
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 10:
Risk

 General ideas about Risk

 Risk Management
 Identifying Risks
 Assessing Risks

 Case Study:
Mars Polar Lander

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Risk Management
 About Risk

 Risk is “the possibility of suffering loss”
 Risk itself is not bad, it is essential to progress
 The challenge is to manage the amount of risk

 Two Parts:
 Risk Assessment
 Risk Control

 Useful concepts:
 For each risk: Risk Exposure

 RE = p(unsat. outcome) X loss(unsat. outcome)
 For each mitigation action: Risk Reduction Leverage

 RRL = (REbefore - REafter) / cost of intervention

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Principles of Risk Management
 Global Perspective

 View software in context of a larger
system

 For any opportunity, identify both:
Potential value
Potential impact of adverse results

 Forward Looking View
 Anticipate possible outcomes
 Identify uncertainty
 Manage resources accordingly

 Open Communications
 Free-flowing information at all

project levels
 Value the individual voice

Unique knowledge and insights

 Integrated Management
 Project management is risk

management!

 Continuous Process
 Continually identify and manage risks
 Maintain constant vigilance

 Shared Product Vision
 Everybody understands the mission

Common purpose
Collective responsibility
Shared ownership

 Focus on results

 Teamwork
 Work cooperatively to achieve the

common goal
 Pool talent, skills and knowledge

Source: Adapted from SEI Continuous Risk Management Guidebook

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Continuous Risk Management
 Identify:

 Search for and locate risks before
they become problems

Systematic techniques to discover risks

 Analyse:
 Transform risk data into decision-

making information
 For each risk, evaluate:

Impact
Probability
Timeframe

 Classify and Prioritise Risks

 Plan
 Choose risk mitigation actions

 Track
 Monitor risk indicators
 Reassess risks

 Control
 Correct for deviations from the risk

mitigation plans

 Communicate
 Share information on current and

emerging risks

Source: Adapted from SEI Continuous Risk Management Guidebook



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Fault Tree Analysis
Wrong or inadequate

treatment administered

Vital signs
erroneously reported
as exceeding limits

Vital signs exceed
critical limits but not

corrected in time

Frequency of
measurement

too low

Vital signs
not reported

Computer
fails to raise

alarm

Nurse does
not respond
to alarm

Computer does
not read within
required time

limits

Human sets
frequency
too low

Sensor
failure

Nurse fails
to input them
or does so
incorrectly

etc

Event that results from
a combination of causes

Basic fault event
requiring no further

elaboration

Or-gate

And-gate

Source: Adapted from Leveson, “Safeware”, p321

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Likelihood of Occurrence
Very likely Possible Unlikely

(5) Loss of Life Catastrophic Catastrophic Severe
(4) Loss of
Spacecraft

Catastrophic Severe Severe

(3) Loss of
Mission

Severe Severe High

(2) Degraded
Mission

High Moderate Low

(1) Inconvenience Moderate Low Low

Risk Assessment
Quantitative:

Measure risk exposure using standard cost & probability measures
Note: probabilities are rarely independent

Qualitative:
 Develop a risk classification matrix:

University of Toronto Department of Computer Science

© Easterbrook 2004 7Source: Adapted from Boehm, 1989

Top 10 Development Risks (+ Countermeasures)

 Personnel Shortfalls
 use top talent
 team building
 training

 Unrealistic schedules/budgets
 multisource estimation
 designing to cost
 requirements scrubbing

 Developing the wrong Software
functions
 better requirements analysis
 organizational/operational analysis

 Developing the wrong User
Interface
 prototypes, scenarios, task analysis

 Gold Plating
 requirements scrubbing
 cost benefit analysis
 designing to cost

 Continuing stream of reqts
changes
 high change threshold
 information hiding
 incremental development

 Shortfalls in externally furnished
components
 early benchmarking
 inspections, compatibility analysis

 Shortfalls in externally
performed tasks
 pre-award audits
 competitive designs

 Real-time performance shortfalls
 targeted analysis
 simulations, benchmarks, models

 Straining computer science
capabilities
 technical analysis
 checking scientific literature

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Case Study: Mars Polar Lander
 Launched

