
1

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lecture 2: Context for RE

Last Week:
INTRO

Syllabus

Course Goals

Definitions

Last Week:
INTRO

Syllabus

Course Goals

Definitions

Next Week:
Project Starting points:

{Stakeholders, Boundaries,

Goals, Scenarios, Risks}

Next Week:
Project Starting points:

{Stakeholders, Boundaries,

Goals, Scenarios, Risks}

This Week:

Context for RE
What is Engineering?

Types of engineering project

RE in the engineering lifecycle

Systems Thinking

This Week:

Context for RE
What is Engineering?

Types of engineering project

RE in the engineering lifecycle

Systems Thinking

2

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

“Engineering is the development of cost-effective solutions to practical

problems, through the application of scientific knowledge”

What is engineering?

“…Cost-effective…”
! Consideration of design trade-offs, esp. resource usage

!Minimize negative impacts (e.g. environmental and social cost)

“… Solutions …”
! Emphasis on building devices

“… Practical problems …”
! solving problems that matter to people

! improving human life in general through technological advance

“… Application of scientific knowledge …”
! Systematic application of analytical techniques

3

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Devices vs. Systems

! Normal design:
!Old problems, whose solutions are well known

" Engineering codifies standard solutions

" Engineer selects appropriate methods and technologies

! Design focuses on well understood devices
" Devices can be studied independent of context

" Differences between the mathematical model and the reality are minimal

! Radical design:
!Never been done, or past solutions have failed

" Often involves a very complex problem

! Bring together complex assemblies of devices into new systems
" Such systems are not amenable to reductionist theories

" Such systems are often soft: no objective criteria for describing the system

! Examples:
" Most of Computer Engineering involves normal design

" All of Systems Engineering involves radical design (by definition!)

" Much of Software Engineering involves radical design (soft systems!)

4

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Is software different?

! Software is different!
! software is invisible, intangible, abstract

" Software alone is useless - its purpose is to configure some hardware to do
something

! there are no physical laws underlying software behaviour

! there are no physical constraints on software complexity

! software never wears out
" …traditional reliability measures don’t apply

! software can be replicated perfectly
" …no manufacturing variability

! Software Myths:
!Myth: Cost of software is lower than cost of physical devices

!Myth: Software is easy to change

!Myth: Computers are more reliable than physical devices

!Myth: Software can be formally proved to be correct

!Myth: Software reuse increases safety and reliability

!Myth? Computers reduce risk over mechanical systems

5

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Professional Responsibility
! ACM/IEEE code of ethics:

! PUBLIC - act consistently with the public interest.

! CLIENT AND EMPLOYER - act in a manner that is in the best interests of your client
and employer, consistent with the public interest.

! PRODUCT - ensure that your products and related modifications meet the highest
professional standards possible.

! JUDGEMENT - maintain integrity and independence in your professional judgment.

! MANAGEMENT - subscribe to and promote an ethical approach to the management of
software development and maintenance.

! PROFESSION - advance the integrity and reputation of the profession consistent with
the public interest.

! COLLEAGUES - be fair to and supportive of your colleagues.

! SELF - participate in lifelong learning and promote an ethical approach to the practice
of the profession.

! Of particular relevance in RE:
! Competence - never misrepresent your level of competence

! Confidentiality - respect confidentiality of all stakeholders

! Intellectual property rights - respect protections on ideas and designs

! Data Protection - be aware of relevant laws on handling personal data

6

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Project Management

! A manager can control 4 things:
! Resources (can get more dollars, facilities, personnel)

! Time (can increase schedule, delay milestones, etc.)

! Product (can reduce functionality - e.g. scrub requirements)

! Risk (can decide which risks are acceptable)

! To do this, a manager needs to keep track of:
! Effort - How much effort will be needed? How much has been expended?

! Time - What is the expected schedule? How far are we deviating from it?

! Size - How big is the planned system? How much have we built?

! Defects - How many errors are we making? How many are we detecting?
" And how do these errors impact quality?

! Initially, a manager needs good estimates
! …and these can only come from a thorough analysis of the problem.

You cannot control that which you cannot measure!You cannot control that which you cannot measure!

