
1	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Lecture 21: 
Software Quality (part 2)"

"
"

"
"
Tools for improving process quality"
Software Quality Attributes"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Ishikawa (Fishbone) Diagram"

2	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Pareto Chart"

Root Causes!

Measure frequency !
of each cause!

“20% of the problem cause !
80% of the defects” !

!
Plot causes in order of frequency!

!
Plot percentage contributions!

!
Identify the top causes!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

How to assess software quality?"
Reliability"

designer must be able to predict how the system will behave:"
completeness - does it do everything it is supposed to do? (e.g. handle all possible

inputs)"
consistency - does it always behave as expected? (e.g. repeatability)"
robustness - does it behave well under abnormal conditions? (e.g. resource failure)"

Efficiency"
Use of resources such as processor time, memory, network bandwidth"

This is less important than reliability in most cases"

Maintainability"
How easy will it be to modify in the future?"

perfective, adaptive, corrective"

Usability"
How easy is it to use?"

Source: Budgen, 1994, pp65-7

3	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Measuring Quality"
We have to turn our vague ideas about quality into

measurables"

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations

(realization of the metrics)

usability

minutes
taken for
some user

task???

time taken
to learn

how to use?

maintainability

count
procedure

calls???

information
flow between

modules?

reliability

run it and
count crashes
per hour???

mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

Boehm’s Quality Map"

General
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

4	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

McCall’s Quality Map"

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability

generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

ISO/IEC 9126"

Functionality
Suitability

Reliability

Usability

Accuracy

Fault Tolerance

Recoverability

Learnability

Operability

Attractiveness

Interoperability

Security

Maturity

Understandability

Source: See Spinellis 2006, pp5-6

Efficiency

Maintainability

Portability

Time behaviour

Resource Utilization

Analyzability

Changeability

Stability

Testability

Adaptability

Installability

Co-existance

Replaceability

5	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 24

Conflicts between Quality factors"

Maturity!

Testability!

Fault Tolerance!

Accuracy!

Efficiency!

Maintainability! Functionality!

Portability!

Reliability! Usability!

Security!

Stability!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 25

More abstractly…"

Resource Utilization!
(“Space”)!

Quality!

Cost! Schedule!

Time behaviour!
(“Time”)!

“Better, Faster, Cheaper - pick any two”!

6	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 26

Measurable Predictors of Quality"
Simplicity"

the design meets its objectives and has no extra embellishments"
can be measured by looking for its converse, complexity:"

control flow complexity (number of paths through the program)"
information flow complexity (number of data items shared)"
name space complexity (number of different identifiers and operators)"

Modularity"
different concerns within the design have been separated"
can be measured by looking at:"

cohesion (how well components of a module go together)"
coupling (how much different modules have to communicate)"

Source: Budgen, 1994, pp68-74

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 27

Wasserman’s Steps to Maturity"
Abstraction"

Allows you to focus on the essence of a
problem"

Analysis and Design methods
and notations"

A shared language for expressing ideas
about software"

User Interface Prototyping"
Understand the user and evaluate the
user’s experience"

Software Architecture"
Identify architectural styles and patterns"

Software Process"
Identify appropriate processes and
assess their effectiveness"

Reuse"
Systematic ways to reuse past
experience and products"

Measurement"
Better metrics to understand and manage
software development"

Tools and Integrated
Environments"

Automate mundane tasks, keep track of
what we have done "

"

