
CUSTOMIZING THE COMPOSITION OF WEB SERVICES AND BEYOND

by

Shirin Sohrabi

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

Copyright c© 2012 by Shirin Sohrabi

Abstract

Customizing the Composition of Web Services and Beyond

Shirin Sohrabi

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2012

Web services provide a standardized means of publishing diverse, distributed applications.

Increasingly, corporations are providing services or programs within and between organiza-

tions either on corporate intranets or on the cloud. Many of these services can be composed

together, ideally automatically, to provide value-added service. Automated Web service com-

position is an example of such automation where given a specification of an objective to be

realized and some knowledge of the state of the world, the problem is to automatically select,

integrate, and invoke multiple services to achieve the specified objective. A popular approach

to the Web service composition problem is to conceive it as an Artificial Intelligence planning

task. This enables us to bring to bear many of the theoretical and computational advances in

reasoning about actions to the task of Web service composition. However, Web service com-

position goes far beyond the reaches of classical planning, presenting a number of interesting

challenges relevant to a large body of problems related to the composition of actions, programs,

and services. Among these, an important challenge is generating not only a composition, but a

high-quality composition tailored to user preferences.

In this thesis, we present an approach to the Web service composition problem with a par-

ticular focus on the customization of compositions. We claim that there is a correspondence

between generating a customized composition of Web services and non-classical Artificial In-

telligence planning where the objective of the planning problem is specified as a form of control

knowledge, such as a workflow or template, together with a set of constraints to be optimized

or enforced. We further claim that techniques in (preference-based) planning can provide a

ii

computational basis for the development of effective, state-of-the-art techniques for generating

customized compositions of Web services.

To evaluate our claim, we characterize the Web service composition problem with cus-

tomization as a non-classical planning problem, exploit and advance preference specification

languages and preference-based planning, develop algorithms tailored to the Web service com-

position problem, prove formal properties of these algorithms, implement proof-of-concept

systems, and evaluate these systems experimentally. While our research has been motivated

by Web services, the theory and techniques we have developed are amenable to analogous

problems in such diverse sectors as multi-agent systems, business process modeling, compo-

nent software composition, and social and computational behaviour modeling and verification.

iii

Dedication

To my parents.

iv

Acknowledgements

I owe sincere and earnest thankfulness to my Ph.D. supervisor, Sheila McIlraith. With her

continuous support, understanding, mentorship, encouragement, and most importantly friend-

ship she inspired me and gave me the courage to overcome the challenges in the completion of

this research work. I will forever be grateful to her.

I am grateful to the members of my supervisory committee: Fahiem Bacchus, Michael

Gruninger, Renée Miller, who provided me with continuous feedback throughout the thesis-

writing process. I would also like to thank my external examiners Marsha Chechik and Paolo

Traverso who also provided valuable suggestions on my thesis.

During my studies, I had the pleasure of working with several distinguished scientists. In

particular, I would like to thank those whom I have collaborated with as a part of the work

described in this thesis: Jorge Baier, Sotirios Liaskos, Sheila McIlraith, John Mylopoulos,

Nataliya Prokoshyna, Anand Ranganathan, Anton Riabov, and Octavian Udrea.

I am thankful to the current and past members of the Knowledge Representation Group

who provided me with feedback and constructive criticism on the early stages of my work as

well as my practice talks.

I would like to thank the Department of Computer Science and also greatly acknowledge

funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Last but not least, I would like to thank my immediate family for their unconditional love

and support, my mother Marjan Maha, my father Mansour Sohrabi, my brother Ali Sohrabi,

and my future husband Oktie Hassanzadeh as well as my extended family, specially my grand-

father Ebrahim Sohrabi who lived just a few days short of seeing the thesis finished. This thesis

is dedicated to my family.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 4

1.3 Approach . 4

1.4 Challenges and Contributions . 7

1.5 Organization of this Thesis . 13

2 Background 15

2.1 Introduction . 15

2.2 Web Service Composition Framework . 19

2.3 Planning Approaches to the WSC Problem . 20

2.3.1 Classical Planning . 20

2.3.2 Planning with Procedural Domain Control Knowledge 23

2.3.3 BPEL and Planning . 26

2.3.4 Other Approaches . 30

2.4 Non-planning Approaches to the WSC Problem 31

2.4.1 Workflows . 32

2.4.2 QoS-Aware . 34

2.4.3 The Petri Nets . 35

2.4.4 The Roman Model . 37

2.5 Summary . 40

3 Characterizing Web Service Composition 41

3.1 Introduction . 41

3.1.1 Contributions . 43

3.2 OWL-S: From Services to Actions . 44

vi

3.3 The Customization of the WSC Problem via Golog 44

3.3.1 Preliminaries . 45

3.3.2 Customized Composition of Web services via Golog 49

3.4 The Customization of the WSC Problem via HTNs 51

3.4.1 Preliminaries . 51

3.4.2 Customized Composition of Web services via HTNs 55

3.5 Situation Calculus Specification of HTN Planning 56

3.6 Summary and Discussion . 58

4 Specifying Soft and Hard Constraints 60

4.1 Introduction . 60

4.1.1 Contributions . 61

4.2 Set of Desirable Criteria for Constraint Specification 62

4.3 Specifying Preferences in LPP . 64

4.3.1 The Semantics of LPP . 67

4.3.2 Integrated Optimal Web Service Selection 69

4.4 Specifying Preferences in LPH . 69

4.4.1 The Semantics of LPH . 72

4.5 Specifying Preferences in our PDDL3 Extension 74

4.5.1 Overview of PDDL3 . 74

4.5.2 PDDL3 Extension for HTN Planning 76

4.5.3 The Semantics . 78

4.5.4 Service Selection Preferences . 80

4.6 Specifying Hard Constraints . 81

4.7 Summary and Discussion . 84

5 Computing Optimized Compositions 85

5.1 Introduction . 85

5.1.1 Contributions . 87

5.2 GOLOGPREF: Computing Optimal Compositions 88

5.2.1 Algorithm and its Properties . 88

5.2.2 Implementation and Evaluation . 91

5.3 HTNPLAN: Computing Optimal Plans . 93

5.3.1 Progression . 94

vii

5.3.2 Admissible Evaluation Function . 95

5.3.3 Implementation and Evaluation . 96

5.4 HTNPLAN-P: Computing High-Quality Plans 100

5.4.1 Preprocessing HTN problems . 101

5.4.2 Algorithm . 103

5.4.3 Heuristics . 104

5.4.4 Optimality and Pruning . 106

5.4.5 Implementation and Evaluation . 107

5.5 HTNWSC-P: Computing High-Quality Compositions 110

5.5.1 Algorithm . 111

5.5.2 Implementation and Evaluation . 112

5.6 Summary and Discussion . 115

6 Execution and Optimization 118

6.1 Introduction . 118

6.1.1 Contributions . 120

6.2 Decoupling Data Optimization From Search 121

6.3 Middle-Ground Execution . 126

6.4 Computing a Preferred Composition . 132

6.4.1 Properties of the Algorithm . 132

6.5 Implementation and Evaluation . 133

6.6 Summary and Discussion . 135

7 Beyond Web Services 137

7.1 Introduction . 137

7.1.1 Contributions . 139

7.2 Preliminaries . 140

7.2.1 Specifying Patterns in Cascade . 140

7.2.2 Specifying Preferences . 143

7.3 From Cascade Patterns to HTN Planning . 143

7.3.1 Creating the HTN Planning Domain 143

7.3.2 Specifying Cascade Goals as Preferences 147

7.3.3 Flow-based HTN Planning Problem with Preferences 148

7.4 Computation . 148

viii

7.4.1 Enhanced Lookahead Heuristic (ELA) 149

7.4.2 Generation from Cascade . 150

7.4.3 Generation from HTN . 152

7.5 Experimental Evaluation . 153

7.6 Summary and Discussion . 156

8 Conclusion and Future Work 158

8.1 Conclusion . 158

8.2 Problems and Contributions . 159

8.3 Future Work . 160

A Proof of Theorem 6.1 162

Bibliography 164

ix

Glossary of Acronyms and Abbreviations

Notation Description Pages

BPEL Business Process Execution Language for Web Services 26

BPM Business Process Management 1

Golog alGOl in LOGic. A high-level action-centric language for

programming agents

5, 45

HTN Hierarchical Task Network 6, 51

IPC International Planning Competition 98, 108, 112

LTL Linear Temporal Logic 9, 65, 101

OWL-S Semantic Markup for Web Services 43

PDDL Planning Domain Definition Language 74

PDDL3 Version of PDDL that supports preferences 8, 73

QoS Quality of Service 34

Soft Constraints Preferences 61

WSC Web Service Composition 1

x

Chapter 1

Introduction

1.1 Motivation

Web services are loosely-coupled, self-contained, Web-accessible programs that can be pub-

lished, discovered (or located), composed, invoked, and executed. Web services provide a

standardized means for diverse, distributed software applications to be published on the Web

and to interoperate seamlessly. Increasingly, corporations are providing services or programs

within and between organizations either on corporate intranets or on the cloud. Many of these

programs can be composed together to achieve complex behaviour. Information-gathering ser-

vices such as the weather service at www.weather.com and world-altering services such as the

flight-booking service at www.aircanada.com, are examples of Web applications that can be

described and composed as Web services. They might be coupled as part of a travel-booking

service, for example.

