
1	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 15: 
Verification and Validation"

Refresher: definitions of V&V"
V&V strategies"

Modeling and Prototyping"
Inspection"
Formal Analysis"
(Testing)"

Independent V&V"
Quality Assurance"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Refresher: V&V"
Validation:"

“Are we building the right
system?”"
Does our problem statement
accurately capture the real
problem?"
Did we account for the needs of
all the stakeholders?"

Verification:"
“Are we building the system
right?”"
Does our design meet the spec?"
Does our implementation meet
the spec?"
Does the delivered system do
what we said it would do?"
Are our requirements models
consistent with one another?"

Problem
Statement

Implementation
Statement

System

Va
lid

at
io

n

Ve
rif

ic
at

io
n

Problem
Situation

2	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Verification"
Traditional approaches to (code) verification"

"

"
"
"

Model-based verification"

experiment with!
the program!

(testing)!

reason about!
the program!

(static verification)!

inspect the!
program!
(reviews)!

do the use cases!
satisfy the requirements?!

(goal analysis)!

does the code!
correspond to the model?!

(consistency checking)!

does the class model
satisfy the use cases?!
(robustness analysis)!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Understanding Validation"

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with

the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate
the variables)

3	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Validation techniques"
Prior Knowledge

(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Build a
Prototype

Get users
to try it

(what is wrong with
the prototype?)

Analyze
the model

run a model
checking tool

(what is wrong with
the model?)

Inspect
the model

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Choice of Techniques"

Verification! Validation!

code  
inspection!

static analysis!

testing!

prototyping!

usability !
test!

goal analysis!

unit test!
acceptance  

 test!integration  
test!

automated!
testing!

 model/spec  
inspection!

model  
checking!

proofs of  
correctness!

style  
checkers!

robustness!
analysis!

consistency!
checking!

beta test!

system test!

regression!
 test!

modeling!

?!

?!

4	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Prototyping"
Presentation Prototypes"

Explain, demonstrate and inform – then throw away"
e.g. used for proof of concept; explaining design features; etc."

Exploratory Prototypes"
Used to determine problems, elicit needs, clarify goals, compare design options"
Informal, unstructured and thrown away."

Breadboards or Experimental Prototypes"
Explore technical feasibility, or test suitability of a technology, then thrown away"
Typically no user/customer involvement"

Evolutionary "
(a.k.a. “operational prototypes”, “pilot systems”):"
Development seen as continuous process of adapting the system"
“prototype” is an early deliverable, to be continually improved."

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Usability Testing"
Real users try out the system (or prototype)"

Choose representative tasks"
Choose representative users"
Observe what problems they encounter"

How many users?"
3-5 users gives best return on investment"

5	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Model Analysis"
Verification"

“Is the model well-formed?”"
Are the parts of the model consistent with one another?"

Validation:"
‘What if’ questions:"

reasoning about the consequences of particular requirements;"
reasoning about the effect of possible changes"
“will the system ever do the following...” "

Formal challenges:"
“if the model is correct then the following property should hold...”"

Animation of the model on small examples"
State exploration "

E.g. use model checking to find traces that satisfy some property"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

UML Consistency Checking"
Use Case Diagrams"

Does each use case have a user?"
Does each user have at least one use case?"

Is each use case documented?"
Using sequence diagrams or equivalent"

Class Diagrams"
Does the class diagram capture all the classes mentioned in other diagrams?"
Does every class have methods to get/set its attributes?"

Sequence Diagrams"
Is each class in the class diagram?"
Can each message be sent?"

Is there an association connecting sender and receiver classes on the class diagram?"
Is there a method call in the sending class for each sent message?"
Is there a method call in the receiving class for each received message?"

6	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Model Checkers"
Automatically check properties (expressed in Temporal Logic)"

temporal logic adds modal operators to FOPL:"
p " "p is true now and always (in the future)"
p " "p is true eventually (in the future)"
(p⇒q) "whenever p occurs, itʼs always (eventually) followed by a q"

The model may be:"
of the program itself (each statement is a ‘state’)"
an abstraction of the program"
a model of the specification"
a model of the requirements"

A Model Checker searches all paths in the state space"
…with lots of techniques for reducing the size of the search"
Model checking does not guarantee correctness…"

it only tells you about the properties you ask about"
it may not be able to search the entire state space (too big!)"

…but is good at finding many safety, liveness and concurrency problems"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Inspections…"
“Management reviews”"

E.g. preliminary design review (PDR), critical design review (CDR), … "
Used to provide confidence that the design is sound"
Audience: management and sponsors (customers)"

“Walkthroughs” ≈ scientific peer review"
developer technique (usually informal)"
used by development teams to improve quality of product"
focus is on understanding design choices and finding defects "

“(Fagan) Inspections”"
a process management tool (always formal)"
used to improve quality of the development process"
collect defect data to analyze the quality of the process"
written output is important"
major role in training junior staff and transferring expertise"

7	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Why use inspection?"
Inspections are very effective"

Code inspections are better than testing for finding defects"
For Models and Specs, it ensures domain experts carefully review them"

Key ideas:"
Preparation: reviewers inspect individually first"
Collection meeting: reviewers meet to merge their defect lists"
Note each defect, but donʼt spend time trying to fix it"
The meeting plays an important role:"

Reviewers learn from one another when they compare their lists"
Additional defects are uncovered"

Defect profiles from inspection are important for process improvement"

Wide choice of inspection techniques:"
What roles to use in the meeting?"
How to structure the meeting?"
What kind of checklist to use?"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Structuring the inspection"
Checklist"

uses a checklist of questions/issues"
review structured by issue on the list"

Walkthough"
one person presents the product step-by-step"
review is structured by the product"

Round Robin"
each reviewer in turn gets to raise an issue"
review is structured by the review team"

Speed Review"
each reviewer gets 3 minutes to review a chunk, then passes to the next person"
good for assessing comprehensibility!"

8	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Benefits of formal inspection"
For applications programming:"

more effective than testing"
most reviewed programs run correctly first time"
compare: 10-50 attempts for test/debug approach"

Data from large projects"
error reduction by a factor of 5; (10 in some reported cases)"
improvement in productivity: 14% to 25%"
percentage of errors found by inspection: 58% to 82%"
cost reduction of 50%-80% for V&V (even including cost of inspection)"

Effects on staff competence:"
increased morale, reduced turnover"
better estimation and scheduling (more knowledge about defect profiles)"
better management recognition of staff ability"

Source: Adapted from Blum, 1992, Freedman and Weinberg, 1990, & notes from Philip Johnson.

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Role for Independent V&V?"
V&V performed by a separate contractor"

Independent V&V fulfills the need for an independent technical opinion."
Cost between 5% and 15% of development costs"
NASA Studies show up to fivefold return on investment:"

Errors found earlier, cheaper to fix, cheaper to re-test"
Clearer specifications"
Developer more likely to use best practices"

Three types of independence:"
Managerial Independence:"

separate responsibility from that of developing the software"
can decide when and where to focus the V&V effort"

Financial Independence:"
Costed and funded separately"
No risk of diverting resources when the going gets tough"

Technical Independence:"
Different personnel, to avoid analyst bias"
Use of different tools and techniques"

