%Q University of Toronto Department of Computer Science

R 4

%Q University of Toronto Department of Computer Science

What to Model

- Structure
% Entities (more usefully, classes of entities)
% Relationships (whole/part, is-a, talks to..)

- Behaviour
% States
% Events

- Interaction
% Communication patterns
% Dataflow
% Parallelism and coordination
% Temporal dependencies

©2000-2003, Steve Easterbrook 2

Lecture 6: Requirements Modeling IT
Last Week:

Modeling Enterprises
General Modeling Issues
Modeling Human Activity,

i* etc.
This Week:
Modelling Information and Behaviour
Information Structure
Information Flow
Behaviour
Next Week:
Non-functional requirements
Modelling NFRs
Analysis techniques for NFRs
©2000-2003, Steve Easterbrook 1
%\5 University of Toronto Department of Computer Science
Entity Relationship Diagrams
Key
. age N
- ER dlagr‘ams name S TIOha|I1’y I:l Eutity

% widely used for information

modeling —Q Attribute

% simple, easy to use
> Note: this is a notation,
not a method!

< > Relationship
(a,b)~(c,d) Cardinality of
b relationship

—@ Identifier

Composite
Identifier

- Used in many
contexts:

% domain concepts
> objects referred to in goal
models, scenarios, etc.
% Data to be represented in
the system
» for information systems
% Relational Database design
% Meta-modeling

©2000-2003, Steve Easterbrook 3

%\5 University of Toronto Department of Computer Science

The Entity Relationship Model
- Entity-Relationship Schema

% Describes data requirements for a new information system
% Direct, easy-to-understand graphical notation
% Translates readily to relational schema for database design
> But more abstract than relational schema
» E.g. can represent an entity without knowing its properties
% comparable to UML class diagrams

- Entities:
% classes of objects with properties in common and an autonomous existence
> E.g. City, Department, Employee, Purchase and Sale

% An instance of an entity is an object in the class represented by the entity
» E.g. Stockholm, Helsinki, are examples of instances of the entity City

- Relationships:
% logical links between two or more entities.
» E.g. Residence is a relationship that can exist between the City and Employee

% An instance of a relationship is an n-tuple of instances of entities
> E.g. the pair (Johanssen,Stockholm), is an instance in the relationship Residence.

©2000-2003, Steve Easterbrook 4

& University of Toronto Department of Computer Science
Examples
STUDENT COURSE
WORKPLACE
EMPLOYEE Crty

©2000-2003, Steve Easterbrook 5

University of Toronto Department of Computer Science
Example Instances for Exam

Student

©2000-2003, Steve Easterbrook 6

& University of Toronto Department of Co er Science
. What Does An E-R Dlagmm ﬁea"y
Megn?

- Course and Room are entities.
% Their instances are particular courses (eg CSC340F) and rooms (eg MB128)

- Meets is a relationship.
% Its instances describe particular meetings.
% Each meeting has exactly one associated course and room

=

. M i
» eets instances o
urse instances. Boom_instances |
7

©2000-2003, Steve Easterbrook

& University of Toronto Department of Computer Science

Recursive Relationships

- an entity can have
relationships with itself..

EMPLOYEE
- If the relationship is not ‘
symmetric...
% ..need to indicate the two roles that S
the entity plays in the relationship. Predecessor OVEREIGN Successor

©2000-2003, Steve Easterbrook 8

University of Toronto Department of Computer Science
Ternary Relationships

Supplier

ProbUCT

SUPPLIER @

DEPARTMENT

Department

©2000-2003, Steve Easterbrook

V. AND/XOR Relationships

& Department of Computer Science

University of Toronto

“Each Order
either contains a
part or requests
a service, but not

both”

“For any given order,
whenever there is at
least one invoice
there is also at least
one shipment
and vice versa”

©2000-2003, Steve Easterbrook

& University of Toronto Department of Computer Science

A A Attributes

- associates with each instance of an entity (or relationship) a

value belonging to a set (the domain of the attribute).
% The domain determines the admissible values for the attribute.

