
1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 3:
What is Engineering?

 What is engineering about?
 Engineering vs. Science
 Devices vs. Systems
How is software engineering different?
 Engineering as a profession

 Engineering Projects
 Project Management
 Project Initiation

 Project Lifecycles
 Software Engineering lifecycles: Waterfalls, spirals, etc
 Requirements Lifecycles

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Engineering vs. Science
 Traditional View:

Scientists… Engineers…
create knowledge apply that knowledge
study the world as it is seek to change the world
are trained in scientific method are trained in engineering design
use explicit knowledge use tacit knowledge
are thinkers are doers

 More realistic View
Scientists… Engineers…
create knowledge create knowledge
are problem-driven are problem-driven
seek to understand and explain seek to understand and explain
design experiments to test theories design devices to test theories
prefer abstract knowledge prefer contingent knowledge
but rely on tacit knowledge but rely on tacit knowledge

Both involve a mix of design and discovery

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

“Engineering is the development of cost-effective solutions to practical
problems, through the application of scientific knowledge”

What is engineering?

“…Cost-effective…”
 Consideration of design trade-offs, esp. resource usage
Minimize negative impacts (e.g. environmental and social cost)

“… Solutions …”
 Emphasis on building devices

“… Practical problems …”
 solving problems that matter to people
 improving human life in general through technological advance

“… Application of scientific knowledge …”
 Systematic application of analytical techniques

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Devices vs. Systems
 Normal design:

Old problems, whose solutions are well known
 Engineering codifies standard solutions
 Engineer selects appropriate methods and technologies

 Design focuses on well understood devices
 Devices can be studied independent of context
 Differences between the mathematical model and the reality are minimal

 Radical design:
Never been done, or past solutions have failed

 Often involves a very complex problem
 Bring together complex assemblies of devices into new systems

 Such systems are not amenable to reductionist theories
 Such systems are often soft: no objective criteria for describing the system

 Examples:
 Most of Computer Engineering involves normal design
 All of Systems Engineering involves radical design (by definition!)
 Much of Software Engineering involves radical design (soft systems!)

2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Is software different?
 Software is different!

 software is invisible, intangible, abstract
 its purpose is to configure some hardware to do something useful

 there are no physical laws underlying software behaviour
 there are no physical constraints on software complexity
 software never wears out

 …traditional reliability measures don’t apply
 software can be replicated perfectly

 …no manufacturing variability

 Software Myths:
Myth: Cost of software is lower than cost of physical devices
Myth: Software is easy to change
Myth: Computers are more reliable than physical devices
Myth: Software can be formally proved to be correct
Myth: Software reuse increases safety and reliability
Myth? Computers reduce risk over mechanical systems

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Project Management
 A manager can control 4 things:

 Resources (can get more dollars, facilities, personnel)
 Time (can increase schedule, delay milestones, etc.)
 Product (can reduce functionality - e.g. scrub requirements)
 Risk (can decide which risks are acceptable)

 To do this, a manager needs to keep track of:
 Effort - How much effort will be needed? How much has been expended?
 Time - What is the expected schedule? How far are we deviating from it?
 Size - How big is the planned system? How much have we built?
 Defects - How many errors are we making? How many are we detecting?

 And how do these errors impact quality?

 Initially, a manager needs good estimates
 …and these can only come from a thorough analysis of the problem.

You cannot control that which you cannot measure!

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Project Types
 Reasons for initiating a software development project

 Problem-driven: competition, crisis,…
 Change-driven: new needs, growth, change in business or environment,…
Opportunity-driven: exploit a new technology,…
 Legacy-driven: part of a previous plan, unfinished work, …

 Relationship with Customer(s):
 Customer-specific - one customer with specific problem

 May be another company, with contractual arrangement
 May be a division within the same company

Market-based - system to be sold to a general market
 In some cases the product must generate customers
 Marketing team may act as substitute customer

 Community-based - intended as a general benefit to some community
 E.g. open source tools, tools for scientific research
 funder ≠ customer (if funder has no stake in the outcome)

Hybrid (a mix of the above)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Project Context
 Existing System

 There is nearly always an existing system
 May just be a set of ad hoc workarounds for the problem