While today’s Web is designed primarily for human interpretation and use, the se-

mantic Web proposes a vision for a next-generation Web that is computer interpretable

[McIlraith et al., 2001]. Automated Web service composition (WSC) is one of many inter-

esting challenges facing the semantic Web. WSC is an example of the more general task of

composing processes or component-based programs that serves to provide value-added ser-

vice. Given computer-interpretable descriptions of the task to be performed, the properties and

capabilities of available Web services, and possibly some information about the client or user’s

specific constraints, automated composition of Web services requires a computer program to

automatically select, integrate, and invoke multiple Web services in order to achieve the user-

defined objective in accordance with any user, context, or instance-specific constraints.

Automated WSC problem is motivated by the need to improve the efficiency of composing

1

CHAPTER 1. INTRODUCTION 2

and integrating services. A number of Business Process Management (BPM) systems exist to

help organizations optimize business performance by discovering, managing, composing, and

integrating services represented as business processes. With the advent of cloud computing,

an increasing number of small- and medium-sized businesses are attempting to blend cloud

services from multiple providers. Performing such integration and interoperation manually is

costly and time consuming. Further, generating a composition that is customizable with respect

to additional constraints is often a challenge.

For the purpose of this thesis, we illustrate concepts in terms of a Travel domain; however,

compelling examples exist in sectors such as Banking and Finance, Government, Healthcare

and Life Sciences, Insurance, Retail, and Supply Chain Management. Many of these applica-

tions exploit extensive internet- or intranet-accessible data and will directly benefit from the

work described here. In the Travel domain, one needs to arrange accommodations and various

forms of transportation with varying options for their realization. We could additionally have

the following soft constraints: If destination is more than 500 km away, book a flight, other-

wise I prefer to rent a car; I prefer to fly with a Star Alliance carrier; I prefer to book cars with

Avis, and if not Budget; I prefer to book a Hilton hotel, and if not a Sheraton. Further hard

constraints can be imposed on the composition such as the following: Never book business or

first class flights; Get pre-approval for travel outside the US; Always pay for flights and hotels

with your corporate credit card.

Soft constraints (aka preferences) are a set of properties that define the quality of the com-

position while hard constraints (e.g., policies) are properties that need to be enforced by the

composition. Preferences differ from hard constraints because their satisfaction is not manda-

tory, but desirable.

Hard constraints are a useful way of enforcing business rules and policies. Many cus-

tomers are concerned with enforcement of hard constraints, often in the form of corporate

policies and/or government regulations. Policies or regulations are a set of constraints imposed

by an authority that define an acceptable behaviour or characteristic of an agent, person, or an

organization. Policies or regulations hence are a set of constraints imposed on the composi-

tion that define an acceptable composition. If commerce is being performed across multiple

governmental jurisdictions, there may be a need to ensure that laws and regulations pertaining

to commerce are enforced appropriately. A company may wish to ensure that all transactions

comply with company policies. For example, they might impose on their employees when

traveling, to always use their corporate credit card for their travel expenses.

Software that is developed for use by a particular corporation or jurisdiction will have the

CHAPTER 1. INTRODUCTION 3

enforcement of such regulations built in. For Web services that are published for use by the

masses this is not the case, and the onus is often on the customer to ensure that regulations

are enforced when the composition is constructed from multiple service providers. For inter-

jurisdictional or international business, different regulations may apply to different aspects

of the composition. Hence, customizing the composition of Web service by imposing hard

constraints and, to that end, providing a mechanism for generating compositions that adhere to

such constraints, is a significant problem that we address in this thesis.

We also argue that customization with respect to soft constraints or preferences is an im-

portant problem and a critical and missing component of most existing approaches to the WSC

problem or component-based compositions. User preferences are key for at least two reasons.

First, the space of possible compositions is often under constrained; as such it induces an (of-

ten large) family of solutions. E.g., consider a user’s objective to book a flight from Toronto

to Atlanta on November 5. This alone could generate tens of solutions. Nevertheless, some

solutions are more desirable, based on the user’s preferences. User preferences enable a user to

specify properties of solutions that make them more or less desirable. The composition system

can use these to generate preferred solutions.

A second reason why user preferences are critical is with respect to how the composition is

performed. A key component of Web service composition is the selection of specific services

used to realize the composition. In AI planning, primitive actions (the analogue of services)

are selected for composition based on their preconditions and effects, and there is often only

one primitive action that realizes a particular effect. For many WSC problems, the task can

be realized by a diversity of different services, offering comparable, but not identical services.

Also unknown at the outset is the data that serves as choice points in a WSC – the availability

of goods, their properties and pricing, etc.

Similar to actions, services are associated with their preconditions and effects. In addition,

they are also associated with their inputs and outputs. These four properties (inputs, outputs,

preconditions and effects) are called functional properties of services and can be found in

semantic Web process model descriptions such as OWL-S [Martin et al., 2007]. The service

profile associated with services in semantic Web representations such as OWL-S allows de-

scription of their non-functional properties. These properties are often used to describe the

features of the service so as to facilitate their discovery and selection. The following is a list

of non-functional example properties: service name, service author, service language, service

trust, service subject, service reliability, and service cost.

Preferences enable specification of both functional and non-functional properties of ser-

CHAPTER 1. INTRODUCTION 4

vices. In the case of airline ticket booking, a book-flight service requires as its input specific

times/dates of the flight and generates a seat number as its output indicating whether it is an

aisle or a window, and as its effect the flight is booked. For this domain the preferences over

functional properties could be whether the user prefers window-seated flights or prefers flying

over weekends, the non-functional properties could be whether the user prefers trusted services

or services that offer lower costs. By integrating preferences into the composition problem,

preferences over services (the how) can be specified and considered alongside preferences over

the solutions (the what).

1.2 Thesis Statement

In this thesis, we present an approach to the WSC problem with a particular focus on the cus-

tomization of compositions with respect to both soft and hard constraints. We claim that there

is a correspondence between generating a customized composition of Web services and non-

classical AI planning where the objective of the planning problem is specified as a form of

control knowledge, such as a workflow or template, together with a set of constraints to be

optimized or enforced. We further claim that techniques in (preference-based) planning can

provide a computational basis for the development of effective, state-of-the-art techniques for

generating customized compositions of Web services. To that end, we formally characterize

the customization of the WSC problem in such a way that allows us to view it as a preference-

based planning problem, where actions (services, service parameters, and/or data) are selected

to produce compositions that are of high quality. Our approach supports customization, opti-

mization, and enforcement of constraints all within one reasoning framework by reflecting and

advancing state-of-the-art techniques for preference-based planning.

1.3 Approach

A popular approach to WSC is to view it as an Artificial Intelligence (AI) planning task (e.g.,

[McIlraith et al., 2001, McDermott, 2002, McIlraith and Son, 2002]). Given an initial state, a

set of actions, their precondition and effects, and a goal description, the AI planning task is to

find a plan or a sequence of actions that achieves the goal. The WSC problem can be charac-

terized as a planning task by specifying services as primitive and complex actions with precon-

dition and effects and the user-defined objective as a composition template. The composition

CHAPTER 1. INTRODUCTION 5

is then the plan generated by the planner.

A number of researchers have advocated using AI planning techniques to ad-

dress the WSC problem including planners that are based on model checking (e.g.,

[Traverso and Pistore, 2004]) and planners that use a template or workflow to ease and guide

the task of composition (e.g., [McIlraith and Son, 2002, Sirin et al., 2005b]). A template-

based composition is compelling for many applications in domains including e-government

(e.g., [Chun et al., 2004]), e-science (e.g., [Cheung and Gil, 2007]), and Grid computing (e.g.,

[Gil et al., 2004]).

Exploiting recent advances in classical planning can provide great computational advan-

tage, but the conception of the WSC problem we consider in this thesis goes far beyond a

classical planning problem. In particular, unlike classical planning, we do not have a final state

goal. Instead in the WSC problem we typically have a specification of a basic behaviour we

wish to achieve – perhaps specified as a workflow or a template. This basic behaviour specifi-

cation is often further augmented with hard constraints (e.g., policies or regulations) that need

to be enforced. Further, while in classical planning, plan length is the only measure of quality,

in the WSC problem, as in preference-based planning, compositions are plentiful and it is the

generation of preferred compositions with respect to complex, temporally extended measures

of quality or preference that we must realize. Another differentiating property of the WSC

problem is that it can be data intensive resulting in planning domains with tens of thousands of

ground actions, where each of which itself can be a program with non-determinism and inter-

mediate state. Finally, unlike in classical planning, not all information required to generate the

composition can be gathered in advance (i.e., we may be faced with incomplete information).