Mark Date
Q O

Number Name
STUDENT 6 COURSE
EnrolmentDate Year

Name

SurnameO\ /O
Salary C— EMPLOYEE Ciry
Age o ~0
O NumberOf
DateOfBirth Inhabitants

©2000-2003, Steve Easterbrook

& Department of Computer Science

University of Totonto

Schema with Attributes

ReleaseDate
PostCode

©2000-2003, Steve Easterbrook

®

Department of Computer Science

University of Toronto

Cardinalities

- Cardinalities constrain participation in relationships
% maximum and minimum number of relationship instances in which an entity
instance can participate.
% E.g.

(1.5 (0,50)

EMPLOYEE TAsK

- cardinality is any pair of non-negative integers (a,b)

% such that asb.

% If a=0 then entity participation in a relationship is optional

% If a=1 then entity participation in a relationship is mandatory.

% If b=1 each instance of the entity is associated at most with a single
instance of the relationship

% If b="N" then each instance of the entity is associated with an arbitrary
number of instances of the relationship.

© 20002003, Steve Easterbrook 13

é?i‘; University of Toronto

Object Oriented Analysis

- Background
% Model the requirements in terms of objects and the services they provide

% Grew out of object oriented design
> But applied to modelling the application domain rather than the program

- Motivation
% OO0 is (claimed to be) more ‘natural’
> As a system evolves, the functions (processes) it performs tend to change, but
the objects tend to remain unchanged
» Hence a model based on functions/processes will get out of date, but an object
oriented model will not...
> ..hence the claim that object-oriented designs are more maintainable
% OO emphasizes importance of well-defined interfaces between objects
> compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

Department of Computer Science

©2000-2003, Steve Easterbrook

eg University of Toronto

v Nearly anything can be an object...

Source: Adapted from Pressman, 1994, p242

Department of Computer Science

- Organizational Units
% that are relevant to the application

- External Entities
% _.that interact with the system being

modeled >E.g. division, group, team, etc.
>E.g. people, devices, other systems
. - Places
i Thmgs % ..that establish the context of the
% ..that are part of the domain being problem being modeled
modeled »E.g. manufacturing floor, loading

>E.g. reports, displays, signals, etc. dock, efc.

- Structures
% that define a class or assembly of
objects

- Occurrences or Events
% _.that occur in the context of the

system)
>E.g. transfer of resources, a control >E.g. sensors, four-wheeled vehicles,
action, efc. computers, etc.
- Roles Some things cannot be objects:
% played by people who interact with & procedures (e.g. print, invert, etc)
the system % attributes (e.g. blue, 50Mb, etc)

© 20002003, Steve Easterbrook 15

eg University of Toronto

Department of Computer Science

l .
Class Diagrams on
Class name aggregation 0.2 gc?lourt
- iameter
TSP Correction
% N multiplicities

) :patient S 0.1—7F :kidney

attributes Name / Operational?
N Date of Birth] _ 0..1 ’
Height >
services Weight 0..1 1.2
>
:heart
—

generalization 1 ;::szlytzm \x

:In-patient :Qut-patient

Room Last visit ‘organ

Bed next visit Natural/artif.

Physician physician Orig/implant

donor

©2000-2003, Steve Easterbrook

®

University of Toronto

Department of Computer Science
Generalization vs Aggregation

Source: Examples from Bennett, McRobb & Farmer, 2002

- Generalization
% Subclasses inherit attributes, associations, & operations from the superclass
% A subclass may override an inherited aspect

- Aggregation
% This is the "Has-a" or "Whole/part” relationship

Campaign
———
e —

O

- Composition
% Strong form of aggregation that implies ownership:

>if the whole is removed from the model, so is the part.
>the whole is responsible for the disposition of its parts

AdvertCopy v

AdvertGraphic | 1-* NewspaperAdvert

S~composition

AdvertPhotograph | 1.

