
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 5: Modeling Enterprises
Last Week:

Elicitation Techniques
Interviews, surveys, etc

Cognitive approaches
Contextual approaches

Last Week:
Elicitation Techniques

Interviews, surveys, etc
Cognitive approaches

Contextual approaches

Next Week:
Modeling Info and Behaviour
Structured and OO methods

ER and Class Hierarchies
State machines

Next Week:
Modeling Info and Behaviour
Structured and OO methods

ER and Class Hierarchies
State machines

This Week:
Modeling Enterprises

General Modeling Issues
Modeling Human Activity

Decomposition, Means-Ends Analysis
and task dependencies

This Week:
Modeling Enterprises

General Modeling Issues
Modeling Human Activity

Decomposition, Means-Ends Analysis
and task dependencies

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook
Source: Adapted from Jackson, 1995, p120-122

For every B, at
least one P exists
such that R(P, B)

The
application

domain

Designations for
the application

domain

Common
Properties

The
modelling
domain

Designations
for the model’s
domain

B = Book
P = Person
R = Wrote

Book: entity
Person: entity

author: relation

RE involves a lot of modelling
 A model is more than just a description

 it has its own phenomena, and its own relationships among those phenomena.
 The model is only useful if the model’s phenomena correspond in a systematic way

to the phenomena of the domain being modelled.
 Example:

Book
title

author (0,n)
(1,n)

name
ISBN

Person

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

“It’s only a model”
 There will always be:

 phenomena in the model that are not present in the application domain
 phenomena in the application domain that are not in the model

 A model is never perfect
 “If the map and the terrain disagree, believe the terrain”
 Perfecting the model is not always a good use of your time...

Source: Adapted from Jackson, 1995, p124-5

…every book has at
least one author…
…every book has a

unique ISBN…

Common
Phenomena

…ghost writers…
…pseudonyms…

…anonymity…

…no two people
born on same date
with same name…

Book
title

author (0,n)
(1,n)

name
ISBN

Person

DOB

Phenomena
not captured
in the model

Phenomena
not true

in the world

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modelling…
Modelling can guide elicitation:

 It can help you figure out what questions to ask
 It can help to surface hidden requirements

 i.e. does it help you ask the right questions?

Modelling can provide a measure of progress:
 Completeness of the models -> completeness of the elicitation (?)

 i.e. if we’ve filled in all the pieces of the models, are we done?

Modelling can help to uncover problems
 Inconsistency in the models can reveal interesting things…

 e.g. conflicting or infeasible requirements
 e.g. confusion over terminology, scope, etc
 e.g. disagreements between stakeholders

Modelling can help us check our understanding
 Reason over the model to understand its consequences

 Does it have the properties we expect?
 Animate the model to help us visualize/validate the requirements

2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook
Source: Adapted from Loucopoulos & Karakostas, 1995, p72-73

UML fits in here

Choice of modelling notation
 natural language

 extremely expressive and flexible
 useful for elicitation, and to annotate models for readability

 poor at capturing key relationships

 semi-formal notation
 captures structure and some semantics
 can perform (some) reasoning, consistency checking, animation, etc.

 E.g. diagrams, tables, structured English, etc.
mostly visual - for rapid communication with a variety of stakeholders

 formal notation
 precise semantics, extensive reasoning possible

 Underlying mathematical model (e.g. set theory, FSMs, etc)
 very detailed models (may be more detailed than we need)

 RE formalisms are for conceptual modelling, hence differ from most computer
science formalisms

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Desiderata for Modelling Notations
 Implementation Independence

 does not model data representation,
internal organization, etc.

 Abstraction
 extracts essential aspects

e.g. things not subject to frequent
change

 Formality
 unambiguous syntax
 rich semantic theory

 Constructability
 can construct pieces of the model to

handle complexity and size
 construction should facilitate

communication

 Ease of analysis
 ability to analyze for ambiguity,

incompleteness, inconsistency

 Traceability
 ability to cross-reference elements
 ability to link to design,

implementation, etc.

 Executability
 can animate the model, to compare it

to reality

 Minimality
 No redundancy of concepts in the

modelling scheme
i.e. no extraneous choices of how to
represent something

Source: Adapted from Loucopoulos & Karakostas, 1995, p77

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Meta-Modeling
 Can compare modeling schema using meta-models:

What phenomena does each scheme capture?
What guidance is there for how to elaborate the models?
What analysis can be performed on the models?

