
1	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 13: 
From Requirements to Design"

Identifying Actors"
Building a Domain Model"

Goal modeling"
Obstacle Analysis"
Scoping"
Use Cases"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Starting Point"
Given:"

a vague request for a new feature from users of your software"

1.  Identify the problem"
What is the goal of the project?"
What is the “vision” of those who are pushing for it?"

2.  Scope the problem"
Given the vision, how much do we tackle?"
What new functionality will be needed?"

3.  Identify solution scenarios"
Given the problem, how will users interact with the software to solve it?"

4.  Map onto the Architecture"
How will the needed functionality be met?"
What new modules / classes will be needed?"

stakeholder goal modeling
& domain models

use cases

robustness analysis

2	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

What do Requirements Analysts do?"
Given a “problem”…"

Some notion that a “problem” needs solving"
e.g. dissatisfaction with the current system"
e.g. a new business opportunity"
e.g. a potential saving of cost, time, resource usage, etc."

A Requirements Analyst is an agent of change"

… the requirements analyst must:"
identify the “problem” / “opportunity”"

Which problem needs to be solved? (identify problem Boundaries)"
Where is the problem? (understand the Context/Problem Domain)"
Whose problem is it? (identify Stakeholders)"
Why does it need solving? (identify the stakeholders’ Goals)"
When does it need solving? (identify Development Constraints)"
What might prevent us solving it? (identify Feasibility and Risk) "
How might a software system help? (collect some Scenarios / Use Cases)"
"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

D - domain properties

R - requirements

C - computers

P - programs

Refesher"

Domain Properties (assumptions):"
things in the application domain that are true whether or not we ever build the proposed
system"

(System) Requirements:"
things in the application domain that we wish to be made true by delivering the proposed
system"

Many of which will involve phenomena the machine has no access to"

A (Software) Specification:"
 is a description of the behaviours that the program must have in order to meet the
requirements"

Can only be written in terms of shared phenomena!"

3	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Identifying Actors"
Ask the following questions:"

Who will be a primary user of the system? (primary actor)"
Who will need support from the system to do her daily tasks?"
Who or what has an interest in the results that the system produces ?"

Who will maintain, administrate, keep the system working? (secondary actor)"
Which hardware devices does the system need?"
With which other systems does the system need to interact with?"

Look for:"
the users who directly use the system"
also others who need services from the system"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Key distinctions"

identify complete
word

suggest words
from dictionary

pop up a menu

highlight
misspellings

The user types text as
usual. When the user
completes each word, the
system looks it up in the
dictionary. If it is not in
the dictionary, the word is
underlined in red. The user
can click on any underlined
word, to see a popup menu
of suggested alternatives.
Clicking any of these
alternatives causes it to
replace the original word.

reduce the
number of

spelling mistakes

word

space
dictionary

suggestion replacement

spelling selection

A requirement (goal)" Functions" A Use Case"

Domain Concepts"

4	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Domain Model"

Document!

Dictionary!

Word!

misspelling!

1..*! Alphabetic!
character!

correct spelling!

Suggestion list!

1..*!

1..*!

1!

1!
Has!
!

Non-Alphabetic!
character!ends!

!

1!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Exploring Goals"

have an !
automated !

spelling checker!

reduce the !
number of !

spelling mistakes!

save time looking!
up words in!

my dictionary!

help me learn!
to spell better!

+!++!
++!

have custom !
dictionaries!

spot errors!
as I write!

allow me to!
ignore misspellings!

suggest correct!
spellings!

and!

5	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Obstacle Analysis"

have an !
automated !

spelling checker!

save time looking!
up words in!

my dictionary!

++!

Assumes: spell checker’s dictionary
is comparable with printed dictionary

for completeness!

Assumes: auto-lookup & correction is
quicker than manual lookup!

Assumes: user notices the
highlighted misspellings!

Assumes: other information in dictionary
(definitions, usage) is irrelevant for

deciding on correct spelling!

Assumes: user is willing!
to guess at a spelling!

Assumes: intended word is always
(?) on the list of suggestions !

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Some Requirements emerge…"
“Functional Requirements”"

(?) User can see definitions for suggested spellings"
User shall be able to add custom dictionaries"
User shall be able to add new words to a custom dictionary"
User shall be able to declare certain words be ignored for spell checking for the

current document"

“Quality Requirements”"
Dictionary should be as comprehensive as printed dictionaries"
Checking and suggesting should be fast"
Highlighted misspellings must be clearly visible "

6	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Use Case Diagram"

writer!

technical!
writer!

ignore a
mispelling

add word
to dictionary

spell check
as you write

spell check
document

auto-suggest
invokes!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Finding Use Cases"
For each actor, ask the following questions:"

Which functions does the actor require from the system? "
What does the actor need to do ?"
Does the actor need to read, create, destroy, modify, or store some kinds of

information in the system ?"
Does the actor have to be notified about events in the system? "
Does the actor need to notify the system about something? "
What do those events require in terms of system functionality?"
Could the actorʼs daily work be simplified or made more efficient through new

functions provided by the system?"