© 20002003, Steve Easterbrook 17

@

University of Toronto

Department of Computer Science

Multiplicity
A client has
exactly one staffmember

Class associations
Multiplicity

A staff me

zero or more clients on

mber has

The staffmember’s
role in this association
is as a contact person

as a contact person Name His/her clientList
of the
association -Client
:StaffMember z e e
staffName 1 liaises with 0..* | companyEmail
staff# - — companyFax
staffStartDate | contact | ClientList| companyName
person /‘ companyTelephone
Direction
The “liaises with"
association should be
Role read in this direction

Role
The clients' role

in this association

is as a clientList

©2000-2003, Steve Easterbrook

«J University of Totonto

Department of Computer Science

Association Classes

- Sometimes the association is itself a class
% ..because we need to retain information about the association
% ..and that information doesn't naturally live in the classes at the ends of the
association

» E.g. a “title” is an object that represents information about the relationship
between an owner and her car

:person
car Name
VIN(vehicle Id Number)| 0..* owns 1| Address
YearMade DriversLicenceNumber
Mileage < owner | permittedVehicles
:title
yearbought
initialMileage
PricePaid
LicencePlate#

© 20002003, Steve Easterbrook 19

eg University of Toronto

Department of Computer Science

- Aggregation

- Composition

Aggregation and Composition
% This is the "Has-a" or "Whole/part” relationship

% Strong form of aggregation that implies ownership:
> if the whole is removed from the model, so is the part.
> the whole is responsible for the disposition of its parts

1 | :Engine

composition -
ompostTie :Locomotive] 4 -

1
B 0..1 -
:Car " ‘Train

|
0..1
:Person |o.* 0.1
/ driver 1 passengers
aggregation

©2000-2003, Steve Easterbrook

20

% University of Toronto

Department of Computer Science

v Generalization

StaffMember
{abstract)
1 < ocaed 0. | amame
staffNo <€---- A superclass
gradeName staffStartDate
——
calculate Bonus ()
assignNewStaff Grade ()
getStaffDetails ()
Superclass Two
associations are subclasses
P
inherited by - /
subclasses e !
- /
Vs \4
AdminStaff CreativeStaff

[calcutateBonus ()

qualification
calculateBonus ()

- Notes:

% A subclass may override an inherited aspect

» Implies that the subclasses cover all possibilities

% Subclasses inherit attributes, associations, & operations from the superclass

> e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
% Superclasses may be declared {abstract}, meaning they have no instances

> e.g. there are no other staff than AdminStaff and CreativeStaff

assignStaffContact ()

©2000-2003, Steve Easterbrook

21

T

% University of Toronto

More on Generalization

- Usefulness of generalization
% Can easily add new subclasses if the organization changes

- Look for generalizations in two ways:
% Top Down

> You have a class, and discover it can be subdivided

» Or you have an association that expresses a “kind of” relationship

» E.g. "Most of our work is on advertising for the press, that's newspapers and
magazines, also for advertising hoardings, as well as for videos”

% Bottom Up

» You notice similarities between classes you have identified

» E.g. "We have books and we have CDs in the collection, but they are all filed
using the Dewey system, and they can all be lent out and reserved”

- But don't generalize just for the sake of it
% Be sure that everything about the superclass applies to the subcl

% Be sure that the superclass is useful as a class in its own right
» I.e. not one that we would discard using our tests for useful classes

% Don't add subclasses or superclasses that are not relevant to your analysis

Department of Computer Science

©2000-2003, Steve Easterbrook

22

% University of Totonto

Department of Computer Science

)

Variants

- Coad-Yourdon
% Developed in the late 80's
% Five-step analysis method

- Shlaer-Mellor
% Developed in the late 80's

- Fusion
% Second generation OO method
% Introduced use-cases
- Unified Modeling Language (UML)

