
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 14:
Robustness Analysis

Good Object Oriented Design
Robustness Analysis
Allocating Behaviour

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Starting Point
You’ve done the Requirements Analysis
You have:

Challenge:
Allocate responsibility for the use cases to classes in the system

Document

Dictionary

Word

misspelling

1..* Alphabetic
character

correct spelling

Suggestion list

1..*

1..*

1

1
Has


Non-Alphabetic
characterends



1

have an
automated

spelling checker

reduce the
number of

spelling mistakes

save time looking
up words in

my dictionary

help me learn
to spell better

+++
++

have custom
dictionaries

spot errors
as I write

allow me to
ignore mispellings

suggest correct
spellings

and

writer

technical
writer

ignore a
mispelling

add word
to dictionary

spell check
as you write

spell check
document

auto-suggest
invokes

A set of Use Cases
(explaining how users will use the system)

A Domain Model
(to keep track of key domain concepts)

Stakeholder Goal Models
(explaining how the use cases will meet the stakeholders’
real needs)

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Diversion: What’s wrong with this?

Job

*1
Everything Controller

getJC(j:Job) : JobController
JobController

1

**

1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Or this?

Customer PayPal
Account CreditCard

Bookstore

class Bookstore {
 …

void settlebill (int total) {
 …
 Customer.PayPalAccount.CreditCard.subtract(total)
 …
 }
}

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

the Law of Demeter
Basically:

“Only talk to your friends”

More specifically:
A method, m, of an object, O, can only call methods of:
1. O itself
2. m’s parameters
3. any object created by m
4. O’s direct component objects
[m cannot call methods of an object returned by another method call]

Programmer’s rule of thumb:
“use only one dot”
e.g. instead of: Customer.PayPalAccount.CreditCard.subtract(total)
use: Customer.GetPayment(total)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Robustness Analysis

Boundary Objects
Used by actors when communicating with the system
Only these can initiate events
(usually widgets on the UI)

Entity Objects
Usually objects from the domain model
Things we need to keep track of

Control Objects
The “glue” between boundary objects & entity objects
Capture business rules and policies
(note: often implemented as methods of other objects)

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Why do Robustness Analysis?
Bridges the gap between Requirements and Design
Sanity Check

Tests the language in the Use Case description
Nouns from the Use Case get mapped onto objects
Verbs from the Use Case get mapped onto actions

Completeness Check
Discover the objects you need to implement the use cases
Identify alternative courses of action

Object Identification
Decide which methods belong to which objects

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Rules for Robustness Diagrams
Allowed Not Allowed

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Intended for the whiteboard…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Contructing a Robustness Diagram
Add a boundary element for each major UI element
Add a controller to manage each Use Case
Add a controller for each business rule
Add a controller for any activity that involves

coordination of several other element
Add an entity for each business concept

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Example

Customer

Home Pageclick login

Login Page

click OK

Display
Generator

account table

validate login

generate
error

message

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

ICONIX process

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Basic Design Steps

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Benefits of Robustness Analysis
1. Forces a consistent style for

use cases
2. Forces correct ‘voice’ for use

cases
3. Sanity and completeness

check for use cases
4. Syntax rules for use case

descriptions
e.g. actors only talk to boundary objects

5. Quicker and easier to read
than sequence diagrams

6. Encourages use of
Model-View-Controller (MVC)
pattern

7. Helps build layered
architectures
e.g presentation layer, domain layer,

repository layer

8. Checks for reusability across
use cases before doing
detailed design

9. Provides traceability between
user’s view and design view

10. Plugs semantic gap between
requirements and design

