ﬂ University of Toronto Department of Computer Science

v

Lecture 22:
Moving into Design

- Analysis vs. Design
% Why the distinction?

- Design Processes
% Logical vs. Physical Design
% System vs. Detailed Design

- Architectures
% System Architecture
% Software Architecture
% Architectural Patterns (next lecture)

- Useful Notation
% UML Packages and Dependencies

© Easterbrook 2004 1

Department of Computer Science

{'.‘ University of Toronto

Refresher: Lifecycle models

Waterfall model V model

BRI NN 4 System
equirementg integration

----------- P

I

perceived
need

Level of abstraction

test
and
integrate

>
time”

Evaluate
alternatives
and risks

version 1

integ-

test o&m |

code

reqts

design

lessops
version 2 learn:

design | code | fest [Me9"

o&m |

reqts

) lessois
Evolutionary vegsion 3, l/eamt ,l,
development

Department of Computer Science

o University of Toronto

Analysis vs. Design

- Analysis

% Asks “what is the problem?”
> what happens in the current system?
> what is required in the new system?
% Results in a detailed understanding of:
> Requirements
> Domain Properties
% Focuses on the way human activities are conducted

- Design

% Investigates “how to build a solution”

> How will the new system work?

> How can we solve the problem that the analysis identified?
% Results in a solution to the problem

> A working system that satisfies the requirements

» Hardware + Software + Peopleware

% Focuses on building technical solutions

- Separate activities, but not necessarily sequential

© Easterbrook 2004

(each version reqts [design | code | test | Mted-
i new Q
requirements)
© Easterbrook 2004 2
' University of Toronto Department of Computer Science

Refresher: different worlds

Design is all about

Analysis is all about
building this world

studying this world

Machine Domain

© - computer
P - program

Application Domain

D - dommeln properties
R = requirements

But who builds the bridge?

© Easterbrook 2004

o University of Toronto

v Four design philosophies

Department of Computer Science

Decomposition & Synthesis Search - P :]

% Drivers: _ s % Drivers
> Managing complexity I%Z \\ > Transformation
> Reuse =% » Heuristic Evaluation
% Example: ‘Q% % Example: kepg—0

> Design a car by designing
separately the chassis, engine,
drivetrain, etc. Use existing
components where possible

> Design a car by transforming an
initial rough design to get closer
and closer to what is desired

Negotiation Situated Design _,

% Drivers Y
—

> Errors in existing designs @
> Evolutionary Change w
% Example:

> Design a car by observing what's
wrong with existing cars as they

% Drivers

> Stakeholder Conflicts

> Dialogue Process i

% Example: Al
> Design a car by getting each

stakeholder to suggest (partial)

designs, and them compare and are used, and identifying
discuss them improvements
© Easterbrook 2004 5

ﬂ University of Toronto Department of Computer Science

Logical vs. Physical Design

Choose
Platform

Logical Physical

Design Design

- Logical Design concerns:

% Anything that is platform-independent:
> Interactions between objects
» Layouts of user interfaces
> Nature of commands/data passed between subsystems

% Logical designs are usually portable to different platforms

- Physical Design concerns:
% Anything that depends on the choice of platform:

> Distribution of objects/services over networked nodes

> Choice of progr ing | and devel environment
> Use of specialized device drivers

> Choice of database and server technology

> Services provided by middleware
© Easterbrook 2004 6

Department of Computer Science

o University of Toronto

System Design vs. Detailed Design

- System Design
% Choose a System Architecture
> Networking infrastructure
> Major computing platforms
> Roles of each node (e.g. client-server; clients-broker-servers: peer-to-peer,..)
% Choose a Software Architecture
> (see next lecture for details)
% Identify the subsystems
% Identify the components and connectors between them
> Design for modularity to maximize testability and evolveability
> E.g. Aim for low coupling and high cohesion

- Detailed Design
% Decide on the formats for data storage
> E.g. design a data management layer
% Design the control functions for each component
> E.g. design an application logic layer
% Design the user interfaces
> E.g. design a presentation layer
© Easterbrook 2004 7

{'.‘ University of Toronto

Global System Architecture

Department of Computer Science

- Choices:
% Allocates users and other external systems to each node
% Identify appropriate network topology and technologies
% Identify appropriate computing platform for each node

- Example:
% See next slide...

© Easterbrook 2004

” University of Toronto

Department of Computer Science

L

north carolina Tegend

. s et

SUPERCOMPUTING —Jeruion
c e n ter b

Network Diagram - 11/01 —100 Mos Ehernet

CREN 10 Mos Exhernet
iore Coanns

INTERNET ‘Abilene

CRAY T916/4256
1024 MW SSD
Vodel € 105

256 MW Memory
360 GB Disk.

SWITCH

Mass Storage
1BM 3494
Tape Library Dataserver
5078 Storage Capac ;
il High Speed
File Services

Backup Services.

1BM H80 w/ 3584
UttraScalable Library
rage Capacty
278 Disk Cache
- 6 Fie Utrom LT drves.
1BM RS/6000
Conirol Worksiation

© Easterbrook 2004

‘ University of Toronto
i

System Architecture Questions

- Key questions for choosing platforms:

% What hardware resources are needed?
» CPU, memory size, memory bandwidth, I/0, disk space, etc.
% What software/OS resources are needed?
> application availability, OS scalability
% What networking resources are needed?
» network bandwidth, latency, remote access.
% What human resources are needed?
» OS expertise, hardware expertise,
> system administration requirements,
> user training/help desk requirements.
% What other needs are there?
> security, reliability, disaster recovery, uptime requirements.