 3 Jan 1999

 Mission
 Land near South Pole
 Dig for water ice with a

robotic arm

 Fate:
 Arrived 3 Dec 1999
 No signal received after

initial phase of descent

 Cause:
 Several candidate causes
 Most likely is premature

engine shutdown due to noise
on leg sensors



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

What happened?
 Investigation hampered by

lack of data
 spacecraft not designed to send

telemetry during descent
 This decision severely criticized by

review boards

 Possible causes:
 Lander failed to separate from cruise

stage (plausible but unlikely)
 Landing site too steep (plausible)
 Heatshield failed (plausible)
 Loss of control due to dynamic

effects (plausible)
 Loss of control due to center-of-

mass shift (plausible)
 Premature Shutdown of Descent

Engines (most likely!)
 Parachute drapes over lander

(plausible)
 Backshell hits lander (plausible but

unlikely)

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Premature Shutdown Scenario
 Cause of error

 Magnetic sensor on each leg senses touchdown
 Legs unfold at 1500m above surface

 transient signals on touchdown sensors during unfolding
 software accepts touchdown signals if they persist for 2 timeframes
 transient signals likely to be long enough on at least one leg

 Factors
 System requirement to ignore the transient signals

 But the software requirements did not describe the effect
 s/w designers didn’t understand the effect, so didn’t implement the requirement

 Engineers present at code inspection didn’t understand the effect
 Not caught in testing because:

 Unit testing didn’t include the transients
 Sensors improperly wired during integration tests (no touchdown detected!)
 Full test not repeated after re-wiring

 Result of error
 Engines shut down before spacecraft has landed

 When engine shutdown s/w enabled, flags indicated touchdown already occurred
 estimated at 40m above surface, travelling at 13 m/s
 estimated impact velocity 22m/s (spacecraft would not survive this)
 nominal touchdown velocity 2.4m/s

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Figure 7-9. MPL System Requirements Mapping to Flight Software RequirementsAdapted from the “Report of the Loss of the Mars Polar Lander 
and Deep Space 2 Missions -- JPL Special Review Board (Casani Report) - March 2000”. 

See http://www.nasa.gov/newsinfo/marsreports.html

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Learning the Right Lessons
 Understand the Causality

Never a single cause; usually many complex interactions
 Seek the set of conditions that are both necessary and sufficient…

 …to cause the failure

 Causal reasoning about failure is very subjective
 Data collection methods may introduce bias

 e.g. failure to ask the right people
 e.g. failure to ask the right questions (or provide appropriate response modes)

 Human tendency to over-simplify
 e.g. blame the human operator
 e.g. blame only the technical factors

“In most of the major accidents of the past 25 years, technical
information on how to prevent the accident was known, and often even
implemented. But in each case… [this was] negated by organisational or

managerial flaws.” (Leveson, Safeware)



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Is there an existing “Safety Culture”?
 Are overconfidence and complacency common?

 the Titanic effect - “it can’t happen to us!”
 Do managers assume it’s safe unless someone can prove otherwise?

 Are warning signs routinely ignored?
What happens to diagnostic data during operations?
 Does the organisation regularly collect data on anomalies?
 Are all anomalies routinely investigated?

 Is there an assumption that risk decreases?
 E.g. Are successful missions used as an argument to cut safety margins?

 Are the risk factors calculated correctly?
 E.g. What assumptions are made about independence between risk factors?

 Is there a culture of silence?
What is the experience of whistleblowers? (Can you even find any?)

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Failure to manage risk

Inadequate
Margins

Science (functionality)
Fixed

(growth)

Schedule
Fixed

Cost
Fixed

Launch Vehicle
Fixed

(Some Relief)

Risk
Only

variable

Adapted from MPIAT - Mars Program Independent Assessment Team Summary Report, 
NASA JPL, March 14, 2000.

See http://www.nasa.gov/newsinfo/marsreports.html

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Summary
 Risk Management is a systematic activity

 Requires both technical and management attention
 Requires system-level view
 Should continue throughout a project

 Techniques exist to identify and assess risks
 E.g. fault tree analysis
 E.g. Risk assessment matrix

 Risk and Requirements Engineering
 Risk analysis can uncover new requirements

 Especially for safety-critical or security-critical applications
 Risk analysis can uncover feasibility concerns
 Risk analysis will assist in appropriate management action