Hence, we need to deliberate about what information to gather and when.

A composition template or composition workflow provides high-level guidance on how

to perform a task while leaving enough flexibility and non-determinism for different possible

realizations based upon the specific problem instance, context- and user-specific preferences,

policies, and regulations, and upon the available services. For many WSC problems, the task

can be realized by a diversity of different services, offering comparable, but not identical ser-

vices. Also unknown at the outset is the data that serves as choice points in a WSC – the

availability of goods, their properties and pricing, etc. A composition template streamlines the

generation of a problem, and customer-specific WSC, while enabling the individual customer

to customize the composition with respect to their soft constraints and hard constraints (e.g.,

constraints imposed by the corporation they work for, the laws of the countries in which they

are doing business).

CHAPTER 1. INTRODUCTION 6

A composition template can be represented in a variety of different ways. In this thesis, we

consider two different representations. In our first approach, we exploited the agent program-

ming language Golog or its variant ConGolog (e.g., [Reiter, 2001]) to represent templates as

generic procedures. (Con)Golog is a high-level logic programming language that augments

the situation calculus with a set of Algol-inspired extralogical constructs for assembling primi-

tive and complex actions into complex actions and programs. Its syntax contains conventional

programming language constructs such as if-then-else and while-loops and allows for non-

determinism both in terms of parameterization of data and component selection. Among the

appeals of ConGolog is its procedural specification which is very much like a textual speci-

fication of a flexible workflow; its ability to treat complex actions as first-class objects in the

language; and the fact that it is first-order, allowing the easy specification of data (a pervasive

element in Web services) as a parameterization of actions.

The second form of composition template representation that we have exploited is the use of

Hierarchical Task Networks (HTNs) (e.g., [Ghallab et al., 2004]). HTN planning is a popular

and widely used planning paradigm, and many domain-independent HTN planning systems

exist (e.g., Nonlin [Tate, 1977], SIPE-2 [Wilkins, 1988], O-PLAN [Currie and Tate, 1991],

UMCP [Erol et al., 1994], SHOP2 [Nau et al., 2003]). Similar to Golog, HTNs provide useful

control knowledge — advice on how to perform a composition – by specifying a template as a

task network – a set of tasks that need to be performed and that can be repeatedly decomposed

in various ways (using so-called methods) into finer grained subtasks, eventually culminating in

primitive actions to be performed. This control knowledge can significantly reduce the search

space for a plan while also ensuring that plans follow one of the stipulated courses of action.

In addition to this hierarchical structure, ordering constraints can be imposed.

Returning to our Travel domain, the task of arranging travel can be decomposed into ar-

ranging transportation, accommodations, and local transportation. Each of these tasks can

successively be decomposed into other subtasks based on alternative modes of transportation

and accommodation, eventually reducing to primitive actions that can be executed in the world.

Further constraints can be imposed to restrict decompositions. In planning, this decomposition

and search is performed by an HTN planner. The merit of HTNs is the intuitive nature of

task hierarchies and the extensive computational machinery. Interestingly, HTNs can be char-

acterized as a special case of ConGolog programs [Gabaldon, 2002] and as such, while these

different composition templates have their merits in terms of expressiveness, in terms of their

theoretical analysis we have a unified formalism that we can and have employed.

We exploit preference-based planning together with the Golog or HTN specification of

CHAPTER 1. INTRODUCTION 7

composition templates to customize plans and optimize for high-quality plans. Preference-

based planning augments a planning problem with a specification of properties that constitute

a high-quality plan. For example, if one were generating an air travel plan, a high-quality

plan might be one that minimizes cost, uses only direct flights, and flies with a preferred car-

rier. Preference-based planning attempts to optimize the satisfaction of these preferences while

achieving the stipulated goals of the plan. To develop a preference-based HTN planner, we

must develop a specification language that references HTN constructs, and a planning algo-

rithm that computes a preferred plan while respecting the problem specification.

1.4 Challenges and Contributions

The general challenge we face in this thesis is to investigate principled techniques for compos-

ing Web services that support user customization. This manifests itself in a number of specific

research challenges that we identify and address in this thesis.

In this thesis: we characterize the WSC problem with customization as a non-classical

planning problem where the objective of the planning problem is specified as a composition

template (either in HTN or Golog), together with a set of constraints to be optimized or en-

forced; exploit and advance preference specification languages and preference-based planning;

develop algorithms tailored to the WSC problem; prove formal properties of these algorithms;

implement (proof-of-concept) systems, and evaluate these systems experimentally. While our

research has been motivated by Web services, the theory and techniques we have developed

are amenable to analogous problems in such diverse sectors as multi-agent systems, business

process modeling, stream processing, component software composition, and social and com-

putational behaviour modeling and verification.

Challenge 1: Characterize the WSC Problem with Customization

The first and the foundational challenge of this thesis is defining a formal notion of the WSC

problem with customization. Our characterization should articulate a notion of quality (opti-

mizing) with respect to user, context, or instance-specific preferences (soft constraints) as well

as a notion of enforcement with respect to hard constraints. Moreover, since we can employ

different representations for specifying the constraints and the defined objective of the WSC

problem, a unified formalism that can be adapted for different approaches is ideal.

Hence, our first contribution is to characterize the WSC problem with customization, where

CHAPTER 1. INTRODUCTION 8

the objective of the planning problem is represented in some form of control knowledge (either

in Golog or HTNs) together with a set of constraints that need to be optimized or enforced. This

characterization enables us to generate the customized composition of Web services through

non-classical planning. To that end we explore the use of preference-based planning, where the

customized composition (with respect to both soft and hard constraints) is the preferred plan

generated by a preference-based planner that adheres to the hard constraints.

Challenge 2: Specify the Soft and Hard Constraints

Specifying the soft constraints (aka preferences) and/or hard constraints (e.g., policies) for the

WSC problem is another important challenge addressed in this thesis. To that end we need to

first design a set of desirable criteria that our specification languages can be evaluated against.

We then need to explore the existing languages and possibly propose new specification lan-

guages that meet our set of desirable criteria. Similarly, we need to propose/employ a language

for specifying hard constraints that can easily facilitate pruning strategies during the planning

phase.

The second contribution of this thesis is to design a set of desirable criteria, evalu-

ate the existing specification languages with respect to this set, and extend the existing

specification languages to meet our set of desirable criteria. The result of this contribu-

tion was presented in [Sohrabi et al., 2006, Sohrabi and McIlraith, 2008, Sohrabi et al., 2009,

Sohrabi and McIlraith, 2009]. We evaluate an existing preference languages proposed by Bien-

venu et al. called LPP with respect to our set of desirable criteria and discuss how we can use

LPP to express service selection preferences. We also extend LPP (propose a new language

called LPH) to be able to specify HTN-specific preferences. Among the HTN-specific proper-

ties that we add to our language is the ability to express preferences over how tasks in our HTN

are decomposed into subtasks, preferences over the parameterizations of decomposed tasks,

and a variety of temporal and nontemporal preferences over the task networks themselves.

Building on the development of LPH we extend the Planning Domain Definition Lan-

guage, PDDL3 [Gerevini and Long, 2005, Gerevini et al., 2009], with HTN-specific prefer-

ence constructs. PDDL3 preferences are highly expressive, however they are solely state cen-

tric, identifying preferred states along the plan trajectory. To develop a preference language

for HTN we add action-centric constructs to PDDL3 that can express preferences over the oc-

currence of primitive actions within the plan trajectory, as well as expressing preferences over

complex actions (tasks) and how they decompose into primitive actions. Moreover, we discuss

CHAPTER 1. INTRODUCTION 9

how we can specify preferences over service and data selection using our extension. For ex-

ample, we are able to express preferences over which sets of subtasks are preferred in realizing

a task (e.g., When booking inter-city transportation, I prefer to book a flight) and preferred pa-

rameters to use when choosing a set of subtasks to realize a task (e.g., I prefer to book a flight

with United). In addition, we can express our preferences over the selection of trustworthy or

more reliable services.

To specify hard constraints we need a specification language that can be easily in-

tegrated into our system and one that easily facilitates pruning strategies during the

planning phase, similar to how temporal formulae provide powerful pruning in TLPlan

[Bacchus and Kabanza, 2000] and TALPlan [Kvarnström and Doherty, 2000]. Hence, we

specify our hard constraints in a subset of Linear Temporal Logic (LTL) that deals with safety

or maintenance properties, considering for the most part the never and always modalities. This

restriction was a design decision rather than a limitation in our ability to deal with arbitrary

LTL formulae. With some sophisticated processing, we could extend our implementation to

handle arbitrary LTL.

Challenge 3: Compute Optimized Compositions

We show in our first challenge that there is a correspondence between generating customized

compositions of Web services and non-classical planning problem. Our third challenge is how

to compute optimized compositions by reflecting and advancing state-of-the-art techniques for

HTN planning with preferences. To that end we need to develop heuristics and algorithms

that enable effective search for an optimal composition; a composition that has the best quality.

