
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 11:
Object Oriented Modelling

 Object Oriented Analysis
 Rationale
 Identifying Classes
 Attributes and Operations

 UML Class Diagrams
 Associations
Multiplicity
 Aggregation
 Composition
 Generalization

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

Requirements & Domain Models

 Our analysis models should…
 …represent people, physical things and concepts important to our

understanding of what is going on in the application domain

 …show connections and interactions among these people, things and concepts.

 …show the business situation in enough detail to evaluate possible designs.

 …be organized to be useful later, during design and implementation of the
software.

 …allow us to check whether the functions we will include in the specification
will satisfy the requirements

 …test our understanding of how the new system will interact with the world

Reminder: we are modeling this and this … … … … but not this

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Object Oriented Analysis
 Background

Model the requirements in terms of objects and the services they provide
 Grew out of object oriented design

 Applied to modelling the application domain rather than the program

Motivation
OO is (claimed to be) more ‘natural’

 As a system evolves, the functions it performs need to be changed more often
than the objects on which they operate…

 …a model based on objects (rather than functions) will be more stable over time…
 …hence the claim that object-oriented designs are more maintainable

OO emphasizes importance of well-defined interfaces between objects
 compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Nearly anything can be an object…
 External Entities

 …that interact with the system being
modeled

E.g. people, devices, other systems

 Things
 …that are part of the domain being

modeled
E.g. reports, displays, signals, etc.

 Occurrences or Events
 …that occur in the context of the

system
E.g. transfer of resources, a control
action, etc.

 Roles
 played by people who interact with

the system

 Organizational Units
 that are relevant to the application

E.g. division, group, team, etc.

 Places
 …that establish the context of the

problem being modeled
E.g. manufacturing floor, loading
dock, etc.

 Structures
 that define a class or assembly of

objects
E.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
 procedures (e.g. print, invert, etc)
 attributes (e.g. blue, 50Mb, etc)

Source: Adapted from Pressman, 1994, p242

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

What are classes?
 A class describes a group of objects with

 similar properties (attributes),
 common behaviour (operations),
 common relationships to other objects,
 and common meaning (“semantics”).

 Examples
 employee: has a name, employee# and department; an employee is hired, and fired; an

employee works in one or more projects

:employee
name
employee#
department
hire()
fire()
assignproject()

Name (mandatory)Attributes
 (optional)

Operations
 (optional)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Finding Classes
 Finding classes from source data:

 Look for nouns and noun phrases in stakeholders’ descriptions of the problem
 include in the model if they explain the nature or structure of information in the

application.

 Finding classes from other sources:
 Reviewing background information;
 Users and other stakeholders;
 Analysis patterns;

 It’s better to include many candidate classes at first
 You can always eliminate them later if they turn out not to be useful
 Explicitly deciding to discard classes is better than just not thinking about

them

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Selecting Classes
 Discard classes for concepts which:

 Are beyond the scope of the analysis;
 Refer to the system as a whole;
 Duplicate other classes;
 Are too vague or too specific

 e.g. have too many or too few instances
 Coad & Yourdon’s criteria:

 Retained information: Will the system need to remember information about this
class of objects?

 Needed Services: Do objects in this class have identifiable operations that
change the values of their attributes?

 Multiple Attributes: If the class only has one attribute, it may be better
represented as an attribute of another class

 Common Attributes: Does the class have attributes that are shared with all
instances of its objects?

 Common Operations: Does the class have operations that are shared with all
instances of its objects?

 External entities that produce or consume information essential to the
system should be included as classes

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

Objects vs. Classes
 The instances of a class are called objects.

Objects are represented as:

 Two different objects may have identical attribute values (like two people
with identical name and address)

 Objects have associations with other objects
 E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
 But we will capture these relationships at the class level (why?)
Note: Make sure attributes are associated with the right class

 E.g. you don’t want both managerName and manager# as attributes of Project!
(…Why??)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Associations
 Objects do not exist in isolation from one another

 A relationship represents a connection among things.
 In UML, there are different types of relationships:

 Association
 Aggregation and Composition
 Generalization
 Dependency
 Realization

Note: The last two are not useful during requirements analysis

 Class diagrams show classes and their relationships

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Association Multiplicity
 Ask questions about the associations:

 Can a campaign exist without a member of staff to manage it?
 If yes, then the association is optional at the Staff end - zero or more (0..*)
 If no, then it is not optional - one or more (1..*)
 If it must be managed by one and only one member of staff - exactly one (1)

What about the other end of the association?
 Does every member of staff have to manage exactly one campaign?
 No. So the correct multiplicity is zero or more.

 Some examples of specifying multiplicity:
Optional (0 or 1) 0..1
 Exactly one 1 = 1..1
 Zero or more 0..* = *
One or more 1..*
 A range of values 2..6

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

More Examples

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Association Classes
 Sometimes the association is itself a class

 …because we need to retain information about the association
 …and that information doesn’t naturally live in the classes at the ends of the

association
 E.g. a “title” is an object that represents information about the relationship

between an owner and her car

:car
VIN(vehicle Id Number)
YearMade
Mileage

:person
Name
Address
DriversLicenceNumber
PermittedVehicles

0..* 1owns
owner

:title
yearbought
initialMileage
PricePaid
LicencePlate#

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Aggregation and Composition
 Aggregation

 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

 if the whole is removed from the model, so is the part.
 the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Generalization

 Notes:
 Subclasses inherit attributes, associations, & operations from the superclass
 A subclass may override an inherited aspect

 e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
 Superclasses may be declared {abstract}, meaning they have no instances

 Implies that the subclasses cover all possibilities
 e.g. there are no other staff than AdminStaff and CreativeStaff

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

More on Generalization
 Usefulness of generalization

 Can easily add new subclasses if the organization changes

 Look for generalizations in two ways:
 Top Down

 You have a class, and discover it can be subdivided
 Or you have an association that expresses a “kind of” relationship
 E.g. “Most of our work is on advertising for the press, that’s newspapers and

magazines, also for advertising hoardings, as well as for videos”
 Bottom Up

 You notice similarities between classes you have identified
 E.g. “We have books and we have CDs in the collection, but they are all filed

using the Dewey system, and they can all be lent out and reserved”

 But don’t generalize just for the sake of it
 Be sure that everything about the superclass applies to the subclasses
 Be sure that the superclass is useful as a class in its own right

 I.e. not one that we would discard using our tests for useful classes
 Don’t add subclasses or superclasses that are not relevant to your analysis

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Class Diagrams

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2

0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Summary
 Understand the objects in the application domain

 Identify all objects that stakeholders refer to
 Decide which objects are important for your analysis
 Class diagrams good for:

 Visualizing relationships between domain objects
 Exploring business rules and assumptions via multiplicities
 Specifying the structure of information to be (eventually) stored

 OO is a good way to explore details of the problem
 Avoids the fragmentary nature of structured analysis
 provides a coherent way of understanding the world

 But beware…
 temptation to do design rather than problem analysis

 In RE, class diagrams DO NOT represent programming (e.g. Java) classes
 For analysis, use UML diagrams as sketches, not as blueprints

 But may become blueprints when used in a specification