7

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Where Projects Come From

! Initiation of the project
! Problem-driven

" A problem has arisen that demands a
response

" e.g. existing system is “broken”

! Change-driven
" Changes in the business or its

environment

" existing system becoming less useful

! Opportunity-driven
" New technology opens up new

possibilities;

" New markets open up;

" etc

! Legacy-driven
" Project created because of prior

commitment

" e.g earlier work left unfinished

! Source of Requirements:
! Customer-specific

" Specific customer with a specific
problem

" The customer is the ultimate authority

! Market-based
" System designed to be sold widely

" Marketing team acts as proxy for
customers & users

" Product must generate customers

! Socially-useful
" System is intended as a general benefit

to society

" No (paying) customer

" E.g. some open source / free software;
software created in scientific research

! Hybrid
" developed for a specific customer, but

want to market the software eventually

8

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Software Types

! Information Systems
! software to support organizational work

! includes files/databases as well as applications

!More than 70% of all software falls in this category, written in languages
such as COBOL, RPG and 4GLs.

" Examples: Payroll and personnel, Financial transactions, Customer relations
database, …

! Control Systems
! software that drives some sort of a hardware process

" Examples: flight control, industrial plant, an elevator system, credit card reader.

! Generic Services
! systems that provide some services for other systems

" Examples: many internet applications, e.g. search engines, stock quote services,
credit card processing, etc.

! Such systems will be developed using a variety of languages and middleware,
including Java, C++, CORBA, HTML/XML etc.

9

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Project Context

! Existing System
! There is nearly always an existing system

" May just be a set of ad hoc workarounds for the problem

! Studying it is important:
" If we want to avoid the weaknesses of the old system…

" …while preserving what the stakeholders like about it

! Pre-Existing Components
! Benefits:

" Can dramatically reduce development cost

" Easier to decompose the problem if some subproblems are already solved

! Tension:
" Solving the real problem vs. solving a known problem (with ready solution)

! Product Families
! Vertical families: e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system

!Horizontal families: similar systems used in related domains
" Need to define a common architecture that supports anticipated variability

10

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lifecycle of an Engineering Project

! Lifecycle models
! Useful for comparing projects in general terms

!Not enough detail for project planning

! Examples:
! Sequential models: Waterfall, V model

! Rapid Prototyping

! Phased Models: Incremental, Evolutionary

! Iterative Models: Spiral

! Agile Models: eXtreme Programming

! Comparison: Process Models
! Used for capturing and improving the development process

11

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Waterfall Model

Source: Adapted from Dorfman, 1997, p7 & Loucopoulos & Karakostas, 1995, p29

requirements

design

code

integrate

test

perceived

 need ! View of development:
! a process of stepwise refinement

! largely a high level management
view

! Problems:
! Static view of requirements -

ignores volatility

! Lack of user involvement once
specification is written

! Unrealistic separation of
specification from design

! Doesn’t accommodate
prototyping, reuse, etc.

12

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

V-Model

system

requirements

software

requirements

preliminary

design

detailed

design

code and

debug

unit

test

component

test

software

integration

acceptance

test

system

integration

“analyse

and

design”

“test

and

integrate”

time

L
e
ve

l
of

 a
b
st

ra
ct

io
n

13

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Specify full
requirements

design code test integrate

Preliminary

requirements

design

prototype

build

prototype

evaluate

prototype

Source: Adapted from

Dorfman, 1997, p9Prototyping lifecycle

! Prototyping is used for:
! understanding the requirements for the user interface

! examining feasibility of a proposed design approach

! exploring system performance issues

! Problems:
! users treat the prototype as the solution

! a prototype is only a partial specification

14

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

design code test integrate O&Mreqts

Phased Lifecycle Models

R
e
quire

m
e
nts

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)

15

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The Spiral Model
Determine goals,

alternatives,

constraints

Evaluate

alternatives

and risks

Plan

Develop

and

test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

al
te

rn
at

iv
es

4

al
te

rn
at

iv
es

3

A
lt

er
n-

at
iv

es
2

constraints4

constraints3

Constr-

aints2

alt
erna

tiv
es

con
str

ain
ts

risk analysis
4

risk analysis
3

riskanalysis
2risk

analysis
1

concept of

operation

so
ft

wa
re

re
qu

ir
em

en
ts

validated

requirements

so
ft

wa
re

de
si
gn

validated,

verified design

d
et

ai
le

d
d
es

ig
n

co
de

un
it

te
st

system

test
acceptance

test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Source: Adapted from Pfleeger, 1998, p57 16

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Agile Models

! Basic Philosophy
! Reduce communication barriers

" Programmer interacts with customer

! Reduce document-heavy approach
" Documentation is expensive and of

limited use

! Have faith in the people
" Don’t need fancy process models to tell

them what to do!

