
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 8: Specification and Validation

Last Week:
Modeling and Analysis (III)
Non-functional Requirements
Measuring Software Quality

Last Week:
Modeling and Analysis (III)
Non-functional Requirements
Measuring Software Quality

Next Week:
Agreeing Requirements

Negotiation
Prioritization

Decision Techniques

Next Week:
Agreeing Requirements

Negotiation
Prioritization

Decision Techniques

This Week:
Communicating Requirements

the Software Requirements Specification (SRS)
Documentation Standards

Validation
Reviews and Inspections

This Week:
Communicating Requirements

the Software Requirements Specification (SRS)
Documentation Standards

Validation
Reviews and Inspections

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Software Requirements Specification

 Purpose
 Communicates an understanding of

the requirements
explains both the application domain
and the system to be developed

 Contractual
May be legally binding!
Expresses an agreement and a
commitment

 Baseline for evaluating subsequent
products

supports system testing, verification
and validation activities
should contain enough information to
verify whether the delivered system
meets requirements

 Baseline for change control
requirements change, software evolves

 Audience
 Users, Purchasers

Most interested in system requirements
Not generally interested in detailed
software requirements

 Systems Analysts, Requirements
Analysts

Write various specifications that inter-
relate

 Developers, Programmers
Have to implement the requirements

 Testers
Determine that the requirements have
been met

 Project Managers
Measure and control the analysis and
development processes

 How do we communicate the Requirements to others?
 It is common practice to capture them in an SRS

 But an SRS doesn’t need to be a single paper document...

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from IEEE-STD-830

SRS Contents
 Software Requirements Specification should address:

 Functionality. What is the software supposed to do?
 External interfaces. How does the software interact with people, the

system's hardware, other hardware, and other software?
 Performance. What is the speed, availability, response time, recovery time

of various software functions, and so on?
 Attributes. What are the portability, correctness, maintainability, security,

and other considerations?
 Design constraints imposed on an implementation. Are there any required

standards in effect, implementation language, policies for database
integrity, resource limits, operating environment(s) and so on?

 Some other topics should be excluded:
 … should avoid placing either design or project requirements in the SRS
 … should not describe any design or implementation details. These should be

described in the design stage of the project.
 … should address the software product, not the process of producing the

software product.
4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Appropriate Specification
 Consider two different projects:

A) Small project, 1 programmer, 6 months work
programmer talks to customer, then writes up a 5-page memo

B) Large project, 50 programmers, 2 years work
team of analysts model the requirements, then document them in a 500-page SRS

Project A Project B

Purpose of spec?
Crystalizes programmer’s
understanding; feedback

to customer

Build-to document; must
contain enough detail for

all the programmers

Management
view?

Spec is irrelevant; have
already allocated

resources

Will use the spec to
estimate resource needs
and plan the development

Readers?
Primary: Spec author;
Secondary: Customer

Primary: all programmers
+ V&V team, managers;
Secondary: customers

Source: Adapted from Blum 1992, p154-5

2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

A complication: Procurement
 An ‘SRS’ may be written by…

 …the procurer:
 so the SRS is really a call for proposals
 Must be general enough to yield a good selection of bids…
 …and specific enough to exclude unreasonable bids

 …the bidders:
 Represents a proposal to implement a system to meet the CfP
 must be specific enough to demonstrate feasibility and technical competence
 …and general enough to avoid over-commitment

 …the selected developer:
 reflects the developer’s understanding of the customers needs
 forms the basis for evaluation of contractual performance

 …or by an independent RE contractor!

 Choice over what point to compete the contract
 Early (conceptual stage)

 can only evaluate bids on apparent competence & ability
 Late (detailed specification stage)

 more work for procurer; appropriate RE expertise may not be available in-house
 IEEE Standard recommends SRS jointly developed by procurer & developer

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Desiderata for Specifications
 Valid (or “correct”)

 Expresses only the real needs of the
stakeholders (customers, users,…)

 Doesn’t contain anything that isn’t
“required”

 Unambiguous
 Every statement can be read in

exactly one way

 Complete
 Specifies all the things the system

must do
 ...and all the things it must not do!
 Conceptual Completeness

 E.g. responses to all classes of input
 Structural Completeness

 E.g. no TBDs!!!