% Third generation OO method

% Emphasizes modeling information and state, rather than object interfaces

% An attempt to combine advantages of previous methods

©2000-2003, Steve Easterbrook

)

% University of Totonto

Example method: Coad-Yourdon

Source: Adapted from Pressman, 1994, p242 and Davis 1990, p98-99

- Five Step Process:
1. Identify Objects & Classes (i.e. ‘is_a’ relationships)
2. Identify Structures (i.e. part_of’ relationships)
3. Define Subjects
» A more abstract view of a large collection of objects
» Each classification and assembly structure become one subject
» Each remaining singleton object becomes a subject (although if there a many of
these, look for more structurel)
> Subject Diagram shows only the subjects and their interactions
4. Define Attributes and instance connections
5a. Define services - 3 types:
> Occur (create, connect, access, release) These are omitted from the model as
every object has them
» Calculate (when a calculated result from one object is needed by another)
> Monitor (when an object monitors for a condition or event)
5b. Define message connections
> These show how services of one object are used by another
> Shown as dotted lines on object and subject diagrams
> Each message may contain parameters

Department of Computer Science

©2000-2003, Steve Easterbrook

%" University of Toronto

T

Unified Modeling Language

- Third generation OO method

% Booch, Rumbaugh & Jacobson are principal authors
> Still in development
» Attempt to standardize the proliferation of OO variants

% Is purely a notation
» No modeling method associated with it!

% But has been accepted as a standard for OO modeling
> But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

- Has a standardized meta-model
% Use case diagrams
% Class diagrams
% Message sequence charts
% Activity diagrams
% State Diagrams (uses Harel's statecharts)
% Module Diagrams
% Platform diagrams

Department of Computer Science

©2000-2003, Steve Easterbrook

25

%" University of Toronto

- Advantages of OO analysis for RE
% Fits well with the use of OO for design and implementation
> Transition from OOA to OOD 'smoother’ (but is it?)
% Removes emphasis on functions as a way of structuring the analysis

% Avoids the fragmentary nature of structured analysis
> object-orientation is a coherent way of understanding the world

- Disadvantages
% Emphasis on objects brings an emphasis on static modeling
> although later variants have introduced dynamic models
% Not clear that the modeling primitives are appropriate
> are objects, services and relationships really the things we need to model in RE?
% Strong temptation to do design rather than problem analysis
% Fragmentation of the analysis
» E.g. reliance on use-cases means there is no "big picture” of the user's needs
% Too much marketing hypel!
> and false claims - e.g. no evidence that objects are a more natural way to think

Department of Computer Science

¥ Evaluation of OOA

©2000-2003, Steve Easterbrook

26

%" University of Totonto

)

Modelling Behaviour

- All objects have “state”
% The object either exists or it doesn't
% If it exists, then it has a value for each of its attributes

% Each possible assignment of values to attributes is a “state”
> (and non-existence is a state, although we normally ignore it)

-+ E.g. For a stack object

Push() Push() Push() Push()

£ £ £ £ ™4 g
Oiw()-[empty] [1 item] [2 items] [3items][4 items]...

xS NAR ST NAR T NAR L SNA R

Pop() Top() Pop() ~ Top() ~ Pop() Top() Pop() Top()

Department of Computer Science

©2000-2003, Steve Easterbrook

27

)

%" University of Totonto

What does the model mean?

- Finite State Machines

% There are a finite number of states (all attributes have finite ranges)
» E.g. imagine a stack with max length = 3

Push() Push() Push()

£ £ £
Oiw()’[empty] [1 item] [2 items] [3items]
KT HAR ST AR A

Pop() Top() ~ Pop() Top() Pop() Top()

% The model specifies a set of traces

> E.g. new():Push():Push(): Top():Pop():Push()...

> E.g. new():Push():Pop():Push():Pop()...