! Respond to the customer
" Rather than focussing on the contract

! Weaknesses
! Relies on programmer’s memory

" Code can be hard to maintain

! Relies on oral communication
" Mis-interpretation possible

! Assumes single customer
representative
" Multiple viewpoints not possible

! Only short term planning
" No longer term vision

E.g. Extreme Programming
! Instead of a requirements spec,

use:
" User story cards

" On-site customer representative

! Pair Programming

! Small releases
" E.g. every three weeks

! Planning game
" Select and estimate user story cards

at the beginning of each release

! Write test cases before code

! The program code is the design doc
" Can also use CRC cards (Class-

Responsibility-Collaboration)

! Continuous Integration
" Integrate and test several times a day

E.g. Extreme Programming
! Instead of a requirements spec,

use:
" User story cards

" On-site customer representative

! Pair Programming

! Small releases
" E.g. every three weeks

! Planning game
" Select and estimate user story cards

at the beginning of each release

! Write test cases before code

! The program code is the design doc
" Can also use CRC cards (Class-

Responsibility-Collaboration)

! Continuous Integration
" Integrate and test several times a day

Source: Adapted from Nawrocki et al, RE’02

17

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Extreme Programming

Planning

game

Collect

User stories

Write test

cases
code

integrate

test

Release
Each cycle:

approx 2 weeks

18

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Is there a “Requirements Lifecycle”

Specification

Agreement

Representation

complete

fair

vague

personal

view

common

view

informal semi-formal formal

19

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with

the current system?)

Model
(describe/explain the

observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with

Process of scientific

Investigation:
Requirements models are

theories about the world;

Designs are tests of those

theories

Initial hypothesis

Look for anomalies - what can’t

the current theory explain?

Create/refine

a better theory

Design experiments to

test the new theory
Carry out the

experiments

20

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

can you

stop the

RAIN?

RAIN, RAIN

GO AWAY!

…it’s

snowing!

what is it you

really want?

21

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The story so far:

!What is engineering?
!Not that different from science

! Greater awareness of professional responsibility
" because of immediate scope for harm to the public

! Systems and Software Engineering involve radical design

! Engineering Projects
! You cannot control that which you cannot measure

" …and many important measures are derived from initial problem analysis

! Constraints:
" Is there a customer?

" Existing system / existing components / existing product family

! Project Lifecycles
! Useful for comparing projects in general terms

! Represent different philosophies in software development

! Requirements evolve through their own lifecycles too!

22

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Systems Thinking

23

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

General Systems Theory

! How scientists understand the world:
! Reductionism - break a phenomena down into its constituent parts

" E.g. reduce to a set of equations governing interactions

! Statistics - measure average behaviour of a very large number of instances
" E.g. gas pressure results from averaging random movements of zillions of atoms

" Error tends to zero when the number of instances gets this large

! But sometimes neither of these work:
! Systems that are too interconnected to be broken into parts

! Behaviour that is not random enough for statistical analysis

! General systems theory
!Originally developed for biological systems:

" E.g. to understand the human body, and the phenomena of ‘life’

! Basic ideas:
" Treat inter-related phenomena as a system

" Study the relationships between the pieces and the system as a whole

" Don’t worry if we don’t fully understand each piece

24

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Role of the Observer

! Achieving objectivity in scientific inquiry
1. Eliminate the observer

" E.g. ways of measuring that have no variability across observers

2. Distinguish between scientific reasoning and value-based judgement
" Science is (supposed to be) value-free

" (but how do scientists choose which theories to investigate?)