Furthermore, we need to analyze and prove properties of these algorithms including correctness

and optimality, implement (possibly proof-of-concept) systems that implement our approaches,

and evaluate the implemented systems to show the applicability of our proposed approach.

Heuristic-guided search is an effective method for efficient plan generation (e.g.,

[Bonet and Geffner, 2001, Hoffmann and Nebel, 2001]), and many heuristic-based planners

exists (e.g., FF [Hoffmann and Nebel, 2001], LPG [Gerevini et al., 2003], Fast Downward

[Helmert, 2006], LAMA [Richter et al., 2008]). Our challenge is to find a heuristic that gives

guidance towards optimal solutions without exhaustively searching the search space. We can

use either an admissible or inadmissible set of heuristics. An admissible heuristic is a heuristic

that never overestimates the cost of reaching the goal. If an admissible heuristic is used in an

A*-like algorithm, then the first plan found would be an optimal plan. However, finding such

CHAPTER 1. INTRODUCTION 10

a plan in practice may not be feasible when the search space is large. Hence, we may instead

consider using inadmissible heuristics with the hope of finding a good-quality plan quickly and

finding a condition under which we can guarantee optimality despite the use of inadmissible

heuristics.

Hence, the third contribution of this thesis is to propose algorithms that integrate

preference-based reasoning, exploiting and advancing state-of-the-art preference-based heuris-

tic search, proving properties of these algorithms, and implementing and evaluating sys-

tems that show the applicability of our proposed approach. The results of this contribu-

tion were presented in [Sohrabi et al., 2006, Sohrabi and McIlraith, 2008, Sohrabi et al., 2009,

Sohrabi and McIlraith, 2009].

More specifically, we provide an algorithm that integrates preference-based reasoning into

Golog, and prove the soundness of our approach and the optimality of our compositions with

respect to the user’s preferences. We provide a working implementation of our algorithm in

a proof-of-concept system, GOLOGPREF, that can be used to select an optimal solution from

among families of solutions that achieve the user’s stated objective. A notable side effect of

this work is the seamless integration of Web service selection with the composition process.

To compute optimal plans when the composition template is specified in HTN, we first need

to develop effective techniques for HTN planning with preferences. To that end, we propose

two HTN planners HTNPLAN and HTNPLAN-P. In HTNPLAN, we propose an approach

based on forward-chaining heuristic search. Key to our approach is a means of evaluating the

(partial) satisfaction of preferences during HTN plan generation based on progression. The

optimistic evaluation of preferences yields an admissible evaluation function which we use to

guide search. We implemented our planner, HTNPLAN, as an extension to the SHOP2 HTN

planner. Our empirical evaluation demonstrates the effectiveness of HTNPLAN heuristics in

finding optimal plans. We provide a semantics for our preference language in the situation

calculus [Reiter, 2001] and appeal to this semantics to prove the soundness and optimality of

our planner with respect to the plans it generates.

To compute preferred plans (exploring inadmissible heuristics) when the composition tem-

plate is specified in HTN, we propose a best-first, incremental search in the plan search space

induced by the HTN initial task network. The search is performed in a series of episodes, each

of which returns a sequence of ground primitive operators (i.e., a plan that satisfies the initial

task network). During each episode, the search performs branch-and-bound pruning—a search

node is pruned from the search space, if we can prove that it will not lead to a plan that is better

than the one found in the previous episode. In the first episode no pruning is performed. In

CHAPTER 1. INTRODUCTION 11

each episode, search is guided by our inadmissible heuristics, designed specifically to guide the

search quickly to a good decomposition. We show that under certain conditions, our heuristics

can be used to prune suboptimal plan prefixes from the search space enabling the planner to re-

turn plans of increasing quality, culminating in an optimal plan. The experimental evaluations

of our planner shows that our HTN preference-based planner, HTNPLAN-P, generates plans

that, in all but a few cases, equal or exceed the best preference-based planners in terms of plan

quality. As such, our result shows that our approach is viable and promising.

Given our advancements to HTN planning with preferences, we go back to address the

WSC composition with customization problem. To that end, we build our system HTNWSC-

P on top of our HTN planner with preferences HTNPLAN-P. We use pruning to eliminate

those compositions that violate hard constraints (policies or regulations). That is, we ensure

regulations, or policies are enforced by simply pruning partial plans that do not adhere to them.

(I.e., upon violation of regulations, we immediately prune that part of the search space.) This

allows enforcement of regulations or policies during composition construction time. Hence,

our composition framework can now simultaneously optimize, at run time, the selection of

services based on their functional and non-functional properties, while enforcing stated hard

constraints. Experimental evaluation on our system, HTNWSC-P, shows that our approach

can be scaled as we increase the number of preferences and the number of services.

Challenge 4: Execute and Optimize

Our fourth challenge is how to perform data-dependent optimization following online infor-

mation gathering in order to gather the necessary information needed to produce high-quality

compositions in the absence of complete information. Many planning-based characterizations

of the WSC problem make an assumption that there is complete information about the ini-

tial state. This assumption is often violated in many real-world settings; it is impractical or

impossible to have all the information necessary to generate a composition prior to the com-

mencement of the search for a composition. A more compelling solution is to instead gather

information as it becomes necessary in the generation and optimization of the composition.

Optimization requires considering all alternatives, at least implicitly. However, given the

large volume of information available on the Web, evaluating the search space effectively is

a challenging problem that has not been addressed in previous work. For example, assume

there are three tasks, rent-car, book-flight, and book-hotel containing i, j, and k data items,

respectively, and we need to compose these three tasks. In the worst case, the planner will

CHAPTER 1. INTRODUCTION 12

need to evaluate i ∗ j ∗ k different car-flight-hotel combinations in order to identify an optimal

combination. However, if the choice of hotel, car, and flight can be made independently of

each other, then the search space is worst case k + i + j. More generally, if we identify the

subset of the data that is relevant to the optimization of the composition, we can localize its

optimization and significantly streamline our search.

Hence, our fourth contribution is to propose a way to address the information-gathering

component of the WSC problem with customization. The need to actually execute services

to gather data, as well as the potential size and nature of the resultant optimization problem

truly distinguishes our approach to the WSC problem from previous work on preference-based

planning. To this end we propose a notion of middle-ground execution system for the WSC

problem with customization that interleaves online information gathering with offline search

as deemed necessary. Our approach executes the information-gathering services as needed and

only simulates the execution of the world-altering services in order to determine a customized

composition of Web services for later execution.

By exploiting the structure in the preference specification and domain we propose a notion

of what we call localized data optimization in which the optimization task can be decomposed

into smaller, local optimization problems, while preserving global optimality. This notion

comes from the observation that in many composition scenarios that involve preferences, most

of the search time is spent on resolving the optimization that relates to the data (which flight,

which car, which hotel). We propose to further improve the search by performing optimization

of data choices locally, whenever possible, while still guaranteeing that the choice selected

does not eliminate the globally optimal solution.

We modify our search algorithm for HTNWSC-P to perform information gathering as well

as optimization. We prove the correctness of our approach and also identify a case where we

could prove the optimality of resulting compositions. We showed that our approach to data

optimization can greatly improve both the quality of compositions and the speed with which

they are generated. This contribution was presented in [Sohrabi and McIlraith, 2010].

Challenge 5: Explore Applicability Beyond WSC

While the techniques we developed are motivated by the WSC problem, in our final challenge

we explore the possibility of applying these techniques to analogous problems. To that end,

we must address possible challenges that present themselves in these related, but different

problems.

CHAPTER 1. INTRODUCTION 13

Hence, our final contribution is an investigation of how to use and adapt our frame-

work to address two applications: requirements engineering and stream processing. We

overview and evaluate the applicability of exploiting the techniques developed in this the-

sis in order to address these problems. The result of the requirements engineering ap-

plication appears in [Liaskos et al., 2010, Liaskos et al., 2011]. Studying the stream pro-

cessing application was conducted in collaboration with IBM T.J. Watson Research Cen-

ter. This work involved addressing several unique and interesting challenges that are

present when working with real large-scale application domains. The result of this re-

search was presented in [Sohrabi et al., 2012]. Some of the key contributions of this

work are proposing the use of HTN planning with preferences to address modeling, com-

puting, and optimizing composition flows in the stream processing application; perform-

ing extensive experimentation with real-world patterns using IBM InfoSphere Streams

http://www-01.ibm.com/software/data/infosphere/streams/; and devel-

oping an enhanced lookahead heuristic and showing that it improves the performance of our

HTN planner by 65% on average.

1.5 Organization of this Thesis

This thesis is organized as follows:

• In Chapter 2 we describe some of the existing approaches that address the WSC problem.

We begin this chapter with a discussion of the scope of the approaches we considered by

describing several common criteria that we use to differentiate the different approaches.

We also discuss a general framework for the WSC problem and update this framework

for each approach that we discuss.