> There may be an infinite number of traces (and traces may be of infinite length)
% The model excludes some behaviours

> E.g. no trace can start with a Pop()

» E.g. no trace may have more Pops than Pushes

> E.g. no trace may have more than 3 Pushes without a Pop in between

Department of Computer Science

©2000-2003, Steve Easterbrook

28

% University of Toronto

T

Abstraction

- The state space of most objects is enormous

% State space size is the product of the range of each attribute
> E.g. object with five boolean attributes: 2°+1 states
> E.g. object with five integer attributes: (maxint)’+1 states
» E.g. object with five real-valued attributes: ..?

% If we ignore computer representation limits, the state space is infinite

- Only part of that state space is “interesting”
% Some states are not reachable
% Integer and real values usually only vary within some relevant range

% We're usually not interested in the actual values, just certain ranges:
» E.g. for Age, we may be interested in age<18: 18<age<65; and age>65

> E.g. for Cost, we may only be interested in cost<budget, cost=0, cost>budget,
and cost>(budget+10%)

Department of Computer Science

©2000-2003, Steve Easterbrook

29

% University of Toronto

T

Department of Computer Science
Collapsing the state space

Push() Push() Push() Push()

N N 7N > T
._,lnewo empty] [1 item] [2 items] [3items][4 items]...
kK INAR T IAR . INAR . TUAR

Pop() Top() Pop() Top() ~ Pop() Top() Pop() Top()

I

Push() Push()
= _emty | v
empty not empty | | Top()
[[4
Pop() [sc=1] Pop() [sc>1]

% The abstraction usually permits more traces

» E.g. this model does not prevent traces with more pops than pushes
> But it still says something useful
©2000-2003, Steve Easterbrook

30

% University of Totonto

)

Statecharts o
sperson gatag;ginhh
ate eatl
age A Real world object recordBirth()
X setDOB;
havebirthday() Vs i recordD(e)ath()
System representation setDateofDeath()

recordBirth()

havebirthday()

[age < 18]
havebirthday() yinowyear-birthyear>18]
[age = 18]
A
havebirthday()
[age < 65] adult
p y[nowyear-birthyear>65]
havebirthday()
[age = 65]
havebirthday() recordDeath()
senior /setDateofDeath ()

.
3

Department of Computer Science

©2000-2003, Steve Easterbrook

1

)

%" University of Totonto Department of Computer Science

States and Transitions

- A state represents a time period during which
% A predicate is true
> e.g. (budget - expenses) > O,
% An action is being performed, or an event is awaited:
> e.g. checking inventory for order items
> e.g. waiting for arrival of a missing order item

- A state can be “on” or “off".

% When a state is “"on”, all its outgoing transitions are eligible to fire.
% Transitions take the form:
event(parameters) [guard] / action
> For a transition to fire, its event must occur and its guard must be true.
> When a transition fires, its action is carried out.

- States can have associated activities:
% do/activity
> carries out some activity for as long as the state is “on”
% entry/action and exit/action
> carry out the action whenever the state is entered (exited)
% include/stateDiagramName

> “calls” another state diagram, allowing state diagrams to be nested

© 20002003, Steve Easterbrook 32

%" University of Toronto Department of Computer Science
-]

%" University of Toronto Department of Computer Science
Events

Superstates
- Events are happenings the system needs to know about

-+States can be nested, to make diagrams simpler
%A superstate consists of one or more states.
% Must be relevant to the system (or object) being modelled

% Superstates make it possible to view a state diagram at different levels of abstraction.
% Must be modellable as an instantaneous occurance (from the system's point
of view) - OR superstates
> E.g. completing an assignment, failing an exam, a system crash
% Are impl ted by

