
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 17:
Modelling System Interactions

 Interactions with the new system
 How will people interact with the system?
When/Why will they interact with the system?

 Use Cases
 introduction to use cases
 identifying actors
 identifying cases
 Advanced features

 Sequence Diagrams
 Temporal ordering of events involved in a use case

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Moving towards specification
What functions will the new system provide?

 How will people interact with it?
 Describe functions from a user’s perspective

 UML Use Cases
 Used to show:

 the functions to be provided by the system
 which actors will use which functions

 Each Use Case is:
 a pattern of behavior that the new system is required to exhibit
 a sequence of related actions performed by an actor and the system via a

dialogue.

 An actor is:
 anything that needs to interact with the system:

 a person
 a role that different people may play
 another (external) system.

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Campaign
Manager

Accountant

Change a
client contact

Add a new client

Record client payment

Staff contact

Use Case Diagrams
 Capture the relationships between actors and Use

Cases

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Staff contact

Actor

Change client 
contact

Communication
association System

 boundary

Use case

Notation for Use Cases



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Add new 
staff member

Add new 
staff grade

Calculate staff 
bonuses

Change grade
for staff member

Accountant

Change rate
for staff grade

Example
University of Toronto Department of Computer Science

© Easterbrook 2004 6

<<extends>>

Check Campaign
Budget

Print
Campaign
Summary

<<uses>>

Find Campaign

<<extends>> and <<uses>>
 <<extends>> when one use case adds behaviour to a base case

 used to model a part of a use case that the user may see as optional system behavior;
 also models a separate sub-case which is executed conditionally.

 <<uses>>: one use case invokes another (like a procedure call);
 used to avoid describing the same flow of events several times
 puts the common behavior in a use case of its own.

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Driver Mechanic

<<extends>>
<<uses>>

GasAttendant

<<uses>>

<<uses>>

Sample use cases for a car

<<uses>>
Fix CarCheck OilDrive

Fill Up

Fix car on
the roadTurn On

Engine

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Provide
constraintsEdit

ConstraintsWithdraw

Validate
User

Schedule
meeing

Initiator Participant

<<uses>>

<<extends>>

<<uses>>

Meeting Scheduler Example

Generate
Schedule

<<u
ses

>>

<<uses>> <<
us
es
>>



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Identifying Actors
 Ask the following questions:

Who will be a primary user of the system? (primary actor)
Who will need support from the system to do her daily tasks?
Who will maintain, administrate, keep the system working? (secondary

actor)
Which hardware devices does the system need?
With which other systems does the system need to interact with?
Who or what has an interest in the results that the system produces ?

 Look for:
 the users who directly use the system
 also others who need services from the system

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Finding Use Cases
 For each actor, ask the following questions:

Which functions does the actor require from the system?
What does the actor need to do ?
 Does the actor need to read, create, destroy, modify, or store some kinds

of information in the system ?
 Does the actor have to be notified about events in the system?
 Does the actor need to notify the system about something?
What do those events require in terms of system functionality?
 Could the actor’s daily work be simplified or made more efficient through

new functions provided by the system?

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Documenting Use Cases
 For each use case:

 prepare a “flow of events” document, written from an actor’s point of view.
 describe what the system must provide to the actor when the use case is

executed.

 Typical contents
 How the use case starts and ends;
Normal flow of events;
 Alternate flow of events;
 Exceptional flow of events;

 Documentation style:
 Choice of how to represent the use case:

 English language description
 Collaboration Diagrams
 Sequence Diagrams

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Generalizations
 Actor classes

 It’s sometimes useful to identify
classes of actor
 E.g. where several actors belong to a

single class
 Some use cases are needed by all members

in the class
 Other use cases are only needed by some

members of the class

 Actors inherit use cases from the class

 Use Case classes
 Sometimes useful to identify a

generalization of several use cases

Generalisation relations:
Read as: “is a member of” 
or just “is a”



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Modelling Sequences of Events
Objects “own” information and behaviour

 they have attributes and operations relevant to their responsibilities.
 They don’t “know” about other objects’ information, but can ask for it.
 To carry out business processes, objects have to collaborate.

 …by sending messages to one another to invoke each others’ operations
Objects can only send messages to one another if they “know” each other

 I.e. if there is an association between them.

 Describe a Use Case using Sequence Diagrams
 Sequence diagrams show step-by-step what’s involved in a use case

 Which objects are relevant to the use case
 How those objects participate in the function

 You may need several sequence diagrams to describe a single use case.
 Each sequence diagram describes one possible scenario for the use case

 Sequence diagrams…
 …should remain easy to read and understand.
 …do not include complex control logic

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Example Sequence Diagram

Call() Respond()

What’s up?()

Give mtg details()
[for all participants] *Inform() 

[for all participants] *Remind()

Prompt()
Show schedule()

[decision=OK] ScheduleOK’ed()

Initiator
:Person

Participant
:Person

[for all participants]
*Inform() 

Staff
:Person

Scheduler
:Person

Acknowledge()

Acknowledge()
condition

iteration

participating
object

Tim
e

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Another Example
University of Toronto Department of Computer Science

© Easterbrook 2004 16

Branching messages, etc

:CustomerP :PrinterP

PrintFile(file)

:Printer

GetStatus()

:Queue

[Ready]Print()
[Busy]

PutInQueue
(file)

[OutOfService]
CallRepair

Ready(file)
GetNext()

Branching

Ready(file)

Asynchronous

Done

Lifeline Inactive

Active



5

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Don’t forget what we’re modelling
 During analysis

 we want to know about the application domain and the requirements
 …so we develop a course-grained model to show where responsibilities are,

and how objects interact
 Our models show a message being passed, but we don’t worry too much about the

contents of each message
 To keep things clear, use icons to represent external objects and actors, and

boxes to represent system objects.

 During design
 we want to say how the software should work
 … so we develop fine-grained models to show exactly what will happen when

the system runs
 E.g. show the precise details of each method call.