• In Chapter 3 we provide formal characterization of the WSC problem with customiza-

tion. We characterize the WSC problem with customization as a non-classical planning

problem where the objective of the planning problem is not represented as a final state

goal, but rather as an objective in a workflow or a template (specified as HTNs or Golog)

together with a set of constraints that need to be optimized or enforced. To that end,

we articulate a notion of quality (optimizing) with respect to user, context, or instance-

specific preferences (soft constraints) as well as a notion of enforcement with respect to

hard constraints (e.g., policies or regulations).

http://www-01.ibm.com/software/data/infosphere/streams/

CHAPTER 1. INTRODUCTION 14

• In Chapter 4 we describe a set of desirable criteria for constraints specification, explore

the use of existing specification languages, and propose new specification languages that

meet our set of desirable criteria. To that end we describe the syntax and the semantics

of the preference languages we explore and propose. We also discuss how we specify

the hard constraints.

• In Chapter 5 we address the problem of how to exploit the rich specification of the com-

position template (desired behaviour), specification of constraints (both soft and hard)

described in Chapter 4 in order to generate high-quality compositions with enforced hard

constraints. To that end, we describe our proposed algorithms, prove formal properties

of these algorithms, present our (proof-of-concept) systems, and evaluate these systems

experimentally.

• In Chapter 6 we discuss how we address the information-gathering component of the

WSC problem with customization as well as optimization. We discuss how we can

modify our existing framework to incorporate the proposed features. We also discuss

our empirical evaluation and results.

• As mentioned earlier, although our research has been motivated by Web services, the

theory and techniques we have developed go beyond WSC, and as such are amenable to

many analogous problems. In Chapter 7 we overview two applications, one in require-

ments engineering and one in stream processing. We discuss how we can exploit the

techniques and languages developed in this thesis to address these problems. In partic-

ular, we will show how to address the problem of automated composition of flow-based

applications using HTN planning with preferences.

• Finally, Chapter 8 summarizes the contributions of this thesis and presents a number of

possible future research directions.

Chapter 2

Background

2.1 Introduction

In this chapter, we describe some of the existing approaches that address the composition prob-

lem of Web services. We will discuss both planning approaches and non-planning approaches

to this problem. We begin by describing several common criteria that we use to differentiate

the different approaches. We will also provide a general framework that captures the different

high-level components and update this framework for each approach that we discuss.

There are several different problems that have to be considered in the end-to-end solution

to the WSC problem. In particular, one needs to consider the problem of how to describe,

discover, invoke, and execute the services. In addition, one needs to address both the high-

level representation of message-exchange (communication) and data-flow among services, and

the low-level details of the actual establishment of connection and communication to a ser-

vice. There have been a lot of recent advances in addressing the above important problems,

but discussing many of these is out of the scope of this thesis. In particular, there are sev-

eral languages that have been proposed with the intention to provide a standard platform for

Web service discovery, invocation, execution, and composition. The following are some of the

most important languages that fall under the Service-Oriented Architecture (SOA) framework:

Web Service Description Language (WSDL) [Chinnici and et al, 2001], Simple Object Access

Protocol (SOAP) [Box and et al, 2003], and Universal Description, Discovery, and Integration

(UDDI). WSDL is an XML-based language used to describe the Web services, SOAP is a mes-

sage protocol used to establish connection to a service, and UDDI is a XML-based platform-

independent registry that lists the services. In addition to those, the semantic Web commu-

nity have proposed several ontologies with a well-defined semantics such as Semantic Markup

15

CHAPTER 2. BACKGROUND 16

for Web Services (OWL-S) [Martin et al., 2007], Semantic Web Service Ontology (SWSO)

[Battle et al., 2005], and Web Service Modeling Language (WSMO) [Bruijn et al., 2006], to

enable reasoning about the Web services and their interactions with each other.

In addition, orchestration and choreography are two common terms used to describe the

kind of interactions or communications that takes place between services [Peltz, 2003]. In

choreography each party involved describes their own part; however, messages among multi-

ple parties are tracked by the choreography. WS-CDL (Web Services Choreography Descrip-

tion Language) is an example of Web service choreography. Web Service orchestration is a

less collaborative way of interaction. An orchestrator can activate, stop and resume any of the

available services. Any message exchange sequence is controlled by the orchestration designer.

Business Process Execution Language for Web Services (BPEL4WS) is an example of an or-

chestration [Peltz, 2003]. Discussing many of the languages and ontologies mentioned above

as well as the details of execution and lower-level message exchanges is outside the scope of

this thesis.

As discussed in Chapter 1, a popular approach to the WSC problem is to view it as

an Artificial Intelligence (AI) planning task. Given an initial state, a set of actions, their

precondition and effects, and a goal description, the AI planning task is to find a plan or

a sequence of actions that achieves the goal. The WSC problem can be characterized as

a planning problem by specifying services as primitive and complex actions with precon-

ditions and effects and the desired behaviour or the objective as an (often temporally ex-

tended) goal description. The composition is then the plan generated by the planner. A

number of researchers advocate using AI planning techniques to address the WSC problem.

In particular, we will discuss the approach that uses Golog (e.g., [McIlraith and Son, 2002])

and Hierarchical Task Networks (HTNs) (e.g., [Sirin et al., 2005b]). We also discuss sev-

eral different approaches, including those that are based on planning as model checking (e.g.,

[Traverso and Pistore, 2004]), rule-based planning (e.g., [Ponnekanti and Fox, 2002]), and the-

orem proving (e.g., [Waldinger, 2001]). We will also discuss how the work presented in

this thesis (e.g., [Sohrabi et al., 2006, Sohrabi and McIlraith, 2009]) is different from the other

planning based approaches.

In addition to the AI planning approaches to the WSC problem there are a number of non-AI

planning approaches that we overview. In particular, we overview approaches that are based on

workflow modeling of the composite service (e.g., [Schuster et al., 2000, Casati et al., 2000])

and several papers that also take a workflow or template-based approach, but have their focus

explicitly on the optimization of Quality of Service (QoS) or the service selection problem

CHAPTER 2. BACKGROUND 17

(e.g., [Zeng et al., 2003]). We also overview two automata-based approaches, the Petri Nets

(e.g., [Hamadi and Benatallah, 2003, Narayanan and McIlraith, 2002]) and the Roman Model

[Calvanese et al., 2008].

In order to help better differentiate the different approaches, we plan to further discuss each

approach based on the following differentiating criteria.

Level of Automation: Composition of Web services can be achieved through a range of au-

tomation. At one end of the spectrum, the selection and coupling of Web services can be per-

formed manually using a workflow or tools such as Business Process Execution Language for

Web Services (BPEL4WS). Unfortunately, such compositions are brittle, requiring specifica-

tion of the services to be coupled a priori and precluding most, if not all, user customization and

generation of preferred compositions. At the other end of the spectrum, the WSC problem can

be fully automated using, for example, a classical AI planning technique. This approach also

has its drawbacks. In general, the search space for a composition is huge because of the large

number of available services, which grow far larger with grounding for data creating scala-

bility and expressivity problems [Srivastava and Koehler, 2003, Hoffmann et al., 2008]. While

both extremes have their drawbacks, a reasonable middle ground is the “guided-automation”

approach where the composition is guided through a composition template. The composition

template provides the high-level knowledge of how to achieve the desired behaviour; hence,

limits the ways in which services can be selected, while leaving enough flexibility for dif-

ferent possible realizations of the programs within the template, based upon the needs of the

specific problem, the preferences of the customer, and the available services. Golog (e.g.,

[McIlraith and Son, 2002] and HTNs (e.g., [Sirin et al., 2005b]) are two of many ways to rep-

resent a composition template that we discuss in this thesis.

Optimality: In many WSC setting, akin to preference-based planning, while compositions

are plentiful, it is the generation of preferred compositions with respect to some measures of

quality or preference that is hard to realize. Regardless of the type of quality, preferences are

a critical and often a missing component of most existing approaches to the WSC problem.

The different approaches that handle optimization with respect to some notion of preferences

(e.g., [Lin et al., 2008, Lécué, 2009]) define a way of how to specify preferences and also how

to compute compositions that are optimal with respect to their quality measure.

CHAPTER 2. BACKGROUND 18

Online vs. Offline: Many WSC approaches assume that all the information required to gen-

erate the composition is on hand at the outset, and as such, composition is done offline followed

by subsequent execution of the composition, perhaps in association with execution monitoring.

However, this is not realistic in many settings. Consider the task of travel planning or any

other multi-step purchasing process on the Web. A good part of the compositions for these

domains involves data gathering, followed by generation of an optimized composition with

respect to that data and other criteria. Indeed many of the choice points relating to the com-

position require data acquired at execution time (i.e., online). To address this, most current

WSC systems will acquire all the information required for the composition prior to initiating

composition generation. This can result in a lot of unnecessary data access. Further, it results

in an enormous search space. While this space may still be manageable for computing a com-

position, to compute an optimal composition, and to guarantee optimality, the entire search

space must be searched, at least implicitly. This has the effect that most data-intensive WSC

tasks that involve optimization of data (like picking preferred flights) will not scale using the

conventional techniques. The problem of gathering information during composition has been

examined in several research papers (e.g., [McIlraith and Son, 2002, Kuter et al., 2004]). McIl-

raith and Son in [McIlraith and Son, 2002] describe a middle-ground interpreter that collects

relevant information, but only simulates the effects of world-altering actions. Kuter et al. in

[Kuter et al., 2004] take a similar approach but their work focuses on dealing with services that

do not return a result (if any) immediately. The techniques proposed in this thesis (Chapter 5)

is among the few that attempts to balance the trade-off between offline composition and online

information gathering with a view to producing high-quality compositions.