 Understandable (Clear)
 E.g. by non-computer specialists

 Consistent
 Doesn’t contradict itself

 I.e. is satisfiable
 Uses all terms consistently

 Ranked
 Must indicate the importance and/or

stability of each requirement

 Verifiable
 A process exists to test satisfaction

of each requirement
 “every requirement is specified

behaviorally”

 Modifiable
 Can be changed without difficulty

 Good structure and cross-referencing

 Traceable
 Origin of each requirement must be

clear
 Facilitates referencing of

requirements in future documentation

Source: Adapted from IEEE-STD-830-1998

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook
Source: Adapted from Kovitz, 1999

Typical mistakes
 Noise

 the presence of text that carries no
relevant information to any feature of the
problem.

 Silence
 a feature that is not covered by any text.

 Over-specification
 text that describes a feature of the

solution, rather than the problem.
 Contradiction

 text that defines a single feature in a
number of incompatible ways.

 Ambiguity
 text that can be interpreted in at least two

different ways.
 Forward reference

 text that refers to a feature yet to be
defined.

 Wishful thinking
 text that defines a feature that cannot

possibly be validated.

 Jigsaw puzzles
 e.g. distributing requirements across a

document and then cross-referencing
 Duckspeak requirements

 Requirements that are only there to
conform to standards

 Unnecessary invention of terminology
 E.g., ‘the user input presentation function’,

‘airplane reservation data validation
function’

 Inconsistent terminology
 Inventing and then changing terminology

 Putting the onus on the development
staff
 i.e. making the reader work hard to

decipher the intent
 Writing for the hostile reader

 There are fewer of these than friendly
readers

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Ambiguity Test
Natural Language?

 “The system shall report to the operator all faults that originate in critical
functions or that occur during execution of a critical sequence and for
which there is no fault recovery response.”

(adapted from the specifications for the international space station)

Or a decision table?

Originate in critical functions F T F T F T F T

Occur during critical seqeunce F F T T F F T T

No fault recovery response F F F F T T T T

Report to operator?

Source: Adapted from Easterbrook & Callahan, 1997.

3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Avoiding ambiguity
 Review natural language specs for ambiguity

 use people with different backgrounds
 include software people, domain specialists and user communities
Must be an independent review (I.e. not by the authors!)

 Use a specification language
 E.g. a restricted subset or stylized English
 E.g. a semi-formal notation (graphical, tabular, etc)
 E.g. a formal specification language (e.g. Z, VDM, SCR, …)

 Exploit redundancy
 Restate a requirement to help the reader confirm her understanding
 ...but clearly indicate the redundancy
May want to use a more formal notation for the re-statement

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Organizing the Requirements
Need a logical organization for the document

 IEEE standard offers different templates

 Example Structures - organize by…
 …External stimulus or external situation

 e.g., for an aircraft landing system, each different type of landing situation:
wind gusts, no fuel, short runway, etc

 …System feature
 e.g., for a telephone system: call forwarding, call blocking, conference call, etc

 …System response
 e.g., for a payroll system: generate pay-cheques, report costs, print tax info;

 …External object
 e.g. for a library information system, organize by book type

 …User type
 e.g. for a project support system: manager, technical staff, administrator, etc.

 …Mode
 e.g. for word processor: page layout mode, outline mode, text editing mode, etc

 …Subsystem
 e.g. for spacecraft: command&control, data handling, comms, instruments, etc.

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

IEEE Standard for SRS

1 Introduction
Purpose
Scope
Definitions, acronyms, abbreviations
Reference documents
Overview

2 Overall Description
Product perspective
Product functions
User characteristics
Constraints
Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

1 Introduction
Purpose
Scope
Definitions, acronyms, abbreviations
Reference documents
Overview

2 Overall Description
Product perspective
Product functions
User characteristics
Constraints
Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

Identifies the product, &
application domain

Describes contents and structure
of the remainder of the SRS

Describes all external interfaces:
system, user, hardware, software;
also operations and site adaptation,

and hardware constraints

Summary of major functions

Anything that will limit the
developer’s options (e.g. regulations,

reliability, criticality, hardware
limitations, parallelism, etc)

All the requirements go in here (i.e.
this is the body of the document).
IEEE STD provides 8 different

templates for this section

Source: Adapted from IEEE-STD-830-1993 See also, Blum 1992, p160

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

IEEE STD Section 3 (example)
3.1 External Interface

Requirements
3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communication Interfaces

3.2 Functional Requirements
this section organized by mode, user

class, feature, etc. For example:
3.2.1 Mode 1

3.2.1.1 Functional Requirement 1.1
…

3.2.2 Mode 2
3.2.1.1 Functional Requirement 1.1
…

...
3.2.2 Mode n

...