- AND superstates
% when the superstate is “"on”, only one
ge passing in an OO Design

e e (concurrent substates)
of ITs substates s “on % When the superstate is "on”, all of
its states are also “on”
- In UML, there are four types of events: & Usually, the AND substates wil be
& Change events occur when a condition becomes true nested further as OR superstates
» denoted by the keyword ‘when’
> e.g. when[balance < 0]

employed

% Call events occur when an object receives a call for one of its operations to
be perfomed

employed

on payroll

to project

% Signal events occur when an object receives an explicit (real-time) signal

% Elapsed-time events mark the passage of a designated period of time

probationary
> e.g. after[10 seconds]

after [6 months]

©2000-2003, Steve Easterbrook

©2000-2003, Steve Easterbrook

34

% University of Totonto

Department of Computer Science %" University of Toronto
)

Department of Computer Science
Hierarchical Statecharts i Checking your Statecharts

- Consistency Checks

% All events in a statechart should appear as:
> operations of an appropriate class in the class diagram and

» incoming messages for this object on a collaboration/sequence diagram
% All actions in a statechart should appear as:

> operations of an appropriate class in the class diagram and
wnen
working age [age>65] m deceased

> outgoing messages for this object on a collaboration/sequence diagram

________________________________ . - Style Guidelines
/ = single ™~ partnered

spouse.
N registerDeath()

createRecord()

registerBirth()/

setDateOfBirth () registerDeath ()

[age>17]

adult

% Give each state a unique, meaningful name

% Only use superstates when the state behaviour is genuinely complex
registerDeath () % Do not show too much detail on a single statechart

% Use guard conditions carefully to ensure statechart is unambiguous
> Statecharts should be deterministic (unless there is a good reason)

- You probably shouldn't be using statecharts if:

% you find that most transitions are fired “when the state completes”
/ % many of the trigger events are sent from the object to itself

% your states do not correspond to the attribute assignments of the class
35 © 2000-2003, Steve Easterbrook

. registerDivorce(]
divorced

—

[registerMarriage()/setSpouse ()

©2000-2003, Steve Easterbrook

36

®

=]

University of Toronto

Department of Computer Science

Tabular Specifications: SCR

Four Variable Model:

System
Monitored|
Variables
Dictionaries: Tables: also:
Monitored/Controlled Mode Transition Tables Assertions,
/ariables i Event Tables Scenarios,

/—Y—Yj
Types J
Condition Tables

Constants R

SCR Specification

© 20002003, Steve Easterbrook 37

=]

%ﬁ University of Toronto

Department of Computer Science

SCR basics

- Modes and Mode classes
% A mode class is a finite state machine, with states called system modes
> Transitions in each mode class are triggered by events
% Complex systems are described using a number of mode classes operating in
parallel

- System State

% A (system) state is defined as:
> the system is in exactly one mode from each mode class...
» ..and each variable has a unique value

- Events

% An event occurs when any system entity changes value
> An input event occurs when an input variable changes value
> Single input assumption - only one input event can occur at once
> Notation: @T(c) means “c changed from false to true”
% A conditioned event is an event with a predicate
> @T(c) WHEN d means: “c became true when c was false and d was true”

© 20002003, Steve Easterbrook 38

Source: Adapted from Heitmeyer et. al. 1996.

®

University of Totonto Department of Computer Science

Defining Controlled Variables

- Event Tables
% defines how a controlled variable changes in response to input events
% Defines a partial function from modes and events to variable values

% Example: Modes
Heat, AC @C(target) never
Inactive, Off never @C(target)
Ack_tone = Beep Clang

- Condition Tables

% defines the value of a controlled variable under every possible condition
% Defines a total function from modes and conditions to variable values

%D University of Totonto Department of Computer Science
¥ Defining Mode Classes
-+ Mode Class Tables
% Define a (disjoint) set of modes (states) that the software can be in.
% A complex system will have many different modes classes
> Each mode class has a mode table showing the events that cause transitions between modes
% A mode table defines a partial function from modes and events to modes
- Example:
Current Powered Too Cold Temp OK Too Hot New Mode
Mode on
Off @T - t - Inactive
@T t - - Heat
QT - - t AC
Inactive @F - - - Off
- QT - - Heat
- - - @T AC
Heat @F - - - Off
- - @T - Inactive
AC @F - - - Off
- - @T - Inactive

©2000-2003, Steve Easterbrook

Source: Adapted from Heitmeyer et. al. 1996.