The Context (i.e., Semantic Web): While today the Web is designed for human interpreta-

tion and use, the semantic Web proposes a vision for a next-generation Web that is computer

interpretable [McIlraith et al., 2001]. WSC is one of many interesting challenges facing the

semantic Web. Several of the papers discussed in this report are in service of the semantic Web

but we discuss both semantic Web and non-semantic Web related papers.

Stateful vs. Stateless: While many approaches keep track of the state of the world, some also

consider services that keep track of their states. The state of a service keeps track of the history

of this service in terms of its previous invocation, communications, and interactions. Much

of the classical AI planning approaches (e.g., [McDermott, 2002]) consider stateless services,

that is the atomic services that do not depend on the history or state of interactions, for exam-

CHAPTER 2. BACKGROUND 19

ple, on the previous inputs to the service. Other approaches, including the approaches that use

non-classical AI planning techniques (e.g., [McIlraith and Son, 2002, Sirin et al., 2005b]) or

the model checking approaches (e.g., [Bertoli et al., 2010]), consider process-oriented services

in which services are stateful. That is, the services are able to establish complex multi-phase in-

teractions, possibly with the user or the client. Generally, the approaches that consider stateful

services are more difficult, since services cannot be considered as atomic. Instead they must be

represented as stateful processes that realize interaction protocols which may involve different

sequential, conditional, and iterative steps. An example of a stateful service is a flight booking

service that requires “a sequence of different operations including an authentication, a submis-

sion of a specific request for a flight, the possibility to submit iteratively different requests,

acceptance (or refusal) of the offer, and finally, a payment procedure” [Bertoli et al., 2010].

2.2 Web Service Composition Framework

In this section, we describe a general framework for the Web service composition problem.

In this framework we deliberately keep the different components high level, and hence, will

not consider a particular language or algorithm used in the composition. The main purpose

of this framework is to give a basic definition of the WSC problem that can be adapted by

different approaches. The following definition is a generalized definition of WSC problem

that originally appeared in [Sohrabi et al., 2006]. We will give a formal definition of the WSC

problem we consider in this thesis in Chapter 3.

Definition 2.1 (Web Service Composition (WSC)) A WSC problem is described as a 6-tuple

(Sinit ,D, O, δ, φhard , φsoft) where:

• Sinit is the description of the initial state,

• D is a theory describing functional properties of the Web services,

• O is a theory describing the non-functional properties of the Web services,

• δ is a specification of the desired behaviour or objective,

• φhard is a specification of hard constraints (e.g., policies, regulations), and

• φsoft is a specification of soft constraints (e.g., user, context, or instance-specific preferences).

Web service composition determines a sequence of services (actions) whose execution starting

from Sinit meets the objective δ while enforcing the φhard , and optimizing for a composition

that satisfy φsoft .

CHAPTER 2. BACKGROUND 20

Note, functional properties of a service include input, output, precondition, and effect of a

service, while the non-functional properties of a service may include service trust, reliability,

subject, cost, and language. Also, some approaches distinguish between world-altering ser-

vices and information-gathering services. World-altering services are those that once executed

have an effect on the world or change the state of the world. Information-gathering services,

on the other hand, only provide an output or information, and their execution would not have

an effect on the state of the world.

Several components in Definition 2.1 such as φhard or φsoft will not be adapted in many

of the WSC approaches we consider. Hence, we consider these optional arguments of the

problem. In addition, in some approaches there is no need to explicitly specify the initial

state as an extra argument to the problem because the initial state may be specified within

D or δ. However, what many approaches have in common is that they will define the com-

position requirement or the objective, δ, discuss a language for specifying the functional and

non-functional properties of the services, and discuss the way they find a (high-quality) compo-

sition, possibly by providing an algorithm for their computations (i.e., realizing what it means

to meet the objective, enforce the hard constraints and optimize for a high-quality composi-

tion). Many of these elements of WSC problem are those we focus on when describing the

different approaches.

2.3 Planning Approaches to the WSC Problem

In this section, we review some of the AI planning approaches to the WSC problem. We

consider both classical and non-classical AI planning approaches to WSC. Exploiting recent

theoretical and computational advances in AI planning can provide a great advantage for ad-

dressing the WSC problem. This is the primary reason for the popularity of the AI planning

approaches to WSC. However, a classical AI planning approach is generally not sufficient to

address the WSC problem, therefore, many non-classical approaches have emerged in the past

few years that we will overview here.

2.3.1 Classical Planning

The classical AI planning approaches to the WSC problem generally translate OWL-S pro-

cess models into internal representations such as Planning Domain Definition Language

(PDDL) [McDermott, 1998] amenable to AI planning (e.g., [Klusch et al., 2005]). PDDL

CHAPTER 2. BACKGROUND 21

is a popular and widely used planning input for many state-of-the-art planners. OWL-S

[Martin et al., 2007] is a Web ontology [Horrocks et al., 2003] for Web services with a view

to support automated discovery, enactment and composition of Web services. OWL-S will be

discussed in more detail in Chapter 3.

Many classical planning approaches that we overview here consider an adapted version of

the general framework or Definition 2.1 in which D and O are the description of functional

and non-functional properties of a set of Web services mapped to some AI planning descrip-

tion language such as PDDL, and the objective is the goal description (usually a set of literals

that need to hold in the final state. WSC determines a sequence of services (actions) whose

execution starting from the initial state reaches a goal state. Hence, the WSC problem can be

viewed as a classical planning problem by considering that the set of services are mapped to

actions with precondition and effects, and the objective is mapped to a goal description. How-

ever, there are general assumptions that are made when considering this mapping. In particular,

in this mapping it is assumed that each Web service can be specified by its precondition and

effect in the planning context. Hence, specifying information-gathering services (those that

have no effect), may not be possible. Furthermore, it is assumed that the desired functionality

or objective can always be expressed as a final state goal condition. This is often not ideal, as

goals can generally be temporally extended (i.e., not only over a final state). Furthermore, in

WSC typically we have a specification of a basic behaviour we wish to achieve, specified as a

workflow or a template, and a final state goal cannot capture this.

A classical AI planning approach to the WSC problem is generally a fully automated, of-

fline approach that is optimal with respect to only plan length (shortest plans are preferred),

and an approach that considers services that are stateless. In addition, a classical AI planner is

incapable of handling rich, complex hard or soft constraints; hence policies, regulations, user,

context, or instance-specific preferences are not handled in this approach. Furthermore, it is

generally assumed that the initial state is complete (i.e., all information is given in advance),

so planning is done offline with no extra online information-gathering step. This may cre-

ate a scalability problem as WSC problems are generally data intensive resulting in planning

domains with tens of thousands of ground actions.

Next, we consider several specific planning approaches to the WSC problem.

McDermott presents an approach based on PDDL to address the task of WSC and shows

how a classical goal-regression planner can be extended to create conditional plans as needed

[McDermott, 2002]. A regression-based approach starts from a goal rather than an initial state

and searches backward until the initial state holds. McDermott argues that using a regression

CHAPTER 2. BACKGROUND 22

planner is suited for the WSC problem and, in addition, he can relax the closed-world assump-

tion normally made for classical planning in his formalism. In particular, he introduces a new

type of knowledge called a value of an action which persists and can be given as input to the

later steps of the planning phase. By using value of an action the planner is able to pass infor-

mation from one plan step to another. For example, a send message action may generate a value

message id that can be used in later communications to indicate which message it is referring

to. He further proposes an approach that formalizes the unknown, using what he calls learn-

able terms. This feature enables differentiation of the information providing and world-altering

services.

Another planning approach that attempts to address the incomplete initial state is the work

by Hoffmann et al. (e.g., [Hoffmann et al., 2007]). This approach attempts to address the ram-

ification problem (indirect effect of an action) that arises when WSC systems need to deal with

background ontologies or derived information. Incorporating background ontologies (theory)

into a planner is a computationally hard problem. This approach addresses the ramification

problem by identifying a special case called forward effects, in order to limit the effect of an

action. They argue that this special case is easier to deal with and yet it is relevant for many

WSC scenarios. Furthermore, they provide a compilation into conformant planning, and there-

fore enabled the use of state-of-the-art conformant planner for the WSC problem.

Another notable work is the work by Klusch et al. [Klusch et al., 2005]. Klusch et

al. present a PDDL-based approach to the WSC problem where the services described in

OWL-S and the domain ontology described in OWL are mapped to the initial state, the goal

description, and actions in PDDL2.2. Furthermore, they propose to represent the output

of an information-gathering services by a special predicate “agentHasKnowledgeAbout(X)”.

