University of Toronto Department of Computer Science

Lecture 21:
Software Quality (part 2)

Tools for improving process quality
Software Quality Attributes

16

is available free for non-commercial use with attribution under a creative commons license.

© 1 ©2012 Steve E: This p

Department of Computer Science

University of Toronto

Ishikawa (Fishbone) Diagram

no customer
sales people no program
pulse dial

no followup
ho incentive

insufficient lines

managers
e G e cormputer slowr dial
knawn problems P inadequate tools (&)
long hours not specialized
too slow
rauch travelling insufficient repair eguipment
capacity

field engineers . not tested

not trained 5 5
; repaired quickly
sometimes
telephone staff Taulty

lack of

inadeguate tools (A)
Wl [ESONSIENESS

to customers

variable quality

no warrant
v several suppliers

not documented
spare parts
BXCESSVE

‘red tape’

field repair
slow delivery difficult

to complete

not documented
poor design

telephone
call tracking

immediate charge
complaint farms

‘hard' sell
slowr
awkward to analyze

not cormputerized (B)

is available free for non-commercial use with attribution under a creative commons license.

sales not computerized (B)

© 1 ©2012 Steve E: This p

? University of Toronto Department of Computer Science

Pareto Chart

L

MACHINE MAN

Software Prog used Electrical
| Seirenes Measure frequency
qurave of each cause

ansgemers SUPPYIES

Lack ot
Appropriate
Tools
METHODS MATERIALS

280 100

20 BO%LINE | o

“20% of the problem cause e

80% of the defects” 200 - 70

160 | =

. | &

Plot causes in order of frequency 120 ' Insignificant many | -

Plot percentage contributions 80 [:

) 40 | ¢

Identify the top causes o -

Ri R2 R3 R4 R5 RE FRn
Root Causes

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18
? University of Toronto Department of Computer Science

Reliability
designer must be able to predict how the system will behave:
completeness - does it do everything it is supposed to do? (e.g. handle all possible
inputs)
consistency - does it always behave as expected? (e.g. repeatability)
robustness - does it behave well under abnormal conditions? (e.g. resource failure)

How to assess software quality?

Source: Budgen, 1994, pp65-7

Efficiency

Use of resources such as processor time, memory, network bandwidth
This is less important than reliability in most cases

Maintainability
How easy will it be to modify in the future?
perfective, adaptive, corrective

Usability

How easy is it to use?

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

o University of Toronto

Department of Computer Science

measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations
(realization of the metrics)

Measuring Quality

Source: Budgen, 1994, pp60-1

We have to turn our vague ideas about quality into

examples...
| reliability | | maintainability | | usability |
mean time information time taken
to failure? flow between to learn
modules? how to use?
run it and minutes
count crashes procedure taken for
per hour??? calls??? some user
task???

© 1 ©2012 Steve E:

. This p

ion is available free for non-commercial use with attribution under a creative commons license.

20

L University of Toronto

Department of Computer Science

v

Source: See Blum, 1992, p176

General

utility As-is utility

”
7'Boehm’ s Quality Map

portability

reliability

efficiency

usability

testability

device-independence

self-containedness |

accuracy
completeness

robustness/integrity |

consistency
accountability

device efficiency |

accessibility |

communicativeness |

self-descriptiveness |

Maintainability

understandability

modifiability

structuredness
conciseness

legibility

augmentability

© 1 ©2012 Steve E:

. This p

ion is available free for non-commercial use with attribution under a creative commons license.

21

9 University of Toronto Department of Computer Science

@ ’ .
¥McCall s Quality Map Ciraining|
Source: See van Vliet 2000, pp111-3 . _
Usablllty communicatativeness
1/0 volume
integrity liOlrate
Product operation ericiency
| correctness |
reliability ooyl

S~
maintainability ‘m
— \ » simplicity |
‘

flexibility ~=——S=X
oty SR

=
‘\\: Self-descriptiveness

reusability ‘
Product transition H — inel
portability ,/A < —> machine |ndependence]

s/w system independence]

comms. commonalit;

‘<

|nteroperab|||ty data commonality
ey | © 2012 Steve E: . This p ion is available free for non-commercial use with attribution under a creative commons license. 22
) 9 University of Toronto Department of Computer Science

ISO/IEC 9126
Source: See Spinellis 2006, pp5-6
;
’ Resource Utilization

Maturity
Stability
Fault Tolerance
Testability

Recoverability
Adaptability

Understandability
Installability

Learnability
Operability

Attractiveness ‘ ’ Replaceability

Reliability Maintainability

Usability Portability

ey | © 2012 Steve E: . This p ion is available free for non-commercial use with attribution under a creative commons license. 23

r? University of Toronto Department of Computer Science

- Conflicts between Quality factors

Testability Accuracy

Fault Tolerance

Efficiency Portability

Maturity
Stability

Maintainability Functionality

Security

Reliability Usability

ey | © 2012 Steve E: . This p ion is available free for non-commercial use with attribution under a creative commons license.

24

r? University of Toronto Department of Computer Science

More abstractly...

Quality

Cost

L

Schedule

“Better, Faster, Cheaper - pick any two”

Resource Utilization Time behaviour
(“Space”) (“Time”)

ey | © 2012 Steve E: . This p ion is available free for non-commercial use with attribution under a creative commons license.

25

kQ University of Toronto

Simplicity
the design meets its objectives and has no extra embellishments
can be measured by looking for its converse, complexity:
control flow complexity (number of paths through the program)
information flow complexity (number of data items shared)
name space complexity (number of different identifiers and operators)

Department of Computer Science

Measurable Predictors of Quality

Source: Budgen, 1994, pp68-74

Modularity

different concerns within the design have been separated

can be measured by looking at:
cohesion (how well components of a module go together)
coupling (how much different modules have to communicate)

ey | © 2012 Steve E: . This p ion is available free for non-commercial use with attribution under a creative commons license. 26

o University of Toronto

Department of Computer Science

Wasserman’ s Steps to Maturity

Analysis and Design methods
and notations
A shared language for expressing ideas
about software

User Interface Prototyping

Understand the user and evaluate the
user’ s experience

Software Architecture
Identify architectural styles and patterns

Abstraction Software Process
Allows you to focus on the essence of a Identify appropriate processes and
problem assess their effectiveness

Reuse

Systematic ways to reuse past
experience and products

Measurement

Better metrics to understand and manage
software development

Tools and Integrated

Environments

Automate mundane tasks, keep track of
what we have done

© 1 ©2012 Steve E: This p

ion is available free for non-commercial use with attribution under a creative commons license. 27