- Key questions constraining the choice:
% What funding is available?
% What resources are already available?
» Existing hardware, software, networking
> Existing staff and their expertise
> Existing relationships with vendors, resellers, etc.

Department of Computer Science

© Easterbrook 2004

” University of Toronto
]

Department of Computer Science

v Data Management Questions

- How is data entry performed?
% E.g. Keyless Data entry
> bar codes: Optical Character Recognition (OCR)
% E.g. Import from other systems
> Electronic Data Interchange (EDI), Data interchange languages, ..

- What kinds of data persistence is needed?
% Is the operating system'’s basic file management sufficient?
% Is object persistence important?
% Can we isolate persistence mechanisms from the applications?

- Is a Database Management System (DBMS) needed?
% Is data accessed at a fine level of detail
> E.g. do users need a query language?
% Is sophisticated indexing required?
% Is there a need to move complex data across multiple platforms?

> Will a data interchange language suffice?
> E.g. HTML, SGML, XML..

% Is there a need to access the data from multiple platforms?

© Easterbrook 2004

‘ University of Toronto
i

Software Architecture

- A software architecture defines:
% the components of the software system
% how the components use each other’s functionality and data
% How control is managed between the components

- An example: client-server

% Servers provide some kind of service; clients request and use services
% applications are located with clients
> E.g. running on PCs and workstations:
% data storage is treated as a server
> E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
> Consistency checking is located with the server
% Advantages:
> Breaks the system into manageable components
> Makes the control and data persistence mechanisms clearer

% Variants:
> Thick clients have their own services, thin ones get everything from servers
% Note: This is a SOFTWARE architecture

> Clients and server could be on the same machine or different machines...

Department of Computer Science

© Easterbrook 2004

o University of Toronto

v

Department of Computer Science

Coupling

Given two units (e.g. methods, classes, modules, ..), A and B:

Form Features Desirability
. A & B communicate by [High (use parameter passing &
Data coupling simple data only only pass necessary info)

A & B use a common |Okay (but should they be

Stamp coupling type of data grouped in a data abstraction?

Control coupling A transfers control to

(activating) B by procedure call |/Necessary

Control coupling |A passes a flag to B to |Undesirable (why should A
(switching) tell it how to behave [interfere like this?)

A & B make use of a |Undesirable (if you change
shared data area the shared data, you have to
(global variables) |change both A and B)

Common environmenti
coupling

A changes B's data, or

. Extremely Foolish (almost
Content coupling | passes cantrol fo the | possible to debug!)

© Easterbrook 2004 13

L University of Toronto

Department of Computer Science

Cohesion
How well do the contents of an object (module, package,..) go together?
Form Features Desirability
Data cohesion alllpart o‘;;s::-illt?:: inedidatd Very High
Functional cohesion all part of a sir&l:kpr'oblem solving High
Sequential cohesion outputs of on:hza::xfrorm inputs to

Communicational

operations that use the same input

cohesion or output data Moderate
. a set of operations that must be
Procedural cohesion executed in a particular order Low
. elements must be active around the
Temporal cohesion same time (e.g. at startup) Low
. . elements perform logically similar
Logical cohesion operations (e.g. printing things) No way!!
Coincidental elements have no conceptual link N "
cohesion other than repeated code O WLyl

© Easterbrook 2004

o University of Toronto

v UML Packages

- We need to represent our architectures
% UML elements can be grouped together in packages

% Elements of a package may be:
> other packages (representing subsystems or modules):

» classes;
> models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

% Each element of a UML model is owned by a single package

% Packages need not correspond to elements of the analysis or the design
> they are a convenient way of grouping other elements together

Department of Computer Science

- Criteria for decomposing a system into packages:
% Ownership
> who is responsible for working on which diagrams
% Application
> each problem has its own obvious partitions:

% Clusters of classes with strong cohesion
> e.g., course, course description, instructor, student,...

% Or use an architectural pattern to help find a suitable decomposition

© Easterbrook 2004 15

Department of Computer Science

L University of Toronto

Package notation

—1 — 1
. o
Use Cases Campaign |l| Use Case
Management Model
A A A
h ' ’
Package Sub-system Model

- 2 alternatives for showing package containment:

Agate

—1
Agate lJT

Campaigns |J'|

— — t
Staff ™ , 1

Campaigns h Staff t

© Easterbrook 2004

o University of Toronto

Department of Computer Science

v

Package

1
Persons
f =
1
| Constraints
1 Phd
11 R
-
Meetings &4 .
defnendency
(read as

“depends on")

Diagrams

- Dependencies:

% Similar to compilation dependencies
% Captures a high-level view of coupling

between packages:

>If you change a class in one package,
you may have to change something in
packages that depend on it

- A good architecture minimizes

dependencies

% Fewer dependencies means lower

coupling

% Dependency cycles are especially

undesirable

{'.‘ University of Toronto

Department of Computer Science

..Dependency Cycles
-

1

«client»

Sub-system A

Sub-system C

«peer»

1

«serven

«peer»

Sub-system B

The server sub-system does

not depend on the client sub-system
and is not affected by changes

to the client’s interface.

Sub-system D

Each peer sub-system depends on
the other and each is affected by
changes in the other’s interface.

© Easterbrook 2004

© Easterbrook 2004

o University of Toronto

Department of Computer Science

Architectural Patterns

E.g. 3 layer

Presentation Layer Package

| Application
architecture: T Windows [b
Presentation ?
Layer
Application
Logic Layer
Storage
Laxer‘ |
Storage Layer Package
— 1
JDBC Object to
"""""" Relational

[Java saL

Logic Layer g

., [Control
Objects |,
™. | Business
Objects

© Easterbrook 2004