Their planner XPlan, which uses the heuristics of the well-known FastForward (FF) planner

[Hoffmann, 2001], is then used to generate a plan. They tested their approach in an e-Heath

application scenario.

Finally, McIlraith and Fadel in [McIlraith and Fadel, 2002] formalize the notion of plan-

ning with complex actions by compiling complex, possibly non-deterministic actions into sim-

ple classical planning actions. This enables the use of the planning techniques for the WSC

problem. Planning is a very active area of research and many fast and efficient planners exists.

Hence, in general by having an operator-based planning domain encoding of the problem, one

can experiment with state-of-the-art planners in order to address generation of a composition

for the WSC problem. However, scalability may become a problem when a planner has to deal

with large number of actions and search through a large search space. In order to deal with this

CHAPTER 2. BACKGROUND 23

problem, some compact form of representing a domain is needed. We will see in Chapter 5

how using procedural domain control knowledge either in the form of Golog or HTNs, together

with heuristic search, can help overcome the scalability problem.

2.3.2 Planning with Procedural Domain Control Knowledge

Many of the tasks performed on the Web or on the intranets are repeated routinely, while the

basic steps to achieving these tasks are well understood, at least at an abstract level. These basic

steps, often captured in a template or workflow, provide a compelling skeleton of a composi-

tion, generally referred to as procedural domain control knowledge. The composition template

dictates the ways in which services can be composed, hence restricting the possible search

space. The composition template is used to direct and provide high-level guidance on how to

perform composition of Web services.

In this section, we overview approaches that extend classical planning to incorporate pro-

cedural domain control knowledge either in the form of Golog [Reiter, 2001] or Hierarchical

Task Networks (HTNs) [Ghallab et al., 2004]. We overview relevant features of Golog, HTNs

and how OWL-S is related to HTN in Chapter 3.

WSC with Procedural Control Knowledge Specified in Golog

In this section, we overview approaches that address the problem of WSC through the use

of Golog. In this approach, Web services are viewed as actions in the situation calculus

and are described as actions in terms of a situation calculus basic action theory. The de-

tails of the basic action theory are discussed in [Reiter, 2001, Narayanan and McIlraith, 2002,

McIlraith and Son, 2002].

Golog [Reiter, 2001] is a high-level logic programming language for the specification and

execution of complex actions in dynamical domains. It builds on top of the situation calculus

by providing Algol-inspired extralogical constructs for assembling primitive situation calculus

actions into complex actions (aka programs) δ. These complex actions simply serve as con-

straints upon the situation tree. Among the appeals of Golog are its procedural specification,

which is very much like a textual specification of a flexible workflow; its ability to treat com-

plex actions as first-class objects in the language; and the fact that it is first-order, allowing

the easy specification of data (a pervasive element in Web services) as a parameterization of

actions. The following is an example of a Golog program.

bookAirTicket(x) ; if far then bookCar(y) else bookTaxi(y) endIf

CHAPTER 2. BACKGROUND 24

McIlraith et al. [McIlraith et al., 2001, McIlraith and Son, 2002] adapt and extend

Golog for the task of WSC. The Golog procedures were combined with individual user con-

straints (e.g., “I want to fly with a Star Alliance carrier”) at run time, resulting in dynamic

binding of Web services. However, the user constraints considered were hard constraints, that

is, the realizations that did not satisfy those constraints were eliminated. Thus, this approach

addressed hard constraints φhard , but did not deal with soft constraints φsoft . Their modification

to the Golog interpreter (written in Prolog) also had an ability to communicate with Web ser-

vices via Open Agent Architecture (OAA) agent broker system. This approach finds a single

WSC using the theorem proving capacity of their Prolog-based Golog interpreter.

The problem of gathering information during composition has been examined in

[McIlraith and Son, 2002]. In particular, they describe a middle-ground interpreter that collects

relevant information, but only simulates the effects of world-altering actions. Their interpreter

works under the Invocation and Reasonable Persistence (IRP) assumption that (1) assumes all

information gathering actions can be executed by the middle-ground interpreter and (2) as-

sumes that the gathered information persists for a reasonable period of time, and none of the

actions in the composition cause this assumption to be violated. Even though these assump-

tions may not hold for time-sensitive data (e.g., stock quotes), these assumptions are true for a

large class of information available on the Web, in particular, for the type of information that

interests us here (e.g., flight schedules, available hotels, tours, etc).

In this thesis, we extend the work in [McIlraith and Son, 2002] to be able to deal with soft

user constraints. Our proposed preference language handles a wide variety of user constraints.

It enables the synthesis of a composition of services, where the selection of services and service

groundings (e.g., in the case of travel, the selection of the specific flight) can be customized to

individual users at run time. The specification of the user preferences is discussed in Chapter

4 and the computation of optimized compositions is discussed in Chapter 5.

WSC with Procedural Control Knowledge Specified in HTN

An Hierarchical Task Network (HTN) planning problem can be viewed as a generalization

of the classical planning paradigm [Ghallab et al., 2004]. An HTN domain contains, besides

regular primitive actions, a set of tasks or high-level actions. Tasks can be successively refined

or decomposed by the application of so-called methods. When this happens, the task is replaced

by a new, intuitively more specific task network (of a set of tasks plus a set of restrictions, often

ordering constraints among these tasks). The HTN planning problem consists of finding a

CHAPTER 2. BACKGROUND 25

primitive decomposition of a given initial task network. The merit of HTNs is the intuitive

nature of task hierarchies and the extensive computational machinery.

In this section, we discuss several papers that similarly use HTNs as a way to specify the

procedural control knowledge. This approach relies on an existing OWL-S to HTN planning

translation [Sirin et al., 2005b]. We discuss this translation in more detail in Chapter 3.

Sirin et al. [Sirin et al., 2005b] used SHOP2, a highly-optimized HTN planner for the

WSC problem. The HTN induces a family of compositions and the if-then-else ordering of

SHOP2 provided a means of reflecting a preference for achieving a task one way over an-

other. However, this limited form of preference was hard-coded into the SHOP2 domain de-

scription and could not be customized by an individual user without recoding the HTN. In

[Sirin et al., 2005a], an HTN-DL formalization was proposed in which they combined reason-

ing about Web service ontologies using a Description Logic (DL) reasoner with HTN plan-

ning. Other attempts have also been made to combine DL reasoning with Planning (e.g.,

[Lécué et al., 2008]). Unfortunately, many argue that DL-reasoner is not designed for the

type of inference necessary for WSC and combining OWL-DL reasoning with planning can

create significant performance challenges since one needs to call the reasoner many times dur-

ing the planning phase, leading to very expensive computations [Sirin and Parsia, 2004]. Like

their predecessor, they exploited SHOP2 domain ordering to reflect preferences, but these were

again not easily customizable to an individual user. They further provided a means of prefer-

ring services according to their class descriptions, but did not optimize the selection of service

groundings.

Another notable work is by Kuter et al., in which they attempt to address the com-

plete initial state assumption of a classical planner using an HTN-based planer ENQUIRER

[Kuter et al., 2004]. ENQUIRER solves the WSC problem by gathering information during

the composition process and is based on the SHOP2 planning system. In particular, Kuter et

al. take a similar approach to [McIlraith and Son, 2002] but their work focuses on dealing with

services that do not return a result (if any) immediately. They provide a Query Manager that

allows the planner to continue search without waiting for all of the information-gathering ser-

vices to return data. They also assume that the information-gathering services are executable

(similar to condition 1 of IRP), but they allow the planner itself to change the gathered informa-

tion during planning (a variant of condition 2 of IRP). They prove soundness and completeness

of their algorithm given sufficient conditions, and also test the efficiency of their algorithm.

Most recently, Lin et al. [Lin et al., 2008] proposed an algorithm for HTN plan-

ning with preferences described in the Planning Domain Definition Language PDDL3

CHAPTER 2. BACKGROUND 26

[Gerevini and Long, 2005] that did allow for preferences over service groundings. They imple-

mented a prototype of the algorithm in a planner, SCUP, tailored to the WSC problem. A merit

of this work over previous HTN work is that it is not restricted to SHOP2 syntax and, as such,

provides the non-determinism (flexibility) necessary for preference-based planning. While this

work seems closest to the work carried in this thesis (in fact it was carried out while this thesis

was in progress), we believe the work described in this thesis has significant improvement over

the work described in [Lin et al., 2008]. In particular, the ability of their planner to deal with

preferences is somewhat limited, as it appears to be unable to handle conflicting user pref-

erences. The authors indicate that conflicting preferences are removed (rather than resolved)

during a preprocessing step prior to run time.

To conclude, the discussed approaches are all guided-automation approaches to address

the WSC problem. Several of the papers overviewed consider some limited form of prefer-

ences and to some degree attempt to optimize for a preferred composition. However, these

approaches do not consider handling policies or regulations. They also do not take advan-

tage of state-of-the-art heuristic search techniques. In this thesis, we attempt to address their

limitations with respect to both specification of soft and hard constraints (see Chapter 4), and

computing optimized compositions (see Chapter 5) that not only optimizes for preferences, but

also adheres to regulations and policies.

