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Lecture 21:
Software Quality (part 2)

Tools for improving process quality
Software Quality Attributes
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Pareto Chart
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Reliability
designer must be able to predict how the system will behave:
completeness - does it do everything it is supposed to do? (e.g. handle all possible
inputs)
consistency - does it always behave as expected? (e.g. repeatability)
robustness - does it behave well under abnormal conditions? (e.g. resource failure)

How to assess software quality?

Source: Budgen, 1994, pp65-7

Efficiency

Use of resources such as processor time, memory, network bandwidth
This is less important than reliability in most cases

Maintainability
How easy will it be to modify in the future?
perfective, adaptive, corrective

Usability

How easy is it to use?
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measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations
(realization of the metrics)

Measuring Quality

Source: Budgen, 1994, pp60-1

We have to turn our vague ideas about quality into

examples...
| reliability | | maintainability | | usability |
mean time information time taken
to failure? flow between to learn
modules? how to use?
run it and minutes
count crashes procedure taken for
per hour??? calls??? some user
task???
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Source: See Blum, 1992, p176

General

utility As-is utility

”
7'Boehm’ s Quality Map
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¥McCall s Quality Map Ciraining|
Source: See van Vliet 2000, pp111-3 . _
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ISO/IEC 9126
Source: See Spinellis 2006, pp5-6
;
’ Resource Utilization
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- Conflicts between Quality factors

Testability Accuracy

Fault Tolerance

Efficiency Portability

Maturity
Stability

Maintainability Functionality

Security

Reliability Usability

ey | © 2012 Steve E: . This p ion is available free for non-commercial use with attribution under a creative commons license.

24

r? University of Toronto Department of Computer Science

More abstractly...

Quality

Cost

L

Schedule

“Better, Faster, Cheaper - pick any two”

Resource Utilization Time behaviour
(“Space”) (“Time”)
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Simplicity
the design meets its objectives and has no extra embellishments
can be measured by looking for its converse, complexity:
control flow complexity (number of paths through the program)
information flow complexity (number of data items shared)
name space complexity (number of different identifiers and operators)

Department of Computer Science

Measurable Predictors of Quality

Source: Budgen, 1994, pp68-74

Modularity

different concerns within the design have been separated

can be measured by looking at:
cohesion (how well components of a module go together)
coupling (how much different modules have to communicate)
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Wasserman’ s Steps to Maturity

Analysis and Design methods
and notations
A shared language for expressing ideas
about software

User Interface Prototyping

Understand the user and evaluate the
user’ s experience

Software Architecture
Identify architectural styles and patterns

Abstraction Software Process
Allows you to focus on the essence of a Identify appropriate processes and
problem assess their effectiveness

Reuse

Systematic ways to reuse past
experience and products

Measurement

Better metrics to understand and manage
software development

Tools and Integrated

Environments

Automate mundane tasks, keep track of
what we have done
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