! For complex systems, this is not possible
! Cannot fully eliminate the observer

" E.g. Probe effect - measuring something often changes it

" E.g. Hawthorne effect - people react to being studied

! Our observations biased by past experience
" We look for familiar patterns to make sense of complex phenomena

" E.g. try describing someone’s accent

! Achieving objectivity in systems thinking
! Study the relationship between observer and observations

! Look for observations that make sense from many perspectives

25

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Relativism

TimeTime

The agricultural revolution Transistor switching

F
o

o
d

 p
ro

d
u

c
ti

o
n

C
u

rr
e
n

t

4000 years
10-9 sec

! Truth is relative to many things
! The meanings of the words we use

" E.g. law of gravity depends on correct understanding of “mass”, “distance”,
“force” etc

! The assumptions we make about context
" E.g. law of gravity not applicable at subatomic level, or near the speed of light

" E.g. Which is the step function:

26

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Relativism is everywhere

! Truth often depends on the observer
! “Emergent properties of a system are not predictable from studying the

parts”
" Whose ability to predict are we talking about?

! “Purpose of a system is a property of the relationship between system &
environment”

" What is the purpose of: General Motors? A University? A birthday party?

!Weltanshaungen (! “worldviews”)
!Our Weltanshaungen permeate everything

" The set of categories we use for understanding the world

" The language we develop for describing what we observe

! Ethno-centrism (or ego-centrism)
! The tendency to assume one’s own category system is superior

" E.g. “In the land of the blind, the one-eyed man is king”

" But what use would visually-oriented descriptions be in this land?

27

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The principle of complementarity

! Raw observation is too detailed
!We systematically ignore many details

" E.g. the idea of a ‘state’ is an abstraction

! All our descriptions (of the world) are partial, filtered by:
" Our perceptual limitations

" Our cognitive ability

" Our personal values and experience

! Complementarity:
! Two observers’ descriptions of system may be:

" Redundant - if one observer’s description can be reduced to the other

" Equivalent - if redundant both ways

" Independent - if there is no overlap at all in their descriptions

" Complementary - if none of the above hold

! Any two partial descriptions (of the same system) are likely to be complementary

! Complementarity should disappear if we can remove the partiality
" E.g. ask the observers for increasingly detailed observations

! But this is not always possible/feasible

28

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Definition of a system

! Ackoff’s definition:
! “A system is a set of two or more elements that satisfies the following

conditions:
" The behaviour of each element has an effect on the behaviour of the whole

" The behaviour of the elements and their effect on the whole are interdependent

" However subgroups of elements are formed, each has an effect on the behaviour
of the whole and none has an independent effect on it”

! Other views:
!Weinberg: “A system is a collection of parts, none of which can be changed

on its own”
" …because the parts of the system are so interconnected

!Wieringa: “A system is any actual or possible part of reality that, if it
exists, can be observed”

" …suggests the importance of an observer

!Weinberg: “A system is a way of looking at the world”
" Systems don’t really exist!

" Just a convenient way of describing things (like ‘sets’)

29

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Elements of a system

! Boundary
! Separates a system from its

environment

! Often not sharply defined

! Also known as an “interface”

! Environment
! Part of the world with which the

system can interact

! System and environment are inter-
related

! Observable Interactions
! How the system interacts with its

environment

! E.g. inputs and outputs

! Subsystems
! Can decompose a system into parts

! Each part is also a system

! For each subsystem, the remainder
of the system is its environment

! Subsystems are inter-dependent

! Control Mechanism
! How the behaviour of the system is

regulated to allow it to endure

! Often a natural mechanism

! Emergent Properties
! Properties that hold of a system, but

not of any of the parts

! Properties that cannot be predicted
from studying the parts

30

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Conceptual Picture of a System

31

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Hard vs. Soft Systems

Hard Systems:

! The system is…
! …precise,

! …well-defined

! …quantifiable

! No disagreement about:
! Where the boundary is

! What the interfaces are

! The internal structure

! Control mechanisms

! The purpose ??

! Examples
! A car (?)

Soft Systems:

! The system…
! …is hard to define precisely

! …is an abstract idea

! …depends on your perspective

! Not easy to get agreement
! The system doesn’t “really” exist

! Calling something a system helps us
to understand it

! Identifying the boundaries,
interfaces, controls, helps us to
predict behaviour

! The “system” is a theory of how
some part of the world operates

! Examples:
! All human activity systems

32

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Types of System

! Natural Systems
! E.g. ecosystems, weather, water

cycle, the human body, bee colony,…

! Usually perceived as hard systems

! Abstract Systems
! E.g. set of mathematical equations,

computer programs,…

! Interesting property: system and
description are the same thing

! Symbol Systems
! E.g. languages, sets of icons,

streetsigns,…

! Soft because meanings change

! Designed Systems
! E.g. cars, planes, buildings,

freeways, telephones, the internet,…

! Human Activity Systems
! E.g. businesses, organizations,

markets, clubs, …

! E.g. any designed system when we
also include its context of use
" Similarly for abstract and symbol

systems!

