
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 3:
What is Engineering?

What is engineering about?
 Engineering vs. Science
 Devices vs. Systems
 How is software engineering different?
 Engineering as a profession

 Engineering Projects
 Project Management
 Project Initiation

 Project Lifecycles
 Software Engineering lifecycles: Waterfalls, spirals, etc
 Requirements Lifecycles

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Engineering vs. Science
 Traditional View:

Scientists… Engineers…
create knowledge apply that knowledge
study the world as it is seek to change the world
are trained in scientific method are trained in engineering design
use explicit knowledge use tacit knowledge
are thinkers are doers

More realistic View
Scientists… Engineers…
create knowledge create knowledge
are problem-driven are problem-driven
seek to understand and explain seek to understand and explain
design experiments to test theories design devices to test theories
prefer abstract knowledge prefer contingent knowledge
but rely on tacit knowledge but rely on tacit knowledge

Both involve a mix of design and discovery

University of Toronto Department of Computer Science

© Easterbrook 2004 3

“Engineering is the development of cost-effective solutions to practical
problems, through the application of scientific knowledge”

What is engineering?

“…Cost-effective…”
 Consideration of design trade-offs, esp. resource usage
Minimize negative impacts (e.g. environmental and social cost)

“… Solutions …”
 Emphasis on building devices

“… Practical problems …”
 solving problems that matter to people
 improving human life in general through technological advance

“… Application of scientific knowledge …”
 Systematic application of analytical techniques

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Devices vs. Systems
Normal design:

Old problems, whose solutions are well known
 Engineering codifies standard solutions
 Engineer selects appropriate methods and technologies

 Design focuses on well understood devices
 Devices can be studied independent of context
 Differences between the mathematical model and the reality are minimal

 Radical design:
Never been done, or past solutions have failed

 Often involves a very complex problem
 Bring together complex assemblies of devices into new systems

 Such systems are not amenable to reductionist theories
 Such systems are often soft: no objective criteria for describing the system

 Examples:
 Most of Computer Engineering involves normal design
 All of Systems Engineering involves radical design (by definition!)
 Much of Software Engineering involves radical design (soft systems!)



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Is software different?
 Software is different!

 software is invisible, intangible, abstract
 its purpose is to configure some hardware to do something useful

 there are no physical laws underlying software behaviour
 there are no physical constraints on software complexity
 software never wears out

 …traditional reliability measures don’t apply
 software can be replicated perfectly

 …no manufacturing variability

 Software Myths:
Myth: Cost of software is lower than cost of physical devices
Myth: Software is easy to change
Myth: Computers are more reliable than physical devices
Myth: Software can be formally proved to be correct
Myth: Software reuse increases safety and reliability
Myth? Computers reduce risk over mechanical systems

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Professional Responsibility
 ACM/IEEE code of ethics:

 PUBLIC - act consistently with the public interest.
 CLIENT AND EMPLOYER - act in a manner that is in the best interests of your client

and employer, consistent with the public interest.
 PRODUCT - ensure that your products and related modifications meet the highest

professional standards possible.
 JUDGEMENT - maintain integrity and independence in your professional judgment.
 MANAGEMENT - subscribe to and promote an ethical approach to the management of

software development and maintenance.
 PROFESSION - advance the integrity and reputation of the profession consistent with

the public interest.
 COLLEAGUES - be fair to and supportive of your colleagues.
 SELF - participate in lifelong learning and promote an ethical approach to the practice

of the profession.

 Of particular relevance in RE:
 Competence - never misrepresent your level of competence
 Confidentiality - respect confidentiality of all stakeholders
 Intellectual property rights - respect protections on ideas and designs
 Data Protection - be aware of relevant laws on handling personal data

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Project Management
 A manager can control 4 things:

 Resources (can get more dollars, facilities, personnel)

 Time (can increase schedule, delay milestones, etc.)
 Product (can reduce functionality - e.g. scrub requirements)

 Risk (can decide which risks are acceptable)

 To do this, a manager needs to keep track of:
 Effort - How much effort will be needed? How much has been expended?
 Time - What is the expected schedule? How far are we deviating from it?
 Size - How big is the planned system? How much have we built?
 Defects - How many errors are we making? How many are we detecting?

 And how do these errors impact quality?

 Initially, a manager needs good estimates
 …and these can only come from a thorough analysis of the problem.

You cannot control that which you cannot measure!You cannot control that which you cannot measure!