3.3 Performance Requirements
Remember to state this in measurable

terms!

3.4 Design Constraints
3.4.1 Standards compliance
3.4.2 Hardware limitations
etc.

3.5 Software System
Attributes

3.5.1 Reliability
3.5.2 Availability
3.5.3 Security
3.5.4 Maintainability
3.5.5 Portability

3.6 Other Requirements

Source: Adapted from IEEE-STD-830-1993. See also, Blum 1992, p160

4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Agreeing on a specification
 Two key problems for getting agreement:

1) the problem of validation
Like validating scientific theories
If we build to this spec, will the customer’s expectations be met?

2) the problem of negotiation
How do you reconcile conflicting goals in a complex socio-cognitive setting?

 Validating Requirements
 Inspections and Reviews
 Prototyping

Negotiating Requirements (next week)
 Conflict and Conflict Resolution
 Requirements Negotiation Techniques

 Argumentation approaches
 Knowledge-based approaches

 Requirements Prioritization

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate

the variables)

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

The problem of validation
 logical positivist view:

 “there is an objective world that can be modeled by building a consistent body of
knowledge grounded in empirical observation”

 In RE, assumes there is an objective problem that exists in the world
 Build a consistent model; make sufficient empirical observations to check validity
 Use tools that test consistency and completeness of the model
 Use reviews, prototyping, etc to demonstrate the model is “valid”

 Popper’s modification to logical positivism:
 “theories can’t be proven correct, they can only be refuted by finding exceptions”

 In RE, design your requirements models to be refutable
 Look for evidence that the model is wrong
 E.g. collect scenarios and check the model supports them

 post-modernist view:
 “there is no privileged viewpoint; all observation is value-laden; scientific

investigation is culturally embedded”
 E.g. Kuhn: science moves through paradigms
 E.g. Toulmin: scientific theories are judged with respect to a weltanschauung

 In RE, validation is always subjective and contextualised
 Use stakeholder involvement so that they ‘own’ the requirements models
 Use ethnographic techniques to understand the weltanschauungen

16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Prototyping
 Definitions

 “A software prototype is a partial implementation constructed primarily to
enable customers, users, or developers to learn more about a problem or its
solution.” [Davis 1990]

 “Prototyping is the process of building a working model of the system”
[Agresti 1986]

 Approaches to prototyping
 Presentation Prototypes

 explain, demonstrate and inform – then throw away
 e.g. used for proof of concept; explaining design features; etc.

 Exploratory Prototypes
 used to determine problems, elicit needs, clarify goals, compare design options
 informal, unstructured and thrown away.

 Breadboards or Experimental Prototypes
 explore technical feasibility; test suitability of a technology
 Typically no user/customer involvement

 Evolutionary (e.g. “operational prototypes”, “pilot systems”):
 development seen as continuous process of adapting the system
 “prototype” is an early deliverable, to be continually improved.

5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Throwaway or Evolve?
 Throwaway Prototyping

Purpose:
 to learn more about the problem or its

solution…
 hence discard after the desired knowledge

is gained.
Use:

 early or late
Approach:

 horizontal - build only one layer (e.g. UI)
 “quick and dirty”

Advantages:
 Learning medium for better convergence
 Early delivery → early testing → less cost
 Successful even if it fails!

Disadvantages:
 Wasted effort if requirements change

rapidly
 Often replaces proper documentation of

the requirements
 May set customers’ expectations too high
 Can get developed into final product

 Evolutionary Prototyping
Purpose

 to learn more about the problem or its
solution…

 …and to reduce risk by building parts of
the system early

Use:
 incremental; evolutionary

Approach:
 vertical - partial implementation of all

layers;
 designed to be extended/adapted

Advantages:
 Requirements not frozen
 Return to last increment if error is found
 Flexible(?)

