
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 6: Requirements Modeling II
Last Week:

Modeling Enterprises
General Modeling Issues
Modeling Human Activity,

i* etc.

Last Week:
Modeling Enterprises

General Modeling Issues
Modeling Human Activity,

i* etc.

Next Week:
Non-functional requirements

Modelling NFRs
Analysis techniques for NFRs

Next Week:
Non-functional requirements

Modelling NFRs
Analysis techniques for NFRs

This Week:
Modelling Information and Behaviour

Information Structure
Information Flow

Behaviour

This Week:
Modelling Information and Behaviour

Information Structure
Information Flow

Behaviour

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What to Model
 Structure

 Entities (more usefully, classes of entities)
 Relationships (whole/part, is-a, talks to…)

 Behaviour
 States
 Events

 Interaction
 Communication patterns
 Dataflow
 Parallelism and coordination
 Temporal dependencies

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Entity Relationship Diagrams

Actor

Entity

Attribute

Relationship

Key

Cast

Film

 ER diagrams
 widely used for information

modeling
 simple, easy to use

 Note: this is a notation,
not a method!

 Used in many
contexts:
 domain concepts

 objects referred to in goal
models, scenarios, etc.

 Data to be represented in
the system
 for information systems

 Relational Database design
 Meta-modeling

(a,b) (c,d) Cardinality of
relationship

name age nationality

producer director title
year

(0,n)

(1,n)

Identifier

Composite
Identifier

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

The Entity Relationship Model
 Entity-Relationship Schema

 Describes data requirements for a new information system
 Direct, easy-to-understand graphical notation
 Translates readily to relational schema for database design

 But more abstract than relational schema
 E.g. can represent an entity without knowing its properties

 comparable to UML class diagrams

 Entities:
 classes of objects with properties in common and an autonomous existence

 E.g. City, Department, Employee, Purchase and Sale
 An instance of an entity is an object in the class represented by the entity

 E.g. Stockholm, Helsinki, are examples of instances of the entity City

 Relationships:
 logical links between two or more entities.

 E.g. Residence is a relationship that can exist between the City and Employee
 An instance of a relationship is an n-tuple of instances of entities

 E.g. the pair (Johanssen,Stockholm), is an instance in the relationship Residence.

2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Examples

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example Instances for Exam

Exam

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

MeetsCourse Room

Course instancesCourse instances Room instancesRoom instancesMeets instancesMeets instances

What Does An E-R Diagram Really
Mean?

 Course and Room are entities.
 Their instances are particular courses (eg CSC340F) and rooms (eg MB128)

Meets is a relationship.
 Its instances describe particular meetings.
 Each meeting has exactly one associated course and room

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Recursive Relationships
 an entity can have

relationships with itself…

 If the relationship is not
symmetric…

 …need to indicate the two roles that
the entity plays in the relationship.

3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Ternary Relationships

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Contains

Order

Part

Requests Service

XORXOR

FilledBy

Order

Shipment

Generates Invoice

ANDAND

““Each OrderEach Order
either contains aeither contains a
part or requestspart or requests

a service, but nota service, but not
bothboth””

““For any given order,For any given order,
whenever there is atwhenever there is at

least one invoiceleast one invoice
there is also at leastthere is also at least

one shipmentone shipment
and vice versaand vice versa””

AND/XOR Relationships

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Attributes
 associates with each instance of an entity (or relationship) a

value belonging to a set (the domain of the attribute).
 The domain determines the admissible values for the attribute.

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Schema with Attributes

4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Cardinalities
 Cardinalities constrain participation in relationships

maximum and minimum number of relationship instances in which an entity
instance can participate.

 E.g.

 cardinality is any pair of non-negative integers (a,b)
 such that a≤b.
 If a=0 then entity participation in a relationship is optional
 If a=1 then entity participation in a relationship is mandatory.
 If b=1 each instance of the entity is associated at most with a single

instance of the relationship
 If b=“N” then each instance of the entity is associated with an arbitrary

number of instances of the relationship.

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Object Oriented Analysis
 Background

Model the requirements in terms of objects and the services they provide
 Grew out of object oriented design

 But applied to modelling the application domain rather than the program

Motivation
OO is (claimed to be) more ‘natural’

 As a system evolves, the functions (processes) it performs tend to change, but
the objects tend to remain unchanged

 Hence a model based on functions/processes will get out of date, but an object
oriented model will not…

 …hence the claim that object-oriented designs are more maintainable
OO emphasizes importance of well-defined interfaces between objects

 compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Nearly anything can be an object…
 External Entities

 …that interact with the system being
modeled

E.g. people, devices, other systems

 Things
 …that are part of the domain being

modeled
E.g. reports, displays, signals, etc.