% Example:
Modes
Heat target -temp < 5| target - temp >5
AC temp - target < 5| temp - target >5
Inactive, Off true never
Warning light = Off On

©2000-2003, Steve Easterbrook

Source: Adapted from Heitmeyer et. al. 1996.

40

10

& University of Totonto

Department of Computer Science

¥ Refresher: FSMs and Statecharts

hook
%

Dial4 Callee disconnects
[callee
busy]

Callee
accepts
ringtone connected]

off hook

dialtone

on hook

on hook

on hook

offhook
l busytone l

A

on hook Dial
[callee

busy]
Bl

© 20002003, Steve Easterbrook M

Callee
accepts
ringtone connected

& University of Toronto

Current q callee New
Mode CLLEELS Il offhook Mode
Idle @1 - - Dialtone
Dialtone - Q@T F Ringtone
- QT T Busytone
@F - - Idle
Busytone @F - - Idle

Ringtone - - @T Connected

Q@F - - Idle
Connected - - @F Dialtone
AC Q@F - - Idle

- Interpretation:

% In Ringtone: @F(offhook)
% Etc...

% In Dialtone: @T(offhook) WHEN callee_offhook takes you to Ringing

takes you to Idle

W Department of Computer Science
SCR Equivalent

©2000-2003, Steve Easterbrook

42

®

University of Totonto Department of Computer Science

State Machine Models vs. SCR

- All 3 models on previous slides are (approx) equivalent

- State machine models

% Emphasis is on states & transitions
> No systematic treatment of events
> Different event semantics can be applied

% Graphical notation easy to understand (?)

% Composition achieved through statechart nesting

% Hard to represent complex conditions on transitions

% Hard to represent real-time constraints (e.g. elapsed time)

- SCR models

% Emphasis is on events
> Clear event semantics based on changes to environmental variables
> Single input assumption simplifies modelling

% Tabular notation easy to understand (?)

% Composition achieved through parallel mode classes

% Hard to represent real-time constraints (e.g. elapsed time)

© 20002003, Steve Easterbrook 3

& University of Toronto

Department of Computer Science

x P

. What's up?()

Give mtg details(>

UML Sequence Diagrams

participating i i
object T~

Initiator Staff Scheduler Participant
:Person :Person :Person :Person
Call() Respond() fteration

<

:! [for all participants] *Inform()
3 Acknowledge()
(\1
[for all participants] *Remind() »
Acknowledge()
conditioh Prompt()
Show schedule()

decision=0K] ScheduleOK’ed()

[for all participantg]:
*Inform()

©2000-2003, Steve Easterbrook

11

&; University of Totonto

Department of Computer Science

V. Dataflow Diagrams (DFDs)

— Key
Timetables :
: process
Schedule
proposed : —» dataflow (I'IO control
itineral proposed implied)
booking jtinerary — e——
system | Fare tables: — data store
bpoking .
réquest booked %s : I:l external entity
: itinerary : .
tickets : system boundary
booking ook
confirmation customer
system
- Notes:

% every process, flow, and datastore must be labeled
% representation is hierarchical
»each process will be represented separately as a lower level DFD
% processes are normally numbered for cross reference
% processes transform data

V. Hierarchies of DFDs

»can't have the same data flowing out of a process as flows into it
©2000-2003, Steve Easterbrook

45

&; University of Toronto

Department of Computer Science

Level O: Context Diagram Level 1: Whole System

customer
i
@ : —
b
bookiri
confirma /..

