R University of Toronto Department of Computer Science

¥ Lectures 2 & 3:
Introduction to Modeling & UML

- Why Build Models?

- What types of Models to build

- Intro to UML

- Class Diagrams

- Relationship between UML and program code
- Uses of UML

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

R University of Toronto Department of Computer Science

v Getting started

- You’ve just joined an ongoing project
% Where do you start?
% (oh, BTW, the project doesn’t really have any documentation)

- Reverse Engineering:
% Recover design information from the code
% Create higher level views to improve understanding

- E.g. Structure of the code
% Code Dependencies
% Components and couplings

- E.g. Behaviour of the code
% Execution traces
& State machines models of complex objects

- E.g. Function of the code
% What functions does it provide to the user?

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Jxa niversity of Toronto Department of Co

v -

mputer Science

i

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 3

9 University of Toronto Department of Computer Science

Why build models?

- Modelling can guide your exploration:
% It can help you figure out what questions to ask
& It can help to reveal key design decisions

% It can help you to uncover problems
» e.g. conflicting or infeasible requirements, confusion over terminology, scope, etc

- Modelling can help us check our understanding

% Reason about the model to understand its consequences
» Does it have the properties we expect?

% Animate the model to help us visualize/validate the requirements

- Modelling can help us communicate
% Provides useful abstracts that focus on the point you want to make
% ...without overwhelming people with detail

- Throw-away modelling?
% The exercise of modelling is more important than the model itself
% Time spent perfecting the models might be time wasted...

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 4

g University of Toronto Department of Computer Science

Maps as Abstractions

\mgng © 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

ﬁ@ University of Toronto Department of Computer Science

\mgng © 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

ﬁ‘ University of Toronto Department of Computer Science

Dealing with problem complexity

- Abstraction
& Ignore detail to see the big picture
% Treat objects as the same by ignoring certain differences
% (beware: every abstraction involves choice over what is important)

- Decomposition
% Partition a problem into independent pieces, to study separately
% (beware: the parts are rarely independent really)

- Projection
% Separate different concerns (views) and describe them separately
% Different from decomposition as it does not partition the problem space
% (beware: different views will be inconsistent most of the time)

- Modularization
% Choose structures that are stable over time, to localize change
% (beware: any structure will make some changes easier and others harder)

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 7

ﬁ‘ University of Toronto Department of Computer Science

the Unified Modelling Language (UML)

- Third generation OO method

% Booch, Rumbaugh & Jacobson are principal authors
» Still evolving (currently version 2.0)
» Attempt to standardize the proliferation of OO variants
% Is purely a notation
» No modelling method associated with it!
» Was intended as a design notation
% Has become an industry standard
» But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

- Has a standardized meta-model
% Use case diagrams
% Class diagrams
% Message sequence charts
% Activity diagrams
% State Diagrams
% Module Diagrams
% Platform diagrams
% ...

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 8

b University of Toronto Department of Computer Science

Modeling Notations

UML Class Diagrams % Use Cases
information structure i % \ user’s view
relationships between [. .

. Lists functions
data items
modular structure for visual overview of the
the system main requirements

-
aml

Overall architecture
"EI Dependencies

(UML) Statecharts
responses to events

UML Package Diagrams

dynamic behavior

between components event ordering,

reachability,
deadlock, etc

—

X CJ C1 C3J individual scenario

Activity diagrams
business processes;

UML Sequence Diagrams

concurrency and
synchronization;

interactions between
users and system
dependencies
between tasks;

Sequence of

messages
© 1 ©2008 Steve k. This presentation is available free for non-commercial use with attribution under a creative commons license. 9
A University of Toronto Department of Computer Science
o
~ Intro: Object Classes in UML
Source: Adapted from Davis, 1990, p67-68
Generalization Aggregation
(an abstraction hierarchy) (a partitioning hierarchy)
:patient
:patient Name
Date of Birth

Name) physician

Date'o'f Birth history

physician

history

0..110..1 [0..1
1 1.2 0.2

:in-patient ‘out-patient :heart :kidney :eyes
Room Las; V!S!: Natural/artif. Natural/artif. Natural/artif.
Bed nex V'.SIt. Orig/implant Orig/implant Vision
Treatments RICSCIPHORS normal bpm number colour
food prefs