 Occurrences or Events
 …that occur in the context of the

system
E.g. transfer of resources, a control
action, etc.

 Roles
 played by people who interact with

the system

 Organizational Units
 that are relevant to the application

E.g. division, group, team, etc.

 Places
 …that establish the context of the

problem being modeled
E.g. manufacturing floor, loading
dock, etc.

 Structures
 that define a class or assembly of

objects
E.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
 procedures (e.g. print, invert, etc)
 attributes (e.g. blue, 50Mb, etc)

Source: Adapted from Pressman, 1994, p242

16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Class Diagrams

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2

0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor

5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Generalization vs Aggregation
 Generalization

 Subclasses inherit attributes, associations, & operations from the superclass
 A subclass may override an inherited aspect

 Aggregation
 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

if the whole is removed from the model, so is the part.
the whole is responsible for the disposition of its parts

aggregation

generalization

composition

Source: Examples from Bennett, McRobb & Farmer, 2002

18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Association Classes
 Sometimes the association is itself a class

 …because we need to retain information about the association
 …and that information doesn’t naturally live in the classes at the ends of the

association
 E.g. a “title” is an object that represents information about the relationship

between an owner and her car

:car
VIN(vehicle Id Number)
YearMade
Mileage

:person
Name
Address
DriversLicenceNumber
PermittedVehicles

0..* 1owns
owner

:title
yearbought
initialMileage
PricePaid
LicencePlate#

20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Aggregation and Composition
 Aggregation

 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

 if the whole is removed from the model, so is the part.
 the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive

6

21

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Generalization

Notes:
 Subclasses inherit attributes, associations, & operations from the superclass
 A subclass may override an inherited aspect

 e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
 Superclasses may be declared {abstract}, meaning they have no instances

 Implies that the subclasses cover all possibilities
 e.g. there are no other staff than AdminStaff and CreativeStaff

22

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

More on Generalization
 Usefulness of generalization

 Can easily add new subclasses if the organization changes

 Look for generalizations in two ways:
 Top Down

 You have a class, and discover it can be subdivided
 Or you have an association that expresses a “kind of” relationship
 E.g. “Most of our work is on advertising for the press, that’s newspapers and

magazines, also for advertising hoardings, as well as for videos”
 Bottom Up

 You notice similarities between classes you have identified
 E.g. “We have books and we have CDs in the collection, but they are all filed

using the Dewey system, and they can all be lent out and reserved”

 But don’t generalize just for the sake of it
 Be sure that everything about the superclass applies to the subclasses
 Be sure that the superclass is useful as a class in its own right

 I.e. not one that we would discard using our tests for useful classes
 Don’t add subclasses or superclasses that are not relevant to your analysis

23

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Variants
 Coad-Yourdon

 Developed in the late 80’s
 Five-step analysis method

 Shlaer-Mellor
 Developed in the late 80’s
 Emphasizes modeling information and state, rather than object interfaces

 Fusion
 Second generation OO method
 Introduced use-cases

 Unified Modeling Language (UML)
 Third generation OO method
 An attempt to combine advantages of previous methods

24

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example method: Coad-Yourdon
 Five Step Process:

1. Identify Objects & Classes (i.e. ‘is_a’ relationships)
2. Identify Structures (i.e. ‘part_of’ relationships)
3. Define Subjects

 A more abstract view of a large collection of objects
 Each classification and assembly structure become one subject
 Each remaining singleton object becomes a subject (although if there a many of

these, look for more structure!)
 Subject Diagram shows only the subjects and their interactions

4. Define Attributes and instance connections
5a. Define services - 3 types:

 Occur (create, connect, access, release) These are omitted from the model as
every object has them

 Calculate (when a calculated result from one object is needed by another)
 Monitor (when an object monitors for a condition or event)

5b. Define message connections
 These show how services of one object are used by another
 Shown as dotted lines on object and subject diagrams
 Each message may contain parameters

Source: Adapted from Pressman, 1994, p242 and Davis 1990, p98-99

7

25

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Unified Modeling Language
 Third generation OO method

 Booch, Rumbaugh & Jacobson are principal authors
 Still in development
 Attempt to standardize the proliferation of OO variants

 Is purely a notation
 No modeling method associated with it!