 Example meta-model:

Facts

EventsActivities

modify record

trigger
State changes in the
application domain

Actions inducing change
of facts in the application domain

Propositions
about the application domain

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modelling principles
 Facilitate Modification and Reuse

 Experienced analysts reuse their past experience
 they reuse components (of the models they have built in the past)
 they reuse structure (of the models they have built in the past)

 Smart analysts plan for the future
 they create components in their models that might be reusable
 they structure their models to make them easy to modify

 Helpful ideas:
 Abstraction

 strip away detail to concentrate on the important things
 Decomposition (Partitioning)

 Partition a problem into independent pieces, to study separately
 Viewpoints (Projection)

 Separate different concerns (views) and describe them separately
Modularization

 Choose structures that are stable over time, to localize change
 Patterns

 Structure of a model that is known to occur in many different applications

3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modelling Principle 1: Partitioning
 Partitioning

 captures aggregation/part-of relationship

 Example:
 goal is to develop a spacecraft
 partition the problem into parts:

 guidance and navigation;
 data handling;
 command and control;
 environmental control;
 instrumentation;
 etc

Note: this is not a design, it is a problem decomposition
 actual design might have any number of components, with no relation to these

sub-problems
However, the choice of problem decomposition will probably be reflected in

the design

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook
Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

based on symptoms:
 no response from device;

 incorrect response;

 self-test failure;

 etc...

based on location:
 instrumentation fault,

 communication fault,

 processor fault,

 etc

Modelling Principle 2: Abstraction
 Abstraction

 A way of finding similarities between concepts by ignoring some details
 Focuses on the general/specific relationship between phenomena

 Classification groups entities with a similar role as members of a single class
 Generalization expresses similarities between different classes in an ‘is_a’

association

 Example:
 requirement is to handle faults on the spacecraft
might group different faults into fault classes

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modelling Principle 3: Projection
 Projection:

 separates aspects of the model into multiple viewpoints
 similar to projections used by architects for buildings

 Example:
Need to model the requirements for a spacecraft
Model separately:

 safety
 commandability
 fault tolerance
 timing and sequencing
 Etc…

Note:
 Projection and Partitioning are similar:

 Partitioning defines a ‘part of’ relationship
 Projection defines a ‘view of’ relationship

 Partitioning assumes a the parts are relatively independent

Source: Adapted from Davis, 1990, p48-51 12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Survey of Modelling Techniques
Modelling Enterprises

 Goals & objectives
Organizational structure
 Tasks & dependencies
 Agents, roles, intentionality

Modelling Information & Behaviour
 Information Structure
 Behavioral views

 Scenarios and Use Cases
 State machine models
 Information flow

 Timing/Sequencing requirements

Modelling System Qualities (NFRs)
 All the ‘ilities’:

 Usability, reliability, evolvability, safety,
security, performance, interoperability,…

Organization modelling:
i*, SSM, ISAC
Goal modelling:
KAOS, CREWS

Organization modelling:
i*, SSM, ISAC
Goal modelling:
KAOS, CREWS

Information modelling:
E-R, Class Diagrams
Structured Analysis:
SADT, SSADM, JSD
Object Oriented Analysis:
OOA, OOSE, OMT, UML
Formal Methods:
SCR, RSML, Z, Larch, VDM

Information modelling:
E-R, Class Diagrams
Structured Analysis:
SADT, SSADM, JSD
Object Oriented Analysis:
OOA, OOSE, OMT, UML
Formal Methods:
SCR, RSML, Z, Larch, VDM

Quality tradeoffs:
QFD, win-win, AHP,
Specific NFRs:
Timed Petri nets (performance)
Task models (usability)
Probabilistic MTTF (reliability)

Quality tradeoffs:
QFD, win-win, AHP,
Specific NFRs:
Timed Petri nets (performance)
Task models (usability)
Probabilistic MTTF (reliability)

4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What is this a model of?

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Summary
Modelling plays a central role in RE

 Allows us to study a problem systematically
 Allows us to test our understanding

Many choices for modelling notation
 In this course, we’ll use (and adapt) various UML notations

 All models are inaccurate (to some extent)
 Use successive approximation
 …but know when to stop perfecting the model
 Every model is created for a purpose
 The purpose is not usually expressed in the model
 …So every model needs an explanation

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Imagine we have interviewed some stakeholders…
Catering Manager

The food loaded is dictated by the number of
passengers travelling in a particular class.