©] ©2008 Steve

k. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

’L‘ University of Toronto Department of Computer Science

&
4 :eye
Class name aggregation Colour
Diameter
0..2 c
Correction
o multiplicities
:h ien ki
0..1 :kidney

attributes Name < — SR —

~————,| Date of Birth / A

] 0..1
Height <>

. Weight 1.2
services 0..1

_}

:heart
e Normal bpm
generalization 1 | Blood type

:In-patient :Out-patient

Room Last visit :organ

Bed next visit Natural/artif.

Physician physician Orig/implant

donor

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 11

’L‘ University of Toronto Department of Computer Science

What are classes?

- A class describes a group of objects with
% similar properties (attributes),
% common behaviour (operations),
% common relationships to other objects,
% and common meaning (“semantics”).

- Examples

% employee: has a name, employee# and department; an employee is hired, and fired; an
employee works in one or more projects

:employee .|
Attributes [name | Name (mandatory)
) . “remployee#
(optional) ~{department
hire
fire(()) uwOperations
assignproject() - (optional)

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license. 12

%

¥ University of Toronto Department of Computer Science
The full notation...
Attribute
type Name of the class
Attribute iy
name .
Student Other Properties
L+ name: string [1] = “Anon” {readOnly}
o + registeredin: Course [*]
Visibility: "~ Default value
+, -, #, ... istor {c: Gourse)
+ register (C: urse Multi liCit
+ isRegistered (c: Course) : Boolean p y
pal A X
Operation
name Return value
Parameters
© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 13
ﬁ‘ University of Toronto Department of Computer Science

Objects vs. Classes

- The instances of a class are called objects.
% Obijects are represented as:

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

% Two different objects may have identical attribute values (like two people with
identical name and address)

- Objects have associations with other objects
% E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
% But we will capture these relationships at the class level (why?)

% Note: Make sure attributes are associated with the right class
» E.g. you don’t want both managerName and manager# as attributes of Project!
(...Why??)

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Department of Computer Science

? University of Toronto

- Notes:

G lizati
eneralization pe—
{abstract}
Grade 1. < allocated 0." | staffName
staffNo <€---- A superclass
gradeName - staffStartDate
/’ calculate Bonus ()
,,’ assignNewStaff Grade ()
e getStaffDetails ()
//,
L
Superclass Two
associations are _ subclasses
|
inherited by !
subclasses !
- 1
Vi \4
AdminStaff CreativeStaff

calculateBonus () qualification

calculateBonus ()

assignStaffContact ()

% Subclasses inherit attributes, associations, & operations from the superclass

% A subclass may override an inherited aspect
» e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses

% Superclasses may be declared {abstract}, meaning they have no instances

» Implies that the subclasses cover all possibilities
» e.g. there are no other staff than AdminStaff and CreativeStaff

15

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

Department of Computer Science

? University of Toronto

- Aggregation

- Composition

Aggregation and Composition

% This is the “Has-a” or “Whole/part” relationship

% Strong form of aggregation that implies ownership:
» if the whole is removed from the model, so is the part.
» the whole is responsible for the disposition of its parts

1 | :Engine

composition
\

:Car ‘1—

:Locomotive

1.%
_| 0..1W

0.1 I—

driver 1

:Person |o.* 0.1

passengers

aggregbﬁan

for non-commercial use with attribution under a creative commons license.

16

© 1 ©2008 Steve This presentation is available free

? University of Toronto

Department of Computer Science

Club

/

/
v

Polygon

Aggregation / Composition (Refresher)

aggregation

Member

composition

{ordered}

3.* 1

P0|nt centre

Note: No sharing - any instance of point can
be part of a polygon or a circle, but not both

‘ Circle

What does
this mean??