 But has been accepted as a standard for OO modeling
 But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

 Has a standardized meta-model
 Use case diagrams
 Class diagrams
Message sequence charts
 Activity diagrams
 State Diagrams (uses Harel’s statecharts)
Module Diagrams
 Platform diagrams

26

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Evaluation of OOA
 Advantages of OO analysis for RE

 Fits well with the use of OO for design and implementation
 Transition from OOA to OOD ‘smoother’ (but is it?)

 Removes emphasis on functions as a way of structuring the analysis
 Avoids the fragmentary nature of structured analysis

 object-orientation is a coherent way of understanding the world

 Disadvantages
 Emphasis on objects brings an emphasis on static modeling

 although later variants have introduced dynamic models
Not clear that the modeling primitives are appropriate

 are objects, services and relationships really the things we need to model in RE?
 Strong temptation to do design rather than problem analysis
 Fragmentation of the analysis

 E.g. reliance on use-cases means there is no “big picture” of the user’s needs
 Too much marketing hype!

 and false claims - e.g. no evidence that objects are a more natural way to think

27

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modelling Behaviour
 All objects have “state”

 The object either exists or it doesn’t
 If it exists, then it has a value for each of its attributes
 Each possible assignment of values to attributes is a “state”

 (and non-existence is a state, although we normally ignore it)

 E.g. For a stack object

empty 1 item

Push()

Pop()

new()
2 items 3 items 4 items

Push() Push() Push()

Pop() Pop()

…
Pop()Top() Top() Top() Top()

28

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What does the model mean?
 Finite State Machines

 There are a finite number of states (all attributes have finite ranges)
 E.g. imagine a stack with max length = 3

 The model specifies a set of traces
 E.g. new();Push();Push();Top();Pop();Push()…
 E.g. new();Push();Pop();Push();Pop()…
 There may be an infinite number of traces (and traces may be of infinite length)

 The model excludes some behaviours
 E.g. no trace can start with a Pop()
 E.g. no trace may have more Pops than Pushes
 E.g. no trace may have more than 3 Pushes without a Pop in between

empty 1 item

Push()

Pop()

new()
2 items 3 items

Push() Push()

Pop() Pop()Top() Top() Top()

8

29

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Abstraction
 The state space of most objects is enormous

 State space size is the product of the range of each attribute
 E.g. object with five boolean attributes: 25+1 states
 E.g. object with five integer attributes: (maxint)5+1 states
 E.g. object with five real-valued attributes: …?

 If we ignore computer representation limits, the state space is infinite

Only part of that state space is “interesting”
 Some states are not reachable
 Integer and real values usually only vary within some relevant range
We’re usually not interested in the actual values, just certain ranges:

 E.g. for Age, we may be interested in age<18; 18≤age≤65; and age>65
 E.g. for Cost, we may only be interested in" cost≤budget, cost=0, cost>budget,

and cost>(budget+10%)

30

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Collapsing the state space

empty 1 item

Push()

Pop()

new()
2 items 3 items 4 items

Push() Push() Push()

Pop() Pop()

…
Pop()Top() Top() Top() Top()

empty not empty

Push()Push()

Pop() [sc=1]

new()

Pop() [sc>1]

Top()

 The abstraction usually permits more traces
 E.g. this model does not prevent traces with more pops than pushes
 But it still says something useful

31

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Statecharts

child

adult

senior

havebirthday()
[age = 18]

havebirthday()
[age = 65]

havebirthday()
[age < 18]

havebirthday()
[age < 65]

havebirthday()

child

adult

senior

when
[nowyear-birthyear>18]

when
[nowyear-birthyear>65]

deceased

recordBirth()
/setDOB()

recordDeath()
/setDateofDeath()

:person
dateOfBirth
dateOfDeath
recordBirth()
setDOB()
recordDeath()
setDateofDeath()

:person
age

havebirthday()
Real world object

vs.
System representation

32

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

States and Transitions
 A state represents a time period during which

 A predicate is true
 e.g. (budget - expenses) > 0,

 An action is being performed, or an event is awaited:
 e.g. checking inventory for order items
 e.g. waiting for arrival of a missing order item

 A state can be “on” or “off”.
When a state is “on”, all its outgoing transitions are eligible to fire.
 Transitions take the form:

event(parameters) [guard] / action
 For a transition to fire, its event must occur and its guard must be true.
 When a transition fires, its action is carried out.