"
"

7	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Documenting Use Cases"
For each use case:"

prepare a “flow of events” document, written from an actorʼs point of view."
describe what the system must provide to the actor when the use case is

executed."

Typical contents"
How the use case starts and ends;"
Normal flow of events;"
Alternate flow of events;"
Exceptional flow of events;"

Documentation style:"
Choice of how to represent the use case:"

English language description"
Activity Diagrams - good for business process"
Collaboration Diagrams - good for high level design"
Sequence Diagrams - good for detailed design"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Sample Use Case documentation"
Name: Place Order
Precondition: A valid user has logged into the system.
Description:
1.  The use case starts when the customer selects Place Order.
2.  The customer enters his or her name and address.
3.  If the customer enters only the zip code, the system will supply the city

& state.
4.  The customer will enter product codes for the desired products.
5.  The system will supply a product description and price for each item.
6.  The system will keep a running total of items ordered as they are

entered.
7.  The customer will enter credit card payment information.
8.  The customer will select Submit.
9.  The system will verify the information, save the order as pending, and

forward payment information to the accounting system.
10.  When payment is confirmed, the order is marked Confirmed, an

order ID is returned to the customer, and the use case ends.
Exceptions:
In step 9, if any information is incorrect, the system will prompt the

customer to correct the information.
Postcondition: The order has been saved in the system and marked

confirmed.

Brief name
(This is all that
appears on the

on use case
diagram)"

Every step
clearly

identifies who
carries it out"

Clear start"
and end"

Clear
statement"

of any effects"

8	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Scoping decision I"
Decide the scope of the problem:"

E.g. Bookstore example:"
“Textbooks are often not ordered in time for the start of classes”"

But that’s just a symptom. (So you ask the manager “why?”)"
“Because we don’t receive the booklists from instructors early enough”"

Is that just a symptom of some other problem? (…so ask the instructors “why?”)"
“Because the instructors aren’t allocated to courses early enough”"

Is that just a symptom of some other problem? (…so ask the UG office “why?”)"
“Because we never know who’s available to teach until the last minute”"

Is that just a symptom of some other problem? (…so ask the dept chair “why?”)"
“Because there’s always uncertainty about who gets hired, sabbaticals, etc.”"

Is that just a symptom of some other problem? (…so ask the dept chair “why?”)"
“Because instructors we want to hire don’t accept our offers early enough”"

Is that just a symptom of some other problem? (…so ask the new recruits “why?”)"
“Because some other universities seem to wait for ages before making offers”"

Is that just a symptom of some other problem? (…so ask U of Waterloo, etc, “why?”)"
“Because it takes our department a long time to reach consensus on hiring”"

Is that just a… …oh wait… …maybe we can develop a decision support system for
faculty hiring at U of Waterloo, and that will help us get our textbooks for the start of class…"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

How to scope the problem"
Difficulty:"

Every problem can be seen as as symptom of some other (larger) problem"
You can keep on tracing root causes forever if youʼre not careful"

Approach: (…ask yourself these questions…)"
Is there a reasonable expectation that this problem can be solved?"

(…independently of the larger problem?)"
Is there a reasonable expectation that solving this problem will help?"

(…without also solving the larger problem?)"
Is this a problem that the stakeholders want solved?"

(do the “local experts” think this problem is the one that matters?) "
Is this a problem that someone will pay you to solve?"

(Hint: a feasibility study should quantify the return on investment)"

9	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Scoping Decision II"
Decide the scope of the solution"

Say you decided that delay in processing booklists from instructors is the right
level of problem to tackle."
“So, let’s computerize the submission of textbook forms from instructors”"

But while we’re at it:"
“it would help if we also computerized the submission of orders to the publishers”"

…and of course:"
“we ought to computerize the management of book inventories too, so we can quickly

check stock levels before ordering new books”"
…and in that case:"

“we might as well computerize the archives of past years booklists so that we can
predict demand better”"

…and therefore:"
“it would also make sense to provide a computerized used book exchange, because

that has a big effect on demand for new books”"
…and then of course there’s … oh, wait, this is going to cost millions!"

Bookstore manager: “tell me again how this automated used book exchange will help me order books
faster?” "

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

How to scope the solution"
Difficulty:"

We could keep on throwing more technology at the problem forever"
It’s hard to decide when to stop adding extra “bells and whistles”"

Approach (…select among alternatives carefully…)"
Is there a reasonable expectation that this alternative can be implemented?"

(…independently of all the other options?)"
Is there a reasonable expectation that implementing this alternative will (help to)

solve the original problem?"
(…without also having to address other aspects of the problem?)"

Is this a solution that the stakeholders can live with?"
(do the “local experts” think they would use all these functions?) "

Is this a solution that someone will pay you to build?"
(Hint: a feasibility study should quantify the return on investment for each alternative)"

10	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

ICONIX process"