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

17

? University of Toronto

Department of Computer Science

» Association

Generalization
Dependency
Realization

YV V V V

Associations

- Objects do not exist in isolation from one another
% A relationship represents a connection among things.
% In UML, there are different types of relationships:

Aggregation and Composition

- Class diagrams show classes and their relationships

0.*

<<entity>>
Advert

<<entity>> :)
Client <<entity>> |

companyAddress Campaign |
companyName 1 0.* |tile] 1
companygelephone campaignStartDate
companyFax ianFini
comgaanmai! places campaignFinishDate conducted by

) . etCampaignAdverts
getClientCampaigns() gddNewB\d\g/erl() 0
getClients() |

| setCompleted()
| createNewAdvert()

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

18

b University of Toronto Department of Computer Science

Association Multiplicity

- Ask questions about the associations:

% Can a campaign exist without a member of staff to manage it?
» If yes, then the association is optional at the Staff end - zero or more (0..*)
» If no, then it is not optional - one or more (1..%)
» If it must be managed by one and only one member of staff - exactly one (1)
% What about the other end of the association?
» Does every member of staff have to manage exactly one campaign?
» No. So the correct multiplicity is zero or more.

- Some examples of specifying multiplicity:
% Optional (0 or 1) 0..1

& Exactly one 1 =1.1
& Zero or more 0..* =*
% One or more 1.%
% A range of values 2..6
© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 19
ﬁ‘ University of Toronto Department of Computer Science
Class associations
Multiplicit Multiplicit
A client has A staff member has
exactly one staffmember zero or more clients on
as a contact person Name His/her clientList
of the
association -
:Client
:StaffMember
StaffMembe z companyAddress
.)
staffName 1 liaises with 0..* | companyEmail
staff# - — companyFax
staffStartDate | contact > ClientList | companyName
person /‘ companyTelephone
Direction
The “liaises with"
association should be
read in this direction
Role
The staffmember's Role
role in this association The clients' role
Is as a confact person in this association
is as a clientList

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 20

ﬁ‘ University of Toronto

Department of Computer Science

More Examples

Campaign conducted by 0.* Advert
>
Grade allocated to StaffMember
deN staffName
gradgefame * , | staffNo
1 < 0.7 | staffStartDate
Hand contains Card
0.1 > 1.7

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

21

ﬁ‘ University of Toronto

Department of Computer Science

Navigability / Visibility

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderLine [*] {ordered}

Date

0..1

+dateReceived

1

Order

+isPrepaid

Boolean

* | +lineltems {ordered}

OrderLine

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

22

11

5‘ University of Toronto

Department of Computer Science

Bidirectional Associations

Person

0..1

Person

+ carsOwned: Car [*]

Hard to implement correctly!

Car

Car

+ Owner: Person [0..1]

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

23

5‘ University of Toronto

Department of Computer Science

View

Dependencies

% <<use>>

% <<create>>

% <<derive>>

% <<instantiate>>
% <<permit>>

% <<realize>>

% <<refine>>

% <<substitute>>

% <<parameter>>

ViewController

- Example Dependency types:

% <<call>>

Model

Layout

©] ©2008 Steve

This presentation is available free for non-commercial use with attribution under a creative commons license.

24

12

? University of Toronto Department of Computer Science

Interfaces

<<interface>>
Collection

equals

add

Order <<requires>> <<m:j;ftace>> <<implements>> ArrayList
Lineltems [*] S — 5ot
get add
Collection
List
Order - is
\O ArrayList
Lineltems [*]

25

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license.

? University of Toronto Department of Computer Science

Annotations

- Comments
% -- can be used to add comments within a class description

- Notes
Date Range

{length = start - end} ~~__ Start: Date
T~ End: Date

7| /length: integer

- Constraint Rules

% Any further constraints {in curly braces}
% e.g. {time limit: length must not be more than three months}

26

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license.

13

ﬂ University of Toronto Department of Computer Science

v What UML class diagrams can show

- Division of Responsibility
% Operations that objects are responsible for providing

- Subclassing
% Inheritance, generalization
- Navigability / Visibility
% When objects need to know about other objects to call their operations

- Aggregation / Composition
% When objects are part of other objects

- Dependencies
% When changing the design of a class will affect other classes

- Interfaces
% Used to reduce coupling between objects

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license.

27

14

