Lecture 19: Requirements Prioritization

\rightarrow Why Prioritization is needed

♦ Basic Trade-offs

University of Toronto

→ Cost-Value Approach

- ♦ Sorting Requirements by cost/value
- Estimating Relative Costs/Values using AHP

→ What if stakeholders disagree?

- **Visualizing differences in priority**
- **& Resolving Disagreements**

Basics of Prioritization

\rightarrow Need to select what to implement

- Customers (usually) ask for way too much
- ♦ Balance time-to-market with amount of functionality
- Decide which features go into the next release

→ For each requirement/feature, ask:

- ♥ How important is this to the customer?
- ♦ How much will it cost to implement?
- ♦ How risky will it be to attempt to build it?

→ Perform Triage:

- ♦ Some requirements *must* be included
- Some requirements should definitely be excluded
- ♦ That leaves a pool of "nice-to-haves", which we must select from.

A Cost-Value Approach

Source: Adapted from Karlsson & Ryan 1997

\rightarrow Calculate return on investment

University of Toronto

- Assess each requirement's importance to the project as a whole
- ♦ Assess the relative cost of each requirement
- ♦ Compute the cost-value trade-off:

Estimating Cost & Value

\rightarrow Two approaches:

- ♦ Absolute scale (e.g. dollar values)
 - > Requires much domain experience
- ♦ Relative values (e.g. less/more; a little, somewhat, very)
 - > Much easier to elicit
 - > Prioritization becomes a sorting problem

→ Comparison Process - options

- ⇔ Basic sorting for every pair of requirements (i,j), ask if i>j?
 - > E.g. bubblesort start in random order, and swap each pair if out of order
 - > requires n*(n-1)/2 comparisons
- ♦ Construct a Binary Sort Tree
 - > Requires O(n log n) comparisons
- & Contruct a Minimal Spanning Tree
 - > for each pair (Ri, Ri+1) get the distance between them
 - Requires n-1 comparisons

Some complications

→ Hard to *quantify* differences

♦ easier to say "x is more important than y"...
♦ ...than to estimate by how much.

→ Not all requirements comparable

E.g. different level of abstraction

E.g. core functionality vs. customer enhancements

→ Requirements may not be independent

b No point selecting between X and Y if they are mutually dependent

\rightarrow Stakeholders may not be consistent

E.g. If X > Y, and Y > Z, then presumably X > Z?

→ Stakeholders might not agree

♥ Different cost/value assessments for different types of stakeholder

Department of Computer Science

Hierarchical Prioritization

- → Group Requirements into a hierarchy
 - ♦ E.g. A goal tree

University of Toronto

- \clubsuit E.g. A NFR tree
- \rightarrow Only make comparisons between branches of a single node:

Analytic Hierarchy Process (AHP)

Source: Adapted from Karlsson & Ryan 1997

\rightarrow Create n x n matrix (for n requirements)

- \forall For element (x,y) in the matrix enter:
 - > 1 if x and y are of equal value
 - > 3 if x is slightly more preferred than y
 - > 5 if x is strongly more preferred than y
 - > 7 if x is very strongly more preferred than y
 - > 9 if x is extremely more preferred than y
 - \succ (use the intermediate values, 2,4,6,8 if compromise needed)

...and for (y,x) enter the reciprocal.

→ Estimate the eigenvalues:

- ⇐ E.g. "averaging over normalized columns"
 - > Calculate the sum of each column
 - > Divide each element in the matrix by the sum of it's column
 - > Calculate the sum of each row
 - > Divide each row sum by the number of rows

\rightarrow This gives a value for each reqt:

4...giving the estimated percentage of total value of the project

Department of Computer Science

University of Toronto

Department of Computer Science

Plot ROI graph

Source: Adapted from Karlsson & Ryan 1997

\rightarrow Do AHP process twice:

University of Toronto

CC Some Rights Reserved

- ♦ Once to estimate relative value
- ♦ Once to estimate relative cost

→ Use results to calculate ROI ratio:

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Visualizing stakeholder satisfaction

Source: Adapted from Regnell et al, 2000

→ Graph showing correlation between stakeholder's priorities and the group's priorities

✤ Can also be thought of as "influence of each stakeholder on the group"

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Resolving Stakeholder Conflict

→ Causes of Conflict

- ♦ Deutsch (1973):
 - > control over resources
 - > preferences and nuisances (tastes or activities of one party impinge upon another)
 - > values (a claim that a value or set of values should dominate)
 - > beliefs (dispute over facts, information, reality, etc.)
 - > the nature of the relationship between the parties.
- ♦ Robbins (1989):
 - > communicational (insufficient exchange of information, noise, selective perception)
 - > structural (goal compatibility, jurisdictional clarity, leadership style)
 - > personal factors, (individual value systems, personality characteristics.

→ Interesting Results

- & deviant behaviour & conflict are normal in small group decision making
- by more aggression and less co-operation when communication is restricted
 - \succ a decrease in communication tends to intensify a conflict (the contact hypothesis)
- heterogeneous teams experience more conflict;
- bomogeneous groups are more likely to make high risk decisions (groupthink)
- & effect of personality is overshadowed by situational and perceptual factors

Basic approaches to conflict resolution

\rightarrow Negotiation

- …is collaborative exploration:
 >participants seek a settlement that satisfies all parties as much as possible.
- $\$ also known as:

>integrative behaviour>constructive negotiation

♦ distinct from:

>distributive/competitive
negotiation

\rightarrow Competition

 is maximizing your own gain:
 >no regard for the degree of satisfaction of other parties.
 >but not necessarily hostile!

b Extreme form:

>when all gains by one party are at the expense of others

>I.e a zero-sum game.

→ Third Party Resolution

- participants appeal to outside source
 the rule-book, a figure of authority, or the toss of a coin.
 can occur with the breakdown of either negotiation or competition as resolution methods.
- judicial: cases presented by each participant are taken into account
- extra-judicial: a decision is
 determined by factors other
 than the cases presented
 >(e.g. relative status of

participants).

☆ arbitrary: e.g. toss of a coin