 Studying it is important:
 If we want to avoid the weaknesses of the old system…
 …while preserving what the stakeholders like about it

 Pre-Existing Components
 Benefits:

 Can dramatically reduce development cost
 Easier to decompose the problem if some subproblems are already solved

 Tension:
 Solving the real problem vs. solving a known problem (with ready solution)

 Product Families
 Vertical families: e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
Horizontal families: similar systems used in related domains

 Need to define a common architecture that supports anticipated variability

3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Lifecycle of an Engineering Project
 Lifecycle models

 Useful for comparing projects in general terms
Not enough detail for project planning

 Examples:
 Sequential models: Waterfall, V model
 Rapid Prototyping
 Phased Models: Incremental, Evolutionary
 Iterative Models: Spiral
 Agile Models: eXtreme Programming

 Comparison: Process Models
 Used for capturing and improving the development process

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Waterfall Model

requirements

design

code

integrate

test

perceived
 need View of development:

 a process of stepwise refinement
 largely a high level management

view

 Problems:
 Static view of requirements -

ignores volatility
 Lack of user involvement once

specification is written
 Unrealistic separation of

specification from design
 Doesn’t accommodate

prototyping, reuse, etc.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

V-Model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyse
and

design”

“test
and

integrate”

time

Le
ve

l
of

 a
bs

tr
ac

ti
on

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Prototyping lifecycle

Specify full
requirements

design code test integrate

Preliminary

requirements

design

prototype

build

prototype

evaluate

prototype

 Prototyping is used for:
 understanding the requirements for the user interface
 examining feasibility of a proposed design approach
 exploring system performance issues

 Problems:
 users treat the prototype as the solution
 a prototype is only a partial specification

4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

design code test integrate O&Mreqts

Phased Lifecycle Models

Requirem
ents

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

The Spiral Model
Determine goals,

alternatives,
constraints

Evaluate
alternatives

and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er

na
tiv

es
4

alt
er

na
tiv

es
3

Al
te

rn
-

at
ive

s 2

constraints4

constraints3

Constr-

aints2

alte
rnativ

es

constr
aints

risk analysis4
risk analysis3

riskanalysis2risk
analysis1

concept of
operation

so
ft

wa
re

re
qu

ire
men

ts

validated

requirements

so
ft

wa
re

de
sig

n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

unit

test

system
test

acceptance
test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Source: Adapted from Pfleeger, 1998, p57

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Agile Models
 Basic Philosophy

 Reduce communication barriers
 Programmer interacts with customer

 Reduce document-heavy approach
 Documentation is expensive and of

limited use
 Have faith in the people

 Don’t need fancy process models to tell
them what to do!

 Respond to the customer
 Rather than focusing on the contract

 Weaknesses
 Relies on programmer’s memory

 Code can be hard to maintain
 Relies on oral communication

 Mis-interpretation possible
 Assumes single customer

representative
 Multiple viewpoints not possible

 Only short term planning
 No longer term vision

E.g. Extreme Programming
 Instead of a requirements spec,

use:
 User story cards
 On-site customer representative

 Pair Programming
 Small releases

 E.g. every three weeks
 Planning game

 Select and estimate user story cards
at the beginning of each release

 Write test cases before code
 The program code is the design doc

 Can also use CRC cards (Class-
Responsibility-Collaboration)

 Continuous Integration
 Integrate and test several times a day

Source: Adapted from Nawrocki et al, RE’02

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Extreme Programming

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release
Each cycle:

approx 2 weeks

5

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Is there a “Requirements Lifecycle”

Specification

Agreement

Representation

complete

fair

vague

personal
view

common
view

informal semi-formal formal

Source: Adapted from Pohl, CAISE 1993

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
Process of scientific

Investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories
Initial hypothesis

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Summary
 What is engineering?

Not that different from science
 Greater awareness of professional responsibility

 because of immediate scope for harm to the public
 Systems and Software Engineering involve radical design

 Engineering Projects
 You cannot control that which you cannot measure

 …and many important measures are derived from initial problem analysis
 Constraints:

 Is there a customer?
 Existing system / existing components / existing product family

 Project Lifecycles
 Useful for comparing projects in general terms
 Represent different philosophies in software development
 Requirements evolve through their own lifecycles too!