proposed
itinerary

—
Fare tables

Boking

vequest,

\ - booking
onfirmation
system

okel
itinerq

© 20002003, Steve Easterbrook 46

‘; University of Toronto Department of Computer Science

Structured Analysis

- Definition
% Structured Analysis is a data-oriented approach to conceptual modeling
% Common feature is the centrality of the dataflow diagram

% Mainly used for information systems
> variants have been adapted for real-time systems

- Modeling process: indicative optative
(existing system) (new system)
Abstract A
(essential functions) 2. Current | | 3. New logical
logical system system
4 v
Concrete 1. Current 4. New
(detailed model) physical system physical system

% Model of current physical system only useful as basis for the logical model
% Distinction between indicative and optative models is very important:
» Must understand which requirements are needed to continue current functionality,
and which are new with the updated system
©2000-2003, Steve Easterbrook

47

‘; University of Toronto Department of Computer Science

Variants

Source: Adapted from Svoboda, 1990, p264-5

Control

- Structured Analysis and Design Technique
(SADT)
% Developed by Doug Ross in the mid-70's
% Uses activity diagrams rather than dataflow diagrams
% Distinguishes control data from processing data
- Structured Analysis and System @é\@?
Specification (SASS)
% Developed by Yourdon and DeMarco in the mid-70's
% ‘classic’ structured analysis

- Structured System Analysis (SSA)

% Developed by Gane and Sarson @ &@8 <ID>
% Notation similar to Yourdon & DeMarco _Name
% Adds data access diagrams to describe contents of

data stores

Transformed
Incoming data

data

Performing
mechanism

- Structured Requirements Definition (SRD) (1D
% Developed by Ken Orr in the mid-70's m
% Introduces the idea of building separate models for A ;
each perspective and then merging them @@A O Name

©2000-2003, Steve Easterbrook

12

®

University of Toronto

Example method: SASS

Source: Adapted from Davis, 1990, p§3-86

. Study current environment
% draw DFD to show how data flows through current organization
% label bubbles with names of organizational units or individuals

2. Derive logical equivalents

% replace names (of people, roles,..) with action verbs
% merge bubbles that show the same logical function
% delete bubbles that don't transform data

3. Model new logical system

% Modify logical DFD to show how info will flow once new system is in place
> ..but don't distinguish (yet) which components will be automated

4. Define a number of automation alternatives

% document each as a physical DFD

% Analyze each with cost/benefit trade-off
% Select one for implementation

% Werite the specification

Department of Computer Science

©2000-2003, Steve Easterbrook

49

@

- Advantages

- Disadvantages

Department of Computer Science
Evaluation of SA techniques

Source: Adapted from Davis, 1990, p174

University of Toronto

% Facilitates communication.

% Notations are easy to learn, and don't require software expertise
% Clear definition of system boundary

% Use of abstraction and partitioning

% Automated tool support
> e.g. CASE tools provide automated consistency checking

% Little use of projection
> even SRD's 'perspectives’ are not really projection
% Confusion between modeling the problem and modeling the solution
» most of these techniques arose as design techniques
% These approaches model the system, but not its application domain
% Timing issues are completely invisible

®

University of Totonto

UML Activity Diagrams

Receive
Order

* [for each line
item on order]

[failed] Check

Line ltem

Authorize
Payment

[succeeded] l[in stock]

Assign to
Order

[need to
reorder]
4

rder
m

Dispatch
Order

Reol
Ite

Department of Computer Science

©2000-2003, Steve Easterbrook

51

© 2000-2003, Steve Easterbrook 50
-+ _University of Toronto Department of Computer Science

e B ke

4|—l Yy __
stock assigned to y ¥ [need t

| line items and
ayment authorized]

Activity Diagram with Swimlanes

Finance | Order Stock
Processing Manager

Suppl

n to

A orger

Y

|
[all outstanding |
order it(—)msfilled]I _I_
I
I
1

|

| L reorder}
|(Dispatch Reorder
| Order Item
|

L @

Add Remainder
to Stock

© 20002003, Steve Easterbrook 52