! Information Systems
! Special case of designed systems

" Part of the design includes the
representation of the current state of
some human activity system

! E.g. MIS, banking systems,
databases, …

! Control systems
! Special case of designed systems

" Designed to control some other system
(usually another designed system)

! E.g. thermostats, autopilots, …

33

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook
Source: Adapted from Loucopoulos & Karakostas, 1995, p73

Subject System

Information system

Uses

builds

Maintains

information

about

Needs

information

about

contracts

Usage System

Development System

Information Systems

34

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Subject system

Control system

Uses

builds

Tracks and controls

the state of
Needs to ensure

safe control of

contracts

Usage System

Development System

Control Systems

35

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Software-Intensive Systems

36

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Open and Living Systems

! Openness
! The degree to which a system can be distinguished from its environment

! A closed system has no environment
" If we describe a system as closed, we ignore its environment

" E.g. an egg can be described as a closed system

! A fully open system merges with its environment

! Living systems
! Special kind of open system that can preserve its identity and reproduce

" Also known as “neg-entropy” systems

! E.g. biological systems
" Reproduction according to DNA instructions

! E.g. Social systems
" Rules of social interaction act as a kind of DNA

37

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Purposefulness
!Types of behaviours:

!Reaction to a stimulus in the environment
"The stimulus is necessary and sufficient to cause the reaction

!Response to a stimulus in the environment
"The stimulus is necessary but not sufficient to cause the response

!Autonomous act:
"A system event for which a stimulus is not necessary

!Systems can be:
!State-maintaining

"System reacts to changes in its environment to maintain a pre-determined state

"E.g. thermostat, some ecosystems

!Goal-directed
"System can respond differently to similar events in its environment and can act autonomously in an
unchanging environment to achieve some pre-determined goal state

"E.g. an autopilot, simple organisms

!Purposive
"System has multiple goals, can choose how to pursue them, but no choice over the goals themselves

"E.g. computers, animals (?)

!Purposeful
"System has multiple goals, and can choose to change its goals

"E.g. people, governments, businesses, animals

38

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Scoping a system
! Choosing the boundary

! Distinction between system and environment depends on your viewpoint

! Choice should be made to maximize modularity

! Examples:
" Telephone system - include: switches, phone lines, handsets, users, accounts?

" Desktop computer - do you include the peripherals?

! Tips:
" Exclude things that have no functional effect on the system

" Exclude things that influence the system but which cannot be influenced or
controlled by the system

" Include things that can be strongly influenced or controlled by the system

" Changes within a system should cause minimal changes outside

" More ‘energy’ is required to transfer something across the system boundary than
within the system boundary

! System boundary should ‘divide nature at its joints’
! Choose the boundary that:

" increases regularities in the behaviour of the system

" simplifies the system behavior

39

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Example Scoping Problem

Source: Adapted from Carter et. al., 1988, p6

Exchange

phone
phone

Marsha

Student

Secretary

Toby
charge

rates

Steve

interrupts

influences

influences

Exchange

40

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Layers of systems

appropriate for:

Subsystems System Environment

Analysis of repair
problems

Wires, connectors,
receivers

Subscriber’s
household phone
system

Telephone calls.

Analysis of
individual phone
calls

Subscribers’ phone
systems

Telephone calls
Regional phone
network

Analysis of regional
sales strategy

Telephone calls
Regional phone
network

National telephone
market and trends

Analysis of phone
company’s long
term planning

Regional phone
networks

National telephone
market and trends

Global communication
systems

41

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Describing System Behaviour

! State
! a system will have memory of its past interactions, i.e. ‘state’

! the state space is the collection of all possible states

! Discrete vs continuous
! a discrete system:

" the states can be represented using natural numbers

! a continuous system:
" state can only be represented using real numbers

! a hybrid system:
" some aspects of state can be represented using natural numbers

! Observability
! the state space is defined in terms of the observable behavior

! the perspective of the observer determines which states are observable

Source: Adapted from Wieringa, 1996, p16-17 42

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Summary: Systems Thinking

