
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 15:
Modelling “State”

What is State?
 statespace for an object
 concrete vs. abstract states

 Finite State Machines
 states and transitions
 events and actions

Modularized State machine models: Statecharts
 superstates and substates
 Guidelines for drawing statecharts

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Getting objects to behave
 All objects have “state”

 The object either exists or it doesn’t
 If it exists, then it has a value for each of its attributes
 Each possible assignment of values to attributes is a “state”

 (and non-existence is a state, although we normally ignore it)

 E.g. For a stack object

empty 1 item

Push()

Pop()

new() 2 items 3 items 4 items

Push() Push() Push()

Pop() Pop()

…
Pop()Top() Top() Top() Top()

University of Toronto Department of Computer Science

© Easterbrook 2004 3

What does the model mean?
 Finite State Machines

 There are a finite number of states (all attributes have finite ranges)
 E.g. imagine a stack with max length = 3

 The model specifies a set of traces
 E.g. new();Push();Push();Top();Pop();Push()…
 E.g. new();Push();Pop();Push();Pop()…
 There may be an infinite number of traces (and traces may be of infinite length)

 The model excludes some behaviours
 E.g. no trace can start with a Pop()
 E.g. no trace may have more Pops than Pushes
 E.g. no trace may have more than 3 Pushes without a Pop in between

empty 1 item

Push()

Pop()

new() 2 items 3 items

Push() Push()

Pop() Pop()Top() Top() Top()

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Abstraction
 The state space of most objects is enormous

 State space size is the product of the range of each attribute
 E.g. object with five boolean attributes: 25+1 states
 E.g. object with five integer attributes: (maxint)5+1 states
 E.g. object with five real-valued attributes: …?

 If we ignore computer representation limits, the state space is infinite

Only part of that state space is “interesting”
 Some states are not reachable
 Integer and real values usually only vary within some relevant range
We’re usually not interested in the actual values, just certain ranges:

 E.g. for Age, we may be interested in age<18; 18≤age≤65; and age>65
 E.g. for Cost, we may only be interested in" cost≤budget, cost=0, cost>budget,

and cost>(budget+10%)

2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Collapsing the state space

empty 1 item

Push()

Pop()

new() 2 items 3 items 4 items

Push() Push() Push()

Pop() Pop()

…
Pop()Top() Top() Top() Top()

empty not empty

Push()Push()

Pop() [sc=1]

new()

Pop() [sc>1]

Top()

 The abstraction usually permits more traces
 E.g. this model does not prevent traces with more pops than pushes
 But it still says something useful

University of Toronto Department of Computer Science

© Easterbrook 2004 6

What are we modelling?

 Observed states of an application domain entity?
E.g. a phone can be idle, ringing, connected, …

 Model shows the states an entity can be in, and how events can change its state
 This is an indicative model

 Required behaviour of an application domain entity?
E.g. a telephone switch shall connect the phones only when the callee accepts the call

 Model distinguishes between traces that are desired and those that are not
 This is an optative model

 Specified behaviour of a machine domain entity?
E.g. when the user presses the ‘connect’ button the incoming call shall be connected

 Model specifies how the machine should respond to input events
 This is an optative model, in which all events are shared phenomena

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Is this model indicative or optative?

idle connectedringing
dial
tone

busy
on hook

on hook

on hook

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

University of Toronto Department of Computer Science

© Easterbrook 2004 8

the world vs. the machine

:person
age

havebirthday()

child

adult

senior

havebirthday()
[age = 18]

havebirthday()
[age = 65]

havebirthday()
[age < 18]

havebirthday()
[age < 65]

havebirthday()

child

adult

senior

when
[thisyear-birthyear>18]

when
[thisyear-birthyear>65]

blank

deceased

recordBirth()
/setDOB()

recordDeath()
/setDateofDeath()

:person
dateOfBirth
dateOfDeath
recordBirth()
setDOB()
recordDeath()
setDateofDeath()

3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

StateCharts
Notation:

 States
 “interesting” configurations of the values of an object’s attributes
 may include a specification of action to be taken on entry or exit
 States may be nested
 States may be “on” or “off” at any given moment

 Transitions
 Are enabled when the state is “on”; disabled otherwise
 Every transition has an event that acts as a trigger
 A transition may also have a condition (or guard)
 A transitions may also cause some action to be taken
 When a transition is enabled, it can fire if the trigger event occurs and it guard

is true
 Syntax: event [guard] / action

 Events
 occurrence of stimuli that can trigger an object to change its state
 determine when transitions can fire

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Superstates

OR superstates
 when the superstate is “on”, only one

of its substates is “on”

AND superstates
(concurrent substates)
 When the superstate is “on”, all of

its states are also “on”
 Usually, the AND substates will be

nested further as OR superstates

States can be nested, to make diagrams simpler
A superstate consists of one or more states.
Superstates make it possible to view a state diagram at different levels of abstraction.

employed

probationary

full

employed

on payroll

assigned
to project

after [6 months]

University of Toronto Department of Computer Science

© Easterbrook 2004 11

adult

single coupled

A more detailed example

child

working age senior

unmarried
married

divorced

widowed

separated

deceased

University of Toronto Department of Computer Science

© Easterbrook 2004 12

States in UML
 A state represents a time period during which

 A predicate is true
 e.g. (budget - expenses) > 0,

 An action is being performed, or an event is awaited:
 e.g. checking inventory for order items
 e.g. waiting for arrival of a missing order item

 States can have associated activities:
 do/activity

 carries out some activity for as long as the state is “on”
 entry/action and exit/action

 carry out the action whenever the state is entered (exited)
 include/stateDiagramName

 “calls” another state diagram, allowing state diagrams to be nested

4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Events in UML
 Events are happenings the system needs to know about

Must be relevant to the system (or object) being modelled
Must be modellable as an instantaneous occurance (from the system’s point

of view)
 E.g. completing an assignment, failing an exam, a system crash

 Are implemented by message passing in an OO Design

 In UML, there are four types of events:
 Change events occur when a condition becomes true

 denoted by the keyword ‘when’
 e.g. when[balance < 0]

 Call events occur when an object receives a call for one of its operations to
be perfomed

 Signal events occur when an object receives an explicit (real-time) signal
 Elapsed-time events mark the passage of a designated period of time

 e.g. after[10 seconds]

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Checking your Statecharts
 Consistency Checks

 All events in a statechart should appear as:
 operations of an appropriate class in the class diagram

 All actions in a statechart should appear as:
 operations of an appropriate class in the class diagram and

 Style Guidelines
 Give each state a unique, meaningful name
Only use superstates when the state behaviour is genuinely complex
 Do not show too much detail on a single statechart
 Use guard conditions carefully to ensure statechart is unambiguous

 Statecharts should be deterministic (unless there is a good reason)

 You probably shouldn’t be using statecharts if:
 you find that most transitions are fired “when the state completes”
many of the trigger events are sent from the object to itself
 your states do not correspond to the attribute assignments of the class

