’L‘ University of Toronto Department of Computer Science
=

v Lecture 14:
Robustness Analysis

Good Object Oriented Design
Robustness Analysis

Allocating Behaviour

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 1

’L‘ University of Toronto Department of Computer Science

Starting Point

You’ve done the Requirements Analysis

You have:

A set of Use Cases
(explaining how users will use the system)

A Domain Model
(to keep track of key domain concepts)

Stakeholder Goal Models

(explaining how the use cases will meet the stakeholders
real needs)

Challenge:

Allocate responsibility for the use cases to classes in the system

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 2




,’L‘ University of Toronto Department of Computer Science

Diversion: What’s wrong with this?

Everything Controller
1 *
JobController
getJC(j:Job) : JobController
1
1
* *
Job
© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 3
,’L‘ University of Toronto Department of Computer Science

Or this?

Bookstore

Customer K>—— PayPal K>— CreditCard

Account

class Bookstore {

void settlebill (int total) {
Customer.PayPalAccount.CreditCard.subtract(total)

}

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 4




,’L‘ University of Toronto Department of Computer Science

the Law of Demeter

Basically:
“Only talk to your friends”

More specifically:
A method, m, of an object, O, can only call methods of:
1. Oitself
2. m’s parameters
3. any object created by m
4. O’s direct component objects
[m cannot call methods of an object returned by another method call]

Programmer’s rule of thumb:
“use only one dot”
e.g. instead of: Customer.PayPalAccount.CreditCard.subtract(total)
use: Customer.GetPayment(total)

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 5

,’L‘ University of Toronto Department of Computer Science

Robustness Analysis

Boundary Objects

Used by actors when communicating with the system
Only these can initiate events
(usually widgets on the Ul)

Entity Objects

Usually objects from the domain model
Things we need to keep track of

Control Objects
The “glue” between boundary objects & entity objects
Capture business rules and policies
(note: often implemented as methods of other objects)

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 6




ﬂ University of Toronto Department of Computer Science

v Why do Robustness Analysis?

Bridges the gap between Requirements and Design
Sanity Check

Tests the language in the Use Case description
Nouns from the Use Case get mapped onto objects
Verbs from the Use Case get mapped onto actions

Completeness Check
Discover the objects you need to implement the use cases
Identify alternative courses of action

Object Identification
Decide which methods belong to which objects

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 7
ﬂ University of Toronto Department of Computer Science
v Rules for Robustness Diagrams
Allowed Not Allowed
X —HO O
N X

/\\Q
OO O
O O

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license.




B University of Toronto Department of Computer Science

\ 4 Intended for the whiteboard...
—a0

U3 V. App. s
ﬁ?fllﬁ?\"’

i ?’C/ﬁl
U%&f‘g% fn 2% f%'}p;ﬁ-?
Rdeb Coglena,

Leer ﬂﬁ‘rmt-
an ff.?-l:l- Lyt

Stugetr
>
BR S
Cpron,
&znp’]’
© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 9
B University of Toronto Department of Computer Science
o8

v Contructing a Robustness Diagram

Add a boundary element for each major Ul element
Add a controller to manage each Use Case
Add a controller for each business rule

Add a controller for any activity that involves
coordination of several other element

Add an entity for each business concept

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 10




? University of Toronto

Department of Computer Science

click login

click OK

Home Page

Example

Customer Login Page Display
Generator
account table
validate login
© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license. 11

? University of Toronto

Department of Computer Science

ICONIX process

 s— Y s— O
= 1O
=lg= s
GUI Storyboard Use Case
Model

N>

i/

Robustness Diagram j

Domain
Model

Updated
Domain Model

7
sl ing =i g |

I

|

I

|

I

I

|
Sequence !
A 1
Diagram I
|

I

|

I

I

Class Model

Test 1

Test Plans

© 1 ©2008 Steve This presentation is available free for non-commercial use with attribution under a creative commons license.

12




B University of Toronto Department of Computer Science

X2 Basic Design Steps

Use case text is refined during robustness analysis
and reviewed during the preliminary design review.

> :
% g \ A
Use Case N
Basic and
Model Alternate
Courses
of Action
Robustness
Diagram
1. Copy the use case text to
% the left margin of the

D
Q

il

000

sequence diagram.

2. Add the entity objects.
3. Add the boundary objects.

Sequence
Diagram

4. Work through the controllers, one at a time, and
figure out how to allocate the behavior among the
collaborating objects.

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 13
B University of Toronto Department of Computer Science
v Benefits of Robustness Analysis
1. Forces a consistent style for 7. Helps build layered
use cases architectures
. ., e.g presentation layer, domain layer,
2. Forces correct ‘voice f0r use repository layer
cases -
8. Checks for reusability across
3. Sanity and completeness use cases before doing
check for use cases detailed design
4. Syntax rules for use case 9. Provides traceability between
descriptions user’s view and design view

e.g. actors only talk to boundary objects .
10. Plugs semantic gap between

5. Quicker and easier to read requirements and design
than sequence diagrams

6. Encourages use of
Model-View-Controller (MVC)
pattern

© 1 ©2008 Steve ok. This presentation is available free for non-commercial use with attribution under a creative commons license. 14




