. Math libraries)
 program development libraries (e.g. Java AWT, C libraries)

 Domain Engineering
 Divides software development into two parts:

 domain analysis - identifies generic reusable components for a problem domain
 application development - uses the domain components for specific applications.

 Software Families
 Many companies offer a range of related software systems

 Choose a stable architecture for the software family
 identify variations for different members of the family

 Represents a strategic business decision about what software to develop
 Vertical families

 e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
 Horizontal families

 similar systems used in related domains



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Requirements Traceability
 From IEEE-STD-830:

 Backward traceability
 i.e. to previous stages of development.
 the origin of each requirement should be clear

 Forward traceability
 i.e., to all documents spawned by the SRS.
 Facilitation of referencing of each requirement in future documentation
 depends upon each requirement having a unique name or reference number.

 From DOD-STD-2167A:
 A requirements specification is traceable if:

(1) it contains or implements all applicable stipulations in predecessor document
(2) a given term, acronym, or abbreviation means the same thing in all documents
(3) a given item or concept is referred to by the same name in the documents
(4) all material in the successor document has its basis in the predecessor

document, that is, no untraceable material has been introduced
(5) the two documents do not contradict one another



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Source: Adapted from Palmer, 1996, p365
Importance of Traceability

 Verification and Validation
 assessing adequacy of test suite
 assessing conformance to

requirements
 assessing completeness, consistency,

impact analysis
 assessing over- and under-design
 investigating high level behavior

impact on detailed specifications
 detecting requirements conflicts
 checking consistency of decision

making across the lifecycle

 Maintenance
 Assessing change requests
 Tracing design rationale

 Document access
 ability to find information quickly in

large documents

 Process visibility
 ability to see how the software was

developed
 provides an audit trail

 Management
 change management
 risk management
 control of the development process



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Traceability Difficulties
 Cost

 very little automated support
 full traceability is very expensive and time-consuming

 Delayed gratification
 the people defining traceability links are not the people who benefit from it

 development vs. V&V
 much of the benefit comes late in the lifecycle

 testing, integration, maintenance

 Size and diversity
 Huge range of different document types, tools, decisions, responsibilities,…
 No common schema exists for classifying and cataloging these
 In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Current Practice
 Coverage:

 links from requirements forward to designs, code, test cases,
 links back from designs, code, test cases to requirements
 links between requirements at different levels

 Traceability process
 Assign each sentence or paragraph a unique id number
 Manually identify linkages
 Use manual tables to record linkages in a document
 Use a traceability tool (database) for project wide traceability
 Tool then offers ability to

 follow links
 find missing links
 measure overall traceability

Source: Adapted from Palmer, 1996, p367-8



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Limitations of Current Tools
 Informational Problems

 Tools fail to track useful traceability information
 e.g cannot answer queries such as “who is responsible for this piece of

information?”
 inadequate pre-requirements traceability

 “where did this requirement come from?”

 Lack of agreement…
 …over the quantity and type of information to trace

 Informal Communication
 People attach great importance to personal contact and informal

communication
 These always supplement what is recorded in a traceability database

 But then the traceability database only tells part of the story!
 Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Source: Adapted from Gotel & Finkelstein, 1997, p100
Problematic Questions

 Involvement
 Who has been involved in the production of this requirement and how?

 Responsibility & Remit
 Who is responsible for this requirement?
 What group has authority to make decisions about this requirement?

 Change
 What changes are relevant to this requirement?

 Stakeholders’ changed jobs? changed development process?
 When has responsibility for the requirement changed hands?

Notification
 Who needs to be involved in, or informed of, any changes proposed to this

requirement?

 Loss of knowledge
 What loss of project knowledge is likely if a specific individual leaves?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Summary
 Software Evolution is inevitable

 Software must evolve or become progressively less useful
 Software becomes more complex as it evolves
 Software evolutions follows regular patterns

 Good practice plans for evolution
 Release management
 Controlled requirements change process

 Traceability needed to recover knowledge
 Backwards to originating stakeholders
 Forwards into design and implementation
 Still many questions traceability won’t answer


