
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 15:
Verification and Validation

Refresher: definitions of V&V
V&V strategies
Independent V&V
Quality Assurance

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Refresher: V&V
Validation:

“Are we building the right
system?”
Does our problem statement
accurately capture the real
problem?
Did we account for the needs of
all the stakeholders?

Verification:
“Are we building the system
right?”
Does our design meet the spec?
Does our implementation meet
the spec?
Does the delivered system do
what we said it would do?
Are our requirements models
consistent with one another?

Problem
Statement

Implementation
Statement

System

Va
lid
at
io
n

Ve
rif
ic
at
io
n

Problem
Situation

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Verification
Traditional approaches to verification

Model-based Verification

experiment with
the program

(testing)

reason about
the program

(static verification)

inspect the
program
(reviews)

do the use cases
satisfy the requirements?

(goal analysis)

does the code
correspond to the model?

(consistency checking)

does the class model
satisfy the use cases?
(robustness analysis)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Basic Cross-Checks for UML
Use Case Diagrams

Does each use case have a user?
Does each user have at least one use case?

Is each use case documented?
Using sequence diagrams or equivalent

Class Diagrams
Does the class diagram capture all the classes mentioned in other diagrams?
Does every class have methods to get/set its attributes?

Sequence Diagrams
Is each class in the class diagram?
Can each message be sent?

Is there an association connecting sender and receiver classes on the class diagram?
Is there a method call in the sending class for each sent message?
Is there a method call in the receiving class for each received message?

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Understanding Validation

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate

the variables)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Validation techniques
Prior Knowledge

(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Build a
Prototype

Get users
to try it

(what is wrong with
the prototype?)

Analyze
the model

run a model
checking tool

(what is wrong with
the model?)

Inspect
the model

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Prototyping
Presentation Prototypes

explain, demonstrate and inform – then throw away
e.g. used for proof of concept; explaining design features; etc.

Exploratory Prototypes
used to determine problems, elicit needs, clarify goals, compare design options
informal, unstructured and thrown away.

Breadboards or Experimental Prototypes
explore technical feasibility; test suitability of a technology
Typically no user/customer involvement

Evolutionary
(e.g. “operational prototypes”, “pilot systems”):
development seen as continuous process of adapting the system
“prototype” is an early deliverable, to be continually improved.

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Usability Testing
Real users try out the system (or prototype)

Choose representative tasks
Choose representative users
Observe what problems they encounter

How many users?
3-5 users gives best return on investment

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Model Analysis
Verification

“Is the model well-formed?”
Are the parts of the model consistent with one another?

Validation:
Animation of the model on small examples
Formal challenges:

“if the model is correct then the following property should hold...”
‘What if’ questions:

reasoning about the consequences of particular requirements;
reasoning about the effect of possible changes
“will the system ever do the following...”

State exploration
E.g. use model checking to find traces that satisfy some property

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Model Checkers
Checks properties expressed in Temporal Logic

temporal logic adds modal operators to FOPL:
e.g. p - p is true now and always (in the future)
e.g. p - p is true eventually (in the future)
e.g. (p⇒q) - each p is eventually followed by a q

The model may be:
of the program itself (each statement is a ‘state’)
an abstraction of the program
a model of the specifications
a model of the requirements

A Model Checker searches all paths in the state space
…with lots of techniques for reducing the size of the search
Model checking does not guarantee correctness…

it only tells you about the properties you ask about
it may not be able to search the entire state space (too big!)

…but is (generally) more practical than proofs of correctness.

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Inspections…
“Management reviews”

E.g. preliminary design review (PDR), critical design review (CDR), …
Used to provide confidence that the design is sound
Audience: management and sponsors (customers)

“Walkthroughs” = scientific peer review
developer technique (usually informal)
used by development teams to improve quality of product
focus is on understanding design choices and finding defects

“(Fagan) Inspections”
a process management tool (always formal)
used to improve quality of the development process
collect defect data to analyze the quality of the process
written output is important
major role in training junior staff and transferring expertise

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Why use inspection?
Inspections are very effective

Code inspections are better than testing for finding defects
For Specifications, inspection is all we have (you can’t “test” a spec!)

Key ideas:
Preparation: reviewers inspect individually first
Collection meeting: reviewers meet to merge their defect lists
Log each defect, but don’t spend time trying to fix it
The meeting plays an important role:

Reviewers learn from one another when they compare their lists
Additional defects are uncovered

Defect profiles from inspection are important for process improvement

Wide choice of inspection techniques:
What roles to use in the meeting?
How to structure the meeting?
What kind of checklist to use?

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Structuring the inspection
Checklist

uses a checklist of questions/issues
review structured by issue on the list

Walkthough
one person presents the product step-by-step
review is structured by the product

Round Robin
each reviewer in turn gets to raise an issue
review is structured by the review team

Speed Review
each reviewer gets 3 minutes to review a chunk, then passes to the next person
good for assessing comprehensibility!

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Benefits of formal inspection
For applications programming:

more effective than testing
most reviewed programs run correctly first time
compare: 10-50 attempts for test/debug approach

Data from large projects
error reduction by a factor of 5; (10 in some reported cases)
improvement in productivity: 14% to 25%
percentage of errors found by inspection: 58% to 82%
cost reduction of 50%-80% for V&V (even including cost of inspection)

Effects on staff competence:
increased morale, reduced turnover
better estimation and scheduling (more knowledge about defect profiles)
better management recognition of staff ability

Source: Adapted from Blum, 1992, Freedman and Weinberg, 1990, & notes from Philip Johnson.

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Role for Independent V&V?
V&V performed by a separate contractor

Independent V&V fulfills the need for an independent technical opinion.
Cost between 5% and 15% of development costs
NASA Studies show up to fivefold return on investment:

Errors found earlier, cheaper to fix, cheaper to re-test
Clearer specifications
Developer more likely to use best practices

Three types of independence:
Managerial Independence:

separate responsibility from that of developing the software
can decide when and where to focus the V&V effort

Financial Independence:
Costed and funded separately
No risk of diverting resources when the going gets tough

Technical Independence:
Different personnel, to avoid analyst bias
Use of different tools and techniques

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Quality Assurance
V&V focuses on the quality of the product(s)

requirements, models, specifications, designs, code,…

QA focuses on the quality of the processes
How well are the processes documented?
How well do people follow these processes?
Does the organisation measure key quality indicators?
Does the organisation learn from its mistakes?

Examples:
ISO9001
TickIt
Capability Maturity Model (CMM)
Total Quality Management (TQM)

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

E.g. CMM
Level Characteristic Key Challenges

5. Optimizing
Improvement fed back

into process

Identify process indicators

“Empower” individuals

4. Managed
(Quantitative) measured

process

Automatic collection of process data

Use process data to analyze and

modify the process

3. Defined

(Qualitative)

process defined and

institutionalized

Process measurement

Process analysis

Quantitative Quality Plans

2. Repeatable

(Intuitive)

process dependent on

individuals

Establish a process group

Identify a process architecture

Introduce SE methods and tools

1. Initial

Ad hoc / Chaotic

No cost estimation,

planning, management.

Project Management

Project Planning

Configuration Mgmnt, Change Control

Software Quality Assurance

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Arguments against QA
Costs may outweigh the benefits

Costs: Increased documentation; more meetings; …
Benefits: Improved quality of the process outputs (better software?)

Reduced “agility”
Documenting the processes makes them less flexible

Reduced “thinking”
Following the defined process gets in the way of thinking about the best way to

do the job

Barrier to Innovation
New ideas have to be incorporated into the Quality Plan and get signed off

Demotivation
Extra bureaucracy makes people frustrated