 States can have associated activities:
 do/activity

 carries out some activity for as long as the state is “on”
 entry/action and exit/action

 carry out the action whenever the state is entered (exited)
 include/stateDiagramName

 “calls” another state diagram, allowing state diagrams to be nested

9

33

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Events
 Events are happenings the system needs to know about

Must be relevant to the system (or object) being modelled
Must be modellable as an instantaneous occurance (from the system’s point

of view)
 E.g. completing an assignment, failing an exam, a system crash

 Are implemented by message passing in an OO Design

 In UML, there are four types of events:
 Change events occur when a condition becomes true

 denoted by the keyword ‘when’
 e.g. when[balance < 0]

 Call events occur when an object receives a call for one of its operations to
be perfomed

 Signal events occur when an object receives an explicit (real-time) signal
 Elapsed-time events mark the passage of a designated period of time

 e.g. after[10 seconds]

34

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Superstates

 OR superstates
 when the superstate is “on”, only one

of its substates is “on”

 AND superstates
(concurrent substates)

 When the superstate is “on”, all of
its states are also “on”

 Usually, the AND substates will be
nested further as OR superstates

States can be nested, to make diagrams simpler
A superstate consists of one or more states.
Superstates make it possible to view a state diagram at different levels of abstraction.

employed

probationary

full

employed

on payroll

assigned
to project

after [6 months]

35

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

adult

single partnered

Hierarchical Statecharts

child

working age senior

unmarried

married

divorced

widowed

separated

deceased

registerDeath()

when
[age>17]

unborn
registerBirth()/
setDateOfBirth()

when
[age>65]

registerMarriage()/setSpouse()

when
[� � � �addr ≠
 spouse.addr]

registerDivorce()

spouse.
registerDeath() when

[� � � �addr =
 spouse.addr]

registerDeath()

createRecord()

36

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Checking your Statecharts
 Consistency Checks

 All events in a statechart should appear as:
 operations of an appropriate class in the class diagram and
 incoming messages for this object on a collaboration/sequence diagram

 All actions in a statechart should appear as:
 operations of an appropriate class in the class diagram and
 outgoing messages for this object on a collaboration/sequence diagram

 Style Guidelines
 Give each state a unique, meaningful name
Only use superstates when the state behaviour is genuinely complex
 Do not show too much detail on a single statechart
 Use guard conditions carefully to ensure statechart is unambiguous

 Statecharts should be deterministic (unless there is a good reason)

 You probably shouldn’t be using statecharts if:
 you find that most transitions are fired “when the state completes”
many of the trigger events are sent from the object to itself
 your states do not correspond to the attribute assignments of the class

10

37

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

software
Monitored

 Variables

Enviro-
ment

System

input
devices

input

data
items

data
items

output

devices

output Controlled

 Variables

Enviro-
ment

Tabular Specifications: SCR

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)ACpower =OffOn

ModesEventsNoFailurefalsetrueACFailure, HeatFailuretruefalseBuzzer =OffOn

ModesEventsNoFailuretruefalseACFailuretemp > temp0temp <= temp0HeatFailurefalsewaterlevel =lowWarning light =OffOn

VariableTypeInitial ValueUnitsWarningFlagbooleanfalse-OtherFlagbooleantrueFudgelevelenumeratedone-Waterlevelreal0.0mtemperaturereal0.0degrees CBlipCounterinteger0milesTimeNowreal100.0secAirBrakeAccreal0.0m/sec

ConstantTypeValueUnitsLowTempinteger15degrees CHighTempinteger23degrees CMaxTimeOutinteger300millisecReferenceSafetyLevelsafetytypelow-TempMargininteger5degrees C

TypeBaseTypeValuesUnitsWarningLevelenumeratedlow,med,high-Temperatureinteger-100..100degrees CWaterlevelinteger0..100metersFlagenumeratedon, off-

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveTimeout@F---No Failure-ff@TACFailure

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)Heater =OffOn

ModesEventsNoFailure@T(INMODE)neverSensorFail@T(reset=on)@T(INMODE)TimeoutalwaysneverACFailure, HeatFailurenever@T(INMODE)Warning light =OffOn

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

Four Variable Model:

