
1	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 18: 
Automated Testing"

"
"Automated testing"

JUnit and family"

Testing GUI-based software"

Testing Object-Oriented Systems"
When to stop testing"
"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

2	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Automated Testing"
Where possible, automate your testing:"

tests can be repeated whenever the code is modified (“regression testing”)"
takes the tedium out of extensive testing"
makes more extensive testing possible"

Will need:"
test drivers - automate the process of running a test set"

sets up the environment"
makes a series of calls to the Unit-Under-Test (UUT)"
saves results and checks they were right"
generates a summary for the developers"

May need:"
test stubs - simulate part of the program called by the unit-under-test"

checks whether the UUT set up the environment correctly"
checks whether the UUT passed sensible input parameters to the stub"
passes back some return values to the UUT (according to the test case)"
(stubs could be interactive - ask the user to supply return values)"

Source: Adapted from Liskov & Guttag, 2000, pp239-242

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Automated Testing Strategy"

Setup!

Exercise!

Verify!

Teardown!

UUT!
Unit!

Under!
Test!

DOC!
Depended!

On !
Component!

Initialize!

Exercise !
(with return value)!

Get State!

Get Something!
(with return value)!

Do something!
(no return value)!

Direct control points!

Indirect control point!

Direct observation points!

Indirect observation points!
TestCase! Fixture!

Test Double!

Source: Adapted from Meszaros 2007, p66

3	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Test Order?"

Inside!
Out!

Outside!
In!

Source: Adapted from Meszaros 2007, p35

UUT!

UUT!

UUT!

UUT!

UUT!

UUT!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

How JUnit works"
Source: Adapted from Meszaros 2007, p77

UUT!

4	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

How JUnit works"
Source: Adapted from Meszaros 2007, p77

UUT!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Assertion methods in JUnit"
Single-Outcome Assertions"

fail;"

Stated Outcome Assertions"
assertNotNull(anObjectReference);"
assertTrue(booleanExpression)"

Expected Exception Assertions"
assert_raises(expectedError) {codeToExecute };"

Equality Assertions"
assertEqual(expected, actual);"

Fuzzy Equality Assertions"
assertEqual(expected, actual, tolerance);"

Source: Adapted from Meszaros 2007, p365

5	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Principles of Automated Testing"
Write the Test Cases First"
Design for Testability"
Use the Front Door First"

test via public interface"
avoid creating back door manipulation"

Communicate Intent"
Tests as Documentation!"
Make it clear what each test does"

Don’t Modify the UUT"
avoid test doubles"
avoid test-specific subclasses"
(unless absolutely necessary)"

Keep tests Independent"
Use fresh fixtures"
Avoid shared fixtures"

Isolate the UUT"
Minimize Test Overlap"
Check One Condition Per Test"
Test Concerns Separately"
Minimize Untestable code"

e.g. GUI components"
e.g. multi-threaded code"
etc"

Keep test logic out of production
code"

No test hooks!"

"

Source: Adapted from Meszaros 2007, p39-48

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Testing interactive software"
1) Start the application (e.g. UMLet)!

2) Click on!
 File -> Open!

3) select test2.uxf!

4) click Open!

6	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Automating the testing"
Challenges for automated testing:"

Synchronization - How do we know a window popped open that we can click in?"
Abstraction - How do we know it’s the right window?"
Portability - What happens on a display with different resolution / size, etc"

Units	

Functionality	

Presentation	

Automated!
tests!

Manual!
tests!

Source: Adapted from Zeller 2006, p57

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Testing the Presentation Layer"
Script the mouse and keyboard events"

script can be recorded (e.g. “send_xevents @400,100”)"
script is write-only and fragile"

Script at the application function level"
E.g. Applescript: tell application “UMLet” to activate
Robust against size and position changes"
Fragile against widget renamings, layout changes, etc."

Write an API for your application…"
Allow an automated test to create windows, interact with widgets, etc."

Source: Adapted from Zeller 2006, chapter 3

7	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Dealing with Circular Dependencies"

Core!

+print_to_file()!

UserPresentation!

+confirm_loss()!

void print_to_file(string filename) 	
{	
 if (path_exists(filename)) {	
 // FILENAME exists; ask user to confirm overwrite	
 bool confirmed = confirm_loss(filename);	
 if (!confirmed)	
 return;	
 }	
 // Proceed printing to FILENAME...	
}	

Source: Adapted from Zeller 2006, chapter 3

invokes!

invokes!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Revised Dependency"

Core!