Disadvantages:
 Can end up with complex, unstructured

system which is hard to maintain
 early architectural choice may be poor
 Optimal solutions not guaranteed
 Lacks control and direction

Brooks: “Plan to throw one away - you will anyway!”
18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Blum, 1992, pp369-373

Reviews, Inspections, Walkthroughs…
Note: these terms are not widely agreed

 formality
 informal: from meetings over coffee, to team get-togethers
 formal: scheduled meetings, prepared participants, defined agenda, specific

format, documented output
 “Management reviews”

 E.g. preliminary design review (PDR), critical design review (CDR), …
 Used to provide confidence that the design is sound
 Attended by management and sponsors (customers)
 Usually a “dog-and-pony show”

 “Walkthroughs”
 developer technique (usually informal)
 used by development teams to improve quality of product
 focus is on finding defects

 “(Fagan) Inspections”
 a process management tool (always formal)
 used to improve quality of the development process
 collect defect data to analyze the quality of the process
 written output is important
 major role in training junior staff and transferring expertise

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Blum, 1992, pp369-373 & Freedman and Weinberg, 1990.

Benefits of formal inspection
 Formal inspection works well for programming:

 For applications programming:
 more effective than testing
 most reviewed programs run correctly first time
 compare: 10-50 attempts for test/debug approach

 Data from large projects
 error reduction by a factor of 5; (10 in some reported cases)
 improvement in productivity: 14% to 25%
 percentage of errors found by inspection: 58% to 82%
 cost reduction of 50%-80% for V&V (even including cost of inspection)

 Effects on staff competence:
 increased morale, reduced turnover
 better estimation and scheduling (more knowledge about defect profiles)
 better management recognition of staff ability

 These benefits also apply to requirements inspections
 E.g. See studies by Porter et. al.; Regnell et. al.;…

20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Blum, 1992, pp369-373 & Freedman and Weinberg, 1990.

Inspection Constraints
 Size

 “enough people so that all the
relevant expertise is available”

 min: 3 (4 if author is present)
 max: 7 (less if leader is

inexperienced)

 Duration
 never more than 2 hours

concentration will flag if longer

 Outputs
 all reviewers must agree on the

result
accept; re-work; re-inspect;

 all findings should be documented
summary report (for management)
detailed list of issues

 Scope
 focus on small part of a design, not

the whole thing

 Timing
 Examines a product once its author

has finished it
 not too soon

product not ready - find problems the
author is already aware of

 not too late
product in use - errors are now very
costly to fix

 Purpose
 Remember the biggest gains come

from fixing the process
collect data to help you not to make
the same errors next time

6

21

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Freedman and Weinberg, 1990.

Inspection Guidelines
 Prior to the review

 schedule Formal Reviews into the project planning
 train all reviewers
 ensure all attendees prepare in advance

 During the review
 review the product, not its author

 keep comments constructive, professional and task-focussed
 stick to the agenda

 leader must prevent drift
 limit debate and rebuttal

 record issues for later discussion/resolution
 identify problems but don’t try to solve them
 take written notes

 After the review
 review the review process

22

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Choosing Reviewers
 Possibilities

 specialists in reviewing (e.g. QA people)
 people from the same team as the author
 people invited for specialist expertise
 people with an interest in the product
 visitors who have something to contribute
 people from other parts of the organization

 Exclude
 anyone responsible for reviewing the author

 i.e. line manager, appraiser, etc.
 anyone with known personality clashes with other reviewers
 anyone who is not qualified to contribute
 all management
 anyone whose presence creates a conflict of interest

Source: Adapted from Freedman and Weinberg, 1990.

23

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Porter, Votta and Basili, 1995

Structuring the inspection
 Can structure the review in different ways

 Ad-hoc
 Rely on expertise of the reviewers

 Checklist
 uses a checklist of questions/issues
 checklists tailored to the kind of document (Porter et. al. have examples)

 active reviews (perspective based reading)
 each reviewer reads for a specific purpose, using specialized questionnaires
 effectively different reviewers take different perspectives

 The differences may matter
 E.g. Porter et. al. study indicates that:

 active reviews find more faults than ad hoc or checklist methods
 no effective different between ad hoc and checklist methods
 the inspection meeting might be superfluous!