A predicted number of passengers on a flight
must be available 24 hours prior to departure.

Passengers requiring special meals must indicate
their request 24 hours prior to departure.

Airline Sales manager
A ticket may only be issued when a fare is paid
For some fares, a reservation can be held and not

confirmed.
When a discounted ticket is booked, the normal

book-ahead requirements do not apply.
All tickets must carry appropriate endorsements

relating to the terms and conditions of issue of
tickets.

Motivation for enterprise modeling...

Chief Executive
When flight is full VIPs are first to be upgraded.
Discounted tickets should be offered to politicians,

since they make important decisions affecting the
airline.

Info about frequent fliers should not be made
available to outside contractors.

Chief Security Officer
The number of bags in the aircraft’s hold should

tally against the list of passengers on board.
Passenger lists should not be made available to the

public.
Passengers should check-in only once.

Travel Agent
An agent is responsible for holding and canceling

reservations.
Tickets offered by an agency have different fares,

negotiated with the airline sales department.

How do we get from here to an agreed specification?
16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Approaches to Enterprise Modeling
 1970’s

 Soft Systems Approaches:
 involve the entire organisation
 Be sensitive to political and social context for organisational change

 Examples: SSM, ISAC

 1980’s
 Knowledge-based Approaches:

 Use knowledge representation schemes to build executable domain models
 capture static and dynamic aspects of the domain

 Examples: RML, Requirements Apprentice, Nature

 1990’s
 Teleological Approaches:

 Requirements are really just goals, so model goal hierarchies
 Focus on the ‘why’ question, rather than ‘what’/’how’
 …and use scenarios as concrete examples of how goals are (can be) satisfied

 Examples: KAOS, i*, CREWS,…

 2000’s …?

5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

ISAC
Information Systems Work & Analysis of Changes (ISAC)

 Developed in the 1970’s in Sweden
 Emphasizes cooperation between users, developers and sponsors

 Developers’ role is to facilitate the process
 Good for information systems; not applicable to control systems.

ISAC Process
1. Change Analysis

 What does the organization want?
 How flexible is the organization with respect to changes?

2. Activity Study
 Which activities should we regroup into information systems?
 Which priorities do the information systems have?

3. Information Analysis
 Which inputs and outputs do each information system have?
 What are the quantitative requirements on each information system?

4. Implementation
 Which technology (info carriers; h/w; s/w) do we use for the information systems?
 Which activities of each information system are manual, which automatic?

18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

ISAC Change Analysis
1. List problems

 dissatisfactions with current system
list all problems…
…then remove any that are trivial or
intractable

2. List interest groups
 these are “problem owners”
 draw matrix of problems against

owners
This exercise is done with the problem
owner’s involvement

3. Analyze problems
 Use cause-effect analysis

Eliminate solution-oriented problems, to
get to underlying causes

 performed by domain specialists
 quantify the problems

4. Make Current Activity Model
 Notation: A-schemas (similar to

dataflow diagrams)

5. Analyze Goals
 Declarative statement of goals

i.e. desired result, not how to get there
 Result should be a tree of goals

6. Define Change Needs
 Goals should explain why the problems

exist; problems frustrate goals
 Cluster problems into related groups

Each group is a change need

7. Generate Change Alternatives

8. Model desired situations
 make packages of change alternatives

9. Evaluate Alternatives

10. Choose an alternative

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Soft System Methodology (SSM)
 Background

 Developed by Checkland in late 1970’s
 Reality is socially constructed, and therefore requirements are not

objective
 Rationale:

 Problem situations are fuzzy (not structured) and solutions not readily apparent.
 Impact of a computerization may be negative (e.g. intro of new system reduced

productivity as it removed employee motivation)
 Full exploitation of computerization may need radical restructuring of work

processes.