+print_to_file()!

Presentation!
{abstract}!

+confirm_loss()!

UserPresentation!

+confirm_loss()!

AutoPresentation!

+confirm_loss()!

ask user! return true;!

Source: Adapted from Zeller 2006, chapter 3

8	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

How to Test Object Oriented Code?"
Encapsulation"

If the object hides it’s internal state, how do we test it?"
Could add methods that expose internal state, only to be used in testing"
But: how do we know these extra methods are correct?"

Inheritance"
When a subclass extends a well-tested class, what extra testing is needed?"

e.g. Test just the overridden methods?"
But with dynamic binding, this is not sufficient"

e.g. other methods can change behaviour because they call over-ridden methods"

Polymorphism"
When class A calls class B, it might actually be interacting with any of B’s

subclasses…"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Inheritance Coverage"
Source: Adapted from IPL 1999

9	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Consider this program…"

Base!

+foo()!
+bar()!
-helper()!

Derived!

-helper()!

class Base {
 public void foo() {
 … helper(); …
 }
 public void bar() {
 … helper(); …
 }
 private helper() {…}
}

class Derived extends Base {
 private helper() {…}
}

Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Test Cases"
public void testFoo() {
 Base b = new Base();
 b.foo();
}
public void testBar() {
 Derived d = new Derived();
 d.bar();
}

Base!

+foo() -- Exercised in testFoo!
+bar() -- Untested!!
-helper() -- Exercised in testFoo!

Derived!

{+foo()} -- Untested!!
{+bar()} -- Exercised in testBar!
-helper() -- Exercised in testBar! inherited methods!

Source: Adapted from IPL 1999

10	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Extend the test suite"

Base!

+foo() -- Exercised in testBaseFoo!
+bar() -- Exercised in testBaseBar!
-helper() -- Exercised in tBF and tBB!

Derived!

{+foo()} -- Exercised in testDerivedFoo!
{+bar()} -- Exercised in testDerivedBar!
-helper() -- Exercised in tDF & tDB!

public void testBaseFoo() {
 Base b = new Base();
 b.foo();
}
public void testBaseBar() {
 Base b = new Base();
 b.bar();
}
public void testDerivedFoo() {
 Base d = new Derived();
 d.foo();
}
public void testDerivedBar() {
 Derived d = new Derived();
 d.bar();
}

Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Subclassing the Test Cases"

Base!

Base methods!

DerivedA!

inherited methods!
new methods!

DerivedB!

inherited methods!
new methods!

testBase!

Test Base methods!

testDerivedA!

re-test inherited methods!
test new methods!

testDerivedB!

re-test inherited methods!
test new methods!

Source: Adapted from IPL 1999

11	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

When to stop testing?"

Time (e.g. days)!

de

fe
ct

s
fo

un
d!

Typical testing results! The bad news!

Number of defects found to date!

Pr
ob

ab
ilit

y
of

 m
or

e
de

fe
ct

s!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

When to stop testing?"
Motorola’s Zero-failure testing model"

Predicts how much more testing is needed to establish a given reliability goal"
basic model:"

failures = ae-b(t)"

Reliability estimation process"
Inputs needed:"

fd = target failure density (e.g. 0.03 failures per 1000 LOC)"
tf = total test failures observed so far"
th = total testing hours up to the last failure"

Calculate number of further test hours needed using:"
ln(fd/(0.5 + fd)) x th"
ln((0.5 + fd)/(tf + fd))"

Result gives the number of further failure free hours of testing needed to
establish the desired failure density"

if a failure is detected in this time, you stop the clock and recalculate"
Note: this model ignores operational profiles!"

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359

test time

fa
ilu

re
s

12	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

Fault Seeding"
Seed N faults into the software"

Start testing, and see how many seeded faults you find"
Hypothesis:"
"
"
"
Use this to estimate test efficiency"
Estimate # remaining faults"

Alternatively"
Get two teams to test independently"
Estimate each team’s test efficiency by:"
"

Detected seeded faults!

Total seeded faults!

Detected nonseeded faults!

Total nonseeded faults!
=!

Efficiency(team1) =!
faults found by team 1!

Total number of faults!

unknown!

Faults found by both teams!

Total # faults found by team 2!
=!