SCR Specification

38

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SCR basics
Modes and Mode classes

 A mode class is a finite state machine, with states called system modes
 Transitions in each mode class are triggered by events

 Complex systems are described using a number of mode classes operating in
parallel

 System State
 A (system) state is defined as:

 the system is in exactly one mode from each mode class…
 …and each variable has a unique value

 Events
 An event occurs when any system entity changes value

 An input event occurs when an input variable changes value
 Single input assumption - only one input event can occur at once
 Notation: @T(c) means “c changed from false to true”

 A conditioned event is an event with a predicate
 @T(c) WHEN d means: “c became true when c was false and d was true”

Source: Adapted from Heitmeyer et. al. 1996.

39

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

 Mode Class Tables
 Define a (disjoint) set of modes (states) that the software can be in.
 A complex system will have many different modes classes

 Each mode class has a mode table showing the events that cause transitions between modes
 A mode table defines a partial function from modes and events to modes

 Example:

Defining Mode Classes

Source: Adapted from Heitmeyer et. al. 1996.

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

40

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

 Event Tables
 defines how a controlled variable changes in response to input events
 Defines a partial function from modes and events to variable values
 Example:

 Condition Tables
 defines the value of a controlled variable under every possible condition
 Defines a total function from modes and conditions to variable values
 Example:

Defining Controlled Variables

Source: Adapted from Heitmeyer et. al. 1996.

Modes

Heat target - temp ≤ 5 target - temp >5

AC temp - target ≤ 5 temp - target >5

Inactive, Off true never

Warning light = Off On

Modes

Heat, AC @C(target) never

Inactive, Off never @C(target)

Ack_tone = Beep Clang

11

41

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

offhook

idle connectedringtonedialtone

busytone
on hook

on hook

on hook

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

Refresher: FSMs and Statecharts

42

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SCR Equivalent
Current
Mode

offhook dial callee
offhook

New
Mode

Idle @T - - Dialtone
Dialtone - @T F Ringtone

- @T T Busytone
@F - - Idle

Busytone @F - - Idle
Ringtone - - @T Connected

@F - - Idle
Connected - - @F Dialtone
AC @F - - Idle

 Interpretation:
 In Dialtone: @T(offhook) WHEN callee_offhook takes you to Ringing
 In Ringtone: @F(offhook) takes you to Idle
 Etc…

43

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

State Machine Models vs. SCR
 All 3 models on previous slides are (approx) equivalent
 State machine models

 Emphasis is on states & transitions
 No systematic treatment of events
 Different event semantics can be applied

 Graphical notation easy to understand (?)
 Composition achieved through statechart nesting
Hard to represent complex conditions on transitions
Hard to represent real-time constraints (e.g. elapsed time)

 SCR models
 Emphasis is on events

 Clear event semantics based on changes to environmental variables
 Single input assumption simplifies modelling

 Tabular notation easy to understand (?)
 Composition achieved through parallel mode classes
Hard to represent real-time constraints (e.g. elapsed time)

44

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

UML Sequence Diagrams

Call() Respond()

What’s up?()

Give mtg details()
[for all participants] *Inform()

[for all participants] *Remind()

Prompt()
Show schedule()

[decision=OK] ScheduleOK’ed()

Initiator
:Person

Participant
:Person

[for all participants]
*Inform()

Staff
:Person

Scheduler
:Person

Acknowledge()

Acknowledge()
condition

iteration

participating
object

Tim
e

12

45

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Key

process

dataflow (no control
implied)

data store

external entity

system boundary

1.
determine
form of
travel

2.
check

schedule

3.
reserve
seats

4.
issue

tickets

Timetables

Fare tables

customer

booking
system

booking
system customer

travel
request

customer
query

schedule

proposed
itinerary proposed

itinerary

booked
itinerary

fares

tickets

booking
confirmation

booking
request

Dataflow Diagrams (DFDs)

 Notes:
 every process, flow, and datastore must be labeled
 representation is hierarchical

each process will be represented separately as a lower level DFD
 processes are normally numbered for cross reference
 processes transform data

can’t have the same data flowing out of a process as flows into it

46

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Level n: subprocesses

3.1
request
res.

3.2.
log 3.3.

track

booking
system

Request id. Request id.

timestamps booking
confirmation

booking
request

preferences

Level n: subprocesses

3.1
request
res.