 Approach
 Analyze problem situation using different viewpoints

 Determining the requirements is a discussion, bargaining and construction process.
Out of this process emerges not just a specification, but also:

 plans for a modified organization structure
 task structures
 objectives
 understanding of the environment

20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SSM Approach
1 Existing situation

(unstructured problem)

2 Analyze the problem situation
 Draw a rich picture
 look for problem themes (describe

them in natural language)

3 Define relevant systems and
root definitions (CATWOE)

 a root definition is a concise
description of a human activity
system

4 Build a conceptual model
 of the activity system needed to

achieve the transformation
 process oriented model, with

activities & flow of resources

5 Compare conceptual model
with step (2)

 Ordered questioning - questions
based on the model

 Event reconstruction - take past
events and compare them to the
model

 General comparison - look for
features of the model that are
different from current situation

 Model overlay - point by point
comparison of the two models

6 Debate feasible and desirable
changes

Three types of change: structural,
procedural, attitudinal

7 Implement changes

6

21

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SSM modeling

Root definition:

Customers: Administrators, Doctors
Actors: not stated
Transformation: Need to know spending

on drugs Need met by
recording info.

Weltanschauung: Monitoring spending on
drugs is possible and is an adequate
basis for joint control action

Owner: Hospital
Environment: Hospital mechanisms, roles

of administrators and doctors,
defined budgets

Root definition:

Customers: Administrators, Doctors
Actors: not stated
Transformation: Need to know spending

on drugs Need met by
recording info.

Weltanschauung: Monitoring spending on
drugs is possible and is an adequate
basis for joint control action

Owner: Hospital
Environment: Hospital mechanisms, roles

of administrators and doctors,
defined budgets

1. appreciate
mechanisms by
which spending
on drugs occurs

2. obtain
info. on
budgets

3. appreciate
administrator and
doctor roles in
controlling
spending on drugs

4. decide how to
collect info. on
spending on drugs

5. collect info on
spending on drugs

6. decide how to
record info. so
that control
against budget by
administrators and
doctors is possible

7. record
info. on
spending
on drugs

8. make records
available to
administrators
and doctors

monitor 1-8

appreciate hospital
aspirations for the
system

define criteria for
effectiveness, efficacy and
efficiency of the system

take control action

“A hospital-owned system, which
provides records of spending on drugs

so that control action by administrators
and doctors to meet defined budgets

can be taken jointly”

22

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

i *
 Background

 Developed in the early 90’s
 provides a structure for asking ‘why’ questions in RE
 models the organisational context for information systems
 based on the notion of an “intentional actor”

 Two parts to the model
 Strategic dependency model - models relationships between the actors
 Strategic rationale model - models concerns and interests of the actors

 Approach
 SD model shows dependencies between actors:

 goal/softgoal dependency - an actor depends on another actor to attain a goal
 resource dependency - an actor needs a resource from another actor
 task dependency - an actor needs another actor to carry out a task

 SR model shows interactions between goals within each actor
 Shows task decompositions
 Shows means-ends links between tasks and goals

23

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

E.g. Strategic Dependency Model

This diagram ©2001, Eric Yu 24

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

E.g. Strategic Rationale Model

This diagram ©2001, Eric Yu

7

25

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

KAOS
 Background

 Developed in the early 90’s
 first major teleological requirements modeling language
 full tool support available
 has been applied to a number of industrial case studies

 Two parts:
 Informal goal structuring model
 Formal definitions for each entity in temporal logic

 Approach
Method focuses on goal elaboration:

 define initial set of high level goals & objects they refer to
 define initial set of agents and actions they are capable of

 Then iteratively:
 refine goals using AND/OR decomposition
 identify obstacles to goals, and goal conflicts
 operationalize goals into constraints that can be assigned to individual agents
 refine & formalize definitions of objects & actions

26

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

KAOS meta-model

27

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Business Processes
 Business Process Automation

 Leave existing business processes as they are
 Look for opportunities to automate parts of the process

 Can make an organisation more efficient; has least impact on the business

 Business Process Improvement
Make moderate changes to the way the organisation operates
 E.g. improve efficiency and/or effectiveness of existing process

 Techniques: Duration analysis; activity-based costing; benchmarking

 Business Process Reengineering
 Fundamental change to the way the organisation operates
 Techniques:

 Outcome analysis - focus on the real outcome from the customer’s perspective
 Technology analysis - look for opportunities to expoit new technology
 Activity elimination - consider each activity in turn as a candidate for elimination

28

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Modelling Business Processes
 Business processes involve:

Multiple actors (people, business units,…)
 Concurrent activities
 Explicit synchronization points

 E.g. some task cannot start until several other concurrent tasks are complete
 End-to-end flow of activities

