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Lecture 14:
Robustness Analysis

Good Object Oriented Design
Robustness Analysis
Allocating Behaviour
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Starting Point
You’ve done the Requirements Analysis
You have:

Challenge:
Allocate responsibility for the use cases to classes in the system
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A set of Use Cases
(explaining how users will use the system)

A Domain Model
(to keep track of key domain concepts)

Stakeholder Goal Models
(explaining how the use cases will meet the stakeholders’
real needs)
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Diversion: What’s wrong with this?
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Or this?

Customer PayPal
Account CreditCard

Bookstore

class Bookstore {
   …

void settlebill (int total) {
    …
    Customer.PayPalAccount.CreditCard.subtract(total)
    …
    }
}



3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

the Law of Demeter
Basically:

“Only talk to your friends”

More specifically:
A method, m, of an object, O, can only call methods of:
1. O itself
2. m’s parameters
3. any object created by m
4. O’s direct component objects
[m cannot call methods of an object returned by another method call]

Programmer’s rule of thumb:
“use only one dot”
e.g. instead of: Customer.PayPalAccount.CreditCard.subtract(total)
use:  Customer.GetPayment(total)
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Robustness Analysis

Boundary Objects
Used by actors when communicating with the system
Only these can initiate events
(usually widgets on the UI)

Entity Objects
Usually objects from the domain model
Things we need to keep track of

Control Objects
The “glue” between boundary objects & entity objects
Capture business rules and policies
(note: often implemented as methods of other objects)



4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Why do Robustness Analysis?
Bridges the gap between Requirements and Design
Sanity Check

Tests the language in the Use Case description
Nouns from the Use Case get mapped onto objects
Verbs from the Use Case get mapped onto actions

Completeness Check
Discover the objects you need to implement the use cases
Identify alternative courses of action

Object Identification
Decide which methods belong to which objects
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Rules for Robustness Diagrams
Allowed Not Allowed



5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Intended for the whiteboard…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Contructing a Robustness Diagram
Add a boundary element for each major UI element
Add a controller to manage each Use Case
Add a controller for each business rule
Add a controller for any activity that involves

coordination of several other element
Add an entity for each business concept
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Example

Customer

Home Pageclick login

Login Page

click OK

Display 
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account table

validate login

generate 
error

message
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ICONIX process
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Basic Design Steps
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Benefits of Robustness Analysis
1. Forces a consistent style for

use cases
2. Forces correct ‘voice’ for use

cases
3. Sanity and completeness

check for use cases
4. Syntax rules for use case

descriptions
e.g. actors only talk to boundary objects

5. Quicker and easier to read
than sequence diagrams

6. Encourages use of
Model-View-Controller (MVC)
pattern

7. Helps build layered
architectures
e.g presentation layer, domain layer,

repository layer

8. Checks for reusability across
use cases before doing
detailed design

9. Provides traceability between
user’s view and design view

10. Plugs semantic gap between
requirements and design