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Project Types
 Reasons for initiating a software development project

 Problem-driven: competition, crisis,…
 Change-driven: new needs, growth, change in business or environment,…
Opportunity-driven: exploit a new technology,…
 Legacy-driven: part of a previous plan, unfinished work, …

 Relationship with Customer(s):
 Customer-specific - one customer with specific problem

 May be another company, with contractual arrangement
 May be a division within the same company

Market-based - system to be sold to a general market
 In some cases the product must generate customers
 Marketing team may act as substitute customer

 Community-based - intended as a general benefit to some community
 E.g. open source tools, tools for scientific research
 funder ≠ customer (if funder has no stake in the outcome)

 Hybrid (a mix of the above)



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Project Context
 Existing System

 There is nearly always an existing system
 May just be a set of ad hoc workarounds for the problem

 Studying it is important:
 If we want to avoid the weaknesses of the old system…
 …while preserving what the stakeholders like about it

 Pre-Existing Components
 Benefits:

 Can dramatically reduce development cost
 Easier to decompose the problem if some subproblems are already solved

 Tension:
 Solving the real problem vs. solving a known problem (with ready solution)

 Product Families
 Vertical families: e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
 Horizontal families: similar systems used in related domains

 Need to define a common architecture that supports anticipated variability

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Lifecycle of an Engineering Project
 Lifecycle models

 Useful for comparing projects in general terms
Not enough detail for project planning

 Examples:
 Sequential models: Waterfall, V model
 Rapid Prototyping
 Phased Models: Incremental, Evolutionary
 Iterative Models: Spiral
 Agile Models: eXtreme Programming

 Comparison: Process Models
 Used for capturing and improving the development process

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Waterfall Model

requirements

design

code

integrate

test

perceived
 need  View of development:

 a process of stepwise refinement
 largely a high level management

view

 Problems:
 Static view of requirements -

ignores volatility
 Lack of user involvement once

specification is written
 Unrealistic separation of

specification from design
 Doesn’t accommodate

prototyping, reuse, etc.

University of Toronto Department of Computer Science

© Easterbrook 2004 12

V-Model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyse
and

design”

“test
and

integrate”

time

Le
ve

l 
of

 a
bs

tr
ac

ti
on



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Prototyping lifecycle

Specify full
requirements design code test integrate

Preliminary
requirements

design
prototype

build
prototype

evaluate
prototype

 Prototyping is used for:
 understanding the requirements for the user interface
 examining feasibility of a proposed design approach
 exploring system performance issues

 Problems:
 users treat the prototype as the solution
 a prototype is only a partial specification

University of Toronto Department of Computer Science

© Easterbrook 2004 14

design code test integrate O&Mreqts

Phased Lifecycle Models

Requirem
ents

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)

University of Toronto Department of Computer Science

© Easterbrook 2004 15

The Spiral Model
Determine goals,

alternatives,
constraints

Evaluate
alternatives

and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er

na
tiv

es
4

alt
er

na
tiv

es
3

Al
te

rn
-

at
ive

s 2

constraints4

constraints3

Constr-

aints2

alte
rnativ

es

constr
aints

risk analysis4
risk analysis3riskanalysis2risk

analysis1

concept of
operation

so
ft

wa
re

re
qu

ire
men

ts

validated

requirements

so
ft

wa
re

de
sig

n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

uni
t

test

system

testacceptance

test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Source: Adapted from Pfleeger, 1998, p57

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Agile Models
 Basic Philosophy

 Reduce communication barriers
 Programmer interacts with customer

 Reduce document-heavy approach
 Documentation is expensive and of

limited use

 Have faith in the people
 Don’t need fancy process models to tell

them what to do!

 Respond to the customer
 Rather than focusing on the contract

 Weaknesses
 Relies on programmer’s memory

 Code can be hard to maintain

 Relies on oral communication
 Mis-interpretation possible

 Assumes single customer
representative
 Multiple viewpoints not possible

 Only short term planning
 No longer term vision

E.g. Extreme Programming
 Instead of a requirements spec,

use:
 User story cards
 On-site customer representative

 Pair Programming
 Small releases

 E.g. every three weeks

 Planning game
 Select and estimate user story cards

at the beginning of each release

 Write test cases before code
 The program code is the design doc

 Can also use CRC cards (Class-
Responsibility-Collaboration)

 Continuous Integration
 Integrate and test several times a day

E.g. Extreme Programming
 Instead of a requirements spec,

use:
 User story cards
 On-site customer representative

 Pair Programming
 Small releases

 E.g. every three weeks

 Planning game
 Select and estimate user story cards

at the beginning of each release

 Write test cases before code
 The program code is the design doc

 Can also use CRC cards (Class-
Responsibility-Collaboration)

 Continuous Integration
 Integrate and test several times a day

Source: Adapted from Nawrocki et al, RE’02



5

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Extreme Programming

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release
Each cycle:

approx 2 weeks

University of Toronto Department of Computer Science

© Easterbrook 2004 18

Is there a “Requirements Lifecycle”

Specification

Agreement

Representation

complete

fair

vague

personal
view

common
view

informal semi-formal formal

University of Toronto Department of Computer Science

© Easterbrook 2004 19

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
Process of scientific

Investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypothesis

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments

University of Toronto Department of Computer Science

© Easterbrook 2004 20

Summary
What is engineering?

Not that different from science
 Greater awareness of professional responsibility

 because of immediate scope for harm to the public
 Systems and Software Engineering involve radical design

 Engineering Projects
 You cannot control that which you cannot measure

 …and many important measures are derived from initial problem analysis
 Constraints:

 Is there a customer?
 Existing system / existing components / existing product family

 Project Lifecycles
 Useful for comparing projects in general terms
 Represent different philosophies in software development
 Requirements evolve through their own lifecycles too!