 Choice of modelling language:
 UML Activity diagrams

 …based on flowcharts and petri nets
 Not really object oriented (poor fit with the rest of UML)

 Business Process Modelling Notation (BPMN)
 New (emerging) standard, loosely based on pi calculus

8

29

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Using UML for enterprise modelling
 Use Cases

 Already assume the basic functions of the machine have been decided
Hence, it’s premature to look for Use Cases yet…

 Collaboration/Activity Diagrams
 Show how classes (actors?) collaborate to perform tasks

 Represent “message” flows between objects
 Offer a simple way of diagramming scenarios

 But do not show:
 Intentionality, task dependency, task decomposition

 Class diagrams
 Show the actors/roles and entities in the domain

 Concentrate on static structure
 Can implicitly capture business rules through multiplicity constraints

Must remember to model domain entities rather than implementation classes

 Conclusion
 UML offers only very crude tools for enterprise modeling

30

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Collaboration Diagrams
 Example - “select courses to teach”

Note:
 Impossible to tell whether this is an indicative or optative description

5: Update(courseList’)

<<entity>>
:ProfessorInfo

<<entity>>
: CourseInfo

:Administrator
1: Inform(courseList)

<<entity>>
: CourseOffering

6: *[For each course]
 Update()

 2: *[for each professor]
 Inform(courseList)

:Professor

AssociateChair
 :Professor

 3:Propose(courseList’)

 4:Agree(courseList’)

7: *[For each professor]
 Update()

31

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example Activity Diagram
Receive
Order

Reorder
Item

Dispatch
Order

Check
Line Item

Assign to
Order

Authorize
Payment

Cancel
Order

[for each line
item on order]*

[in stock]

[need to
reorder]

[succeeded]

[failed]

32

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Activity Diagram with Swimlanes

Receive
Order

Reorder
Item

Dispatch
Order

Check
Line
Item

Assign to
Order

[for each line
item on order]

*

[in stock]

[need to
reorder]

[stock assigned to
all line items and
payment authorized]

Authorize
Payment

Cancel
Order

[succeeded]

[failed]

Receive
Supply

Choose
Outstanding
Order Items

Assign Goods
to Order

[for each chosen
order item]

*

[all outstanding
order items filled]

Add Remainder
to Stock

Order
Processing

Finance Stock
Manager

9

33

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Class Associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

34

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Capturing Business Rules
Why do we care about business rules?

 They help us to understand the business context
 They could be important constraints for the design of the new system

 E.g. constraints on when and how operations can happen
 E.g. constraints on the state space of objects

 They help us write “operation specifications” for class operations

 How do we specify business rules?
Natural Language

 such descriptions can be highly ambiguous
 Structured English

 use a subset of a natural language (limited syntax and vocabulary)
 can be hard to write, hard to verify, and too close to program code

 Decision Tables
 use a table representation of alternative outcomes (similar to truth tables)

 Decision Trees
 use a tree representation of alternative outcomes

Object Constraint Language
 UML notation for adding extra constraints to models
 Can also be used for specifying pre- and post-conditions on operations

35

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Decision Tables
 Inputs as columns, actions (outputs) as rows

 If there are n parameters (conditions) to a decision, each with k1, k2,…,kn
values, then table has:

 k1 x k2 x … x kn columns
 as many rows as there are possible actions

 For example:
 “If the plane is more than half full and the flight costs more than $350 per

seat, serve free cocktails, unless it is a domestic flight. Charge for cocktails in
all domestic flights where cocktails are served, i.e., those that are more than
half full”

conditionsconditions

outcomesoutcomes

XFree cocktails?

???XXXServe cocktails?

NYNYNYNY≥$350/seat

NNYYNNYY≥half full?

NNNNYYYYDomestic?

36

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Decision Trees
 Represent the decision logic as a tree:

Nodes of the tree represent input parameters (questions)
 Leafs of the tree represent outputs (actions)

 Example:

Short Trip?Short Trip?
In-Town Trip?In-Town Trip?

Out-of-Town Trip?Out-of-Town Trip?

Have Car?Have Car?
on aon a

budget?budget?

Take CarTake Car

WalkWalk
TaxiTaxi

Have Car?Have Car?

Take CarTake Car
TTCTTC

TaxiTaxi

Have Car?Have Car?

Take CarTake Car

FlyFly
on a on a

budget?budget?