3.2.
log 3.3.

track

booking
system

Request id. Request id.

timestamps booking
confirmation

booking
request

preferences

Level 2: subprocesses

3.1
request
reser-
vations

3.2.
confirm
booking

3.3.
collate

confirm-
ations

booking
systemReq id.

Req id.

seat
data

booking
confirmation

booking
request

seating prefs

Hierarchies of DFDs

ticket
system

booking
system

customer
tickets

booking
confirmation

booking
request

customer
query

Level 0: Context Diagram

check
schedule

issue
tickets

Proposed
itinerary

booked
itinerary

booking
request

1.
determine
form of
travel

2.
check

schedule

3.
reserve
seats

4.
issue

tickets

Timetables

Fare tables

customer

booking
system

customer

travel
request

customer
query

schedule
proposed
itinerary proposed

itinerary

booked
itinerary

fares

tickets
booking

confirmation

booking
request

Level 1: Whole System

47

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Structured Analysis
 Definition

 Structured Analysis is a data-oriented approach to conceptual modeling
 Common feature is the centrality of the dataflow diagram
Mainly used for information systems

 variants have been adapted for real-time systems

Modeling process:

Model of current physical system only useful as basis for the logical model
 Distinction between indicative and optative models is very important:

 Must understand which requirements are needed to continue current functionality,
and which are new with the updated system

2. Current
logical system

1. Current
physical system

3. New logical
system

4. New
physical system

Abstract
(essential functions)

Concrete
(detailed model)

indicative
(existing system)

optative
(new system)

48

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Variants

ActivityIncoming
data

Performing
mechanism

Control
data

Transformed
data

Name
ID

Name

Name
ID

NameID

Source: Adapted from Svoboda, 1990, p264-5

 Structured Analysis and Design Technique
(SADT)
 Developed by Doug Ross in the mid-70’s
 Uses activity diagrams rather than dataflow diagrams
 Distinguishes control data from processing data

 Structured Analysis and System
Specification (SASS)
 Developed by Yourdon and DeMarco in the mid-70’s
 ‘classic’ structured analysis

 Structured System Analysis (SSA)
 Developed by Gane and Sarson
 Notation similar to Yourdon & DeMarco
 Adds data access diagrams to describe contents of

data stores

 Structured Requirements Definition (SRD)
 Developed by Ken Orr in the mid-70’s
 Introduces the idea of building separate models for

each perspective and then merging them

13

49

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example method: SASS
1. Study current environment

 draw DFD to show how data flows through current organization
 label bubbles with names of organizational units or individuals

2. Derive logical equivalents
 replace names (of people, roles,…) with action verbs
merge bubbles that show the same logical function
 delete bubbles that don’t transform data

3. Model new logical system
Modify logical DFD to show how info will flow once new system is in place

 …but don’t distinguish (yet) which components will be automated

4. Define a number of automation alternatives
 document each as a physical DFD
 Analyze each with cost/benefit trade-off
 Select one for implementation
Write the specification

Source: Adapted from Davis, 1990, p83-86

50

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Evaluation of SA techniques
 Advantages

 Facilitates communication.
Notations are easy to learn, and don’t require software expertise
 Clear definition of system boundary
 Use of abstraction and partitioning
 Automated tool support

 e.g. CASE tools provide automated consistency checking

 Disadvantages
 Little use of projection

 even SRD’s ‘perspectives’ are not really projection
 Confusion between modeling the problem and modeling the solution

 most of these techniques arose as design techniques
 These approaches model the system, but not its application domain
 Timing issues are completely invisible

Source: Adapted from Davis, 1990, p174

51

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

UML Activity Diagrams
Receive
Order

Reorder
Item

Dispatch
Order

Check
Line Item

Assign to
Order

Authorize
Payment

Cancel
Order

[for each line
item on order]*

[in stock]

[need to
reorder]

[succeeded]

[failed]

52

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Activity Diagram with Swimlanes

Receive
Order

Reorder
Item

Dispatch
Order

Check
Line
Item

Assign to
Order

[for each line
item on order]

*

[in stock]

[need to
reorder]

[stock assigned to
all line items and
payment authorized]

Authorize
Payment

Cancel
Order

[succeeded]

[failed]

Receive
Supply

Choose
Outstanding
Order Items

Assign Goods
to Order

[for each chosen
order item]

*

[all outstanding
order items filled]

Add Remainder
to Stock

Order
Processing

Finance Stock
Manager