2.3.3 BPEL and Planning

In this section, we overview planning approaches that are based on Business Process Exe-

cution Language for Web Services (BPEL4WS). BPEL4WS is a collaborative efforts by Mi-

crosoft, IBM, BEA, SAP and Siebel, originally named BPEL4WS and later named WS-BPEL

2.0 (BPEL for short) [Andrews and et al, 2002]. We start this section by briefly overviewing

BPEL, then we will overview several papers from the University of Trento researches that are

based on the planning as model checking framework.

BPEL is a popular language for Web service orchestration that merges Microsoft and IBM

languages XLANG and Web Services Flow Language (WSFL). BPEL models the specifi-

cation of Executable and Abstract business processes. Executable business processes model

the actual behaviour of a process that is generally internal to an organization, while Abstract

business processes are more of a description, and only partially specify the behaviour of a

progress. Abstract business processes are generally meant for external agents as a protocol

to interact with a Web service. Consider the following purchasing protocol example from

CHAPTER 2. BACKGROUND 27

[Andrews and et al, 2002]: “The seller has a service that receives a purchase order and re-

sponds with either acceptance or rejection based on a number of criteria, including availability

of the goods and the credit of the buyer.” While the actual decision is not clear, the decision

process is a behaviour that must be represented. The abstract business process or the protocol

must capture the different selections using non-determinism by enumerating the set of possi-

bilities. This is done via the “switch” construct, which, similar to an if-then-else statement,

effectively creates conditional branches. Besides the “switch” construct, there are several other

constructs such as “reply”, “receive”, “partner-link”, “sequence”, “while”, “pick”, and “flow”.

Given a logical specification of a goal, F, usually in a temporal logic formula CTL or LTL,

and a formal model of a domain, M, usually represented as a Finite State Machine (FSM) or

an automaton, model checking is a verification technique that solves the entailment problem

M |= F . Planning as model checking (e.g., [Pistore and Traverso, 2001, Cimatti et al., 1997]

is a technique to synthesize a plan, that is to automatically generate a plan from F and M .

Planning as model checking generally allows for non-determinism, temporally extended goals,

and incomplete knowledge. One way to address the planning as model checking approach is to

use Binary Decision Diagrams (BDDs) model checking techniques [Burch et al., 1992]. This

further allows for compact representation of the domain and the plan.

Several papers combine the BPEL specification of a process behaviour and the AI plan-

ning technique based on the planning as model checking approach for the task of WSC. Be-

sides composition, monitoring and adaptation are two other key problems addressed by this

approach, but those will not be discussed here.

EaGLe [Lago et al., 2002] is a goal specification language, inspired by LTL and CTL tem-

poral logic specification languages, designed to express extended goals for planning with non-

determinism. “Fail”, “Repeat”, “DoReach”, and “TryReach” are among the EaGLe constructs.

One of the features of this language is that some notion of preferences can be embodied in it.

For example, one can specify a preference that states consider goal g1 first, and only if it fails,

consider goal g2, by specifying the goal as g1 Fail g2. Also one can specify a goal of a different

strength. For example, in DoReach p, p must be achieved, but in TryReach, it is recommended

that p be achieved, but it is not forced. Hence, some notion of soft and hard constraints can be

captured via the goal specification formula δ in EaGLe.

One of the first papers that attempts to combine the BPEL and AI planning technique based

on the planning as model checking approach is the work by Pistore et al. [Pistore et al., 2004].

The BPEL abstract specification is expressed as a (non-deterministic) finite state automaton.

The goal is specified in EaGLe language. To address partial observability, the executor or the

CHAPTER 2. BACKGROUND 28

planner considers all the possible states, or the belief states when searching for the plan. Hence,

at the “belief-level”, produced by the power-set construction of the original domain, the search

is fully observable. Their implemented planner is then used to generate a plan (an executable

BPEL process) that meets the given specification. Their Model Based Planner (MBP), is able

to handle several non-classical planning features. In particular, they take into account non-

determinism, partial observability, and extended goals.

Traverso and Pistore take a slightly different approach in [Traverso and Pistore, 2004].

While they still represent the goals in the EaGle language, instead of describing services in

BPEL abstract processes, they propose an approach in which Web services are described in the

OWL-S process models. The OWL-S process models are then translated into non-deterministic

and partially observable state transition systems. That is each OWL-S process model is en-

coded as a state transition system. The set of all transition systems is effectively the planning

domain. Their proposed planning algorithm, which is implemented in their planner MBP, then

generates plans. Note, they generate a family of plans, not just one, in a form of an automaton,

and that their generated plan can be translated to BPEL executable processes. Below we give

more details about the state transition system and the automata that represent their generated

plan.

State transition systems describe the behaviour of a system. There may be more than one

initial state, and the transitions indicate how occurrence of an action can generate new states

(note that more than one state can be created due to non-determinism). The system’s be-

haviour can be monitored by the observations which are defined for each state. Basically,

observations model the output of the invoked process. The following definitions are taken

from [Traverso and Pistore, 2004].

Definition 2.2 (State Transition System [Traverso and Pistore, 2004])

A (non-deterministic, partially observable) state transition system is a tuple Σw =

(S,A,O, I, T,X), where:

• S is the set of states,

• A is the set of actions,

• O is the set of observations,

• I ⊆ S is the set of initial states,

• T : S × A → 2S is the transition function; it associates to each current state s ∈ S and to

each action a ∈ A the set T (s, a) ⊆ S of next states, and

• X : S → O is the observation function.

CHAPTER 2. BACKGROUND 29

Definition 2.3 (Plan [Traverso and Pistore, 2004]) Let Σ represents the domain (i.e., let Σ

be Σ = Σw1
× ...Σwn

). A plan for planning domain Σ = (S,A,O, I, T,X) is a tuple π =

(C, c0, α, ǫ), where:

• C is the set of plan contexts,

• c0 ∈ C is the initial context,

• α : C ×O ⇀ A is the action function; it associates to a plan context c and an observation o

an action a = (c, o) to be executed, and

• ǫ : C × O ⇀ C is the context evolutions function; it associates to a plan context c and an

observation o a new plan context c′ = ǫ(c, o).

The plan is a deterministic automaton (both functions α and ǫ are deterministic). Note that

the context is basically the internal states of the plans. It keeps track of the execution path by

keeping into account for example, the knowledge gathered during previous execution steps.

Let Σπ be the execution structure that represents the evolutions of the domain Σ controlled

by the plan π. Note, the execution structure is a state transition system that compactly repre-

sents the execution of a plan in terms of transition between a configuration pair (s, c), where s

is a state and c is a context. A plan is a valid plan for a goal G if Σπ |= G. The plan π, which

is an automaton, as claimed by the authors, can then be translated into an executable BPEL

process [Traverso and Pistore, 2004].

Below we update our general framework definition for this approach.

Definition 2.4 (WSC via Planning as Model Checking) A WSC problem via planning as

model checking is described as (D, δ) where: D is the abstract BPEL specifications of the

Web services (in [Traverso and Pistore, 2004], they assume D is represented in OWL-S), and

δ is a specification of the desired goal in EaGLe [Lago et al., 2002]. WSC generates a valid

plan for the goal δ and the planning problem that results from representing D as a set of state

transition systems.

Pistore et al. in [Pistore et al., 2005] focus on the asynchronous feature of Web services

and address the problem of WSC by appealing to planning in asynchronous domains. They

argue that the interactions among Web services are asynchronous, that is each BPEL process is

independent and may have unpredictable speed. Similar to their previous work, in which they

translated the OWL-S process models to state transition systems, here they translate the BPEL

abstract processes to state transition systems. The new state transition systems can change

state either by “asynchronously” receiving message (input actions), sending messages (output

CHAPTER 2. BACKGROUND 30

actions), or by evolving internally (internal actions). So in the state transition systems, they

explicitly have a set of input actions, output actions, as well as the transition function, and the

set of initial states. In addition, to capture the asynchronous interactions, when a message is

sent it can be either received immediately or later after a sequence of internal action executions.

Pistore et al. represent the goals as EaGle formula and again use the MBP planner to generate

plans that can be translated to BPEL executable process. They summarize the body of the work

that addresses WSC via planning in asynchronous domains in [Bertoli et al., 2010].

BPEL and AI planning techniques are combined in several papers (e.g.,

[Pistore et al., 2004]). Many of the papers we reviewed here consider planning under

uncertainty and partial-observability. We consider this line of research to be a guided-

automation approach, because the automated WSC problem is guided through a composition

template, here expressed in the EaGLe specification language. Furthermore, the services

considered in the BPEL-based approaches are generally stateful as BPEL represents the flow

of interactions among Web services. In addition, the EaGLe goal specification language

captures some limited notion of preferences. Finally, this line of research seems to be an

online approach to the WSC problem, because information is gathered during the composition

construction time.

2.3.4 Other Approaches

In this section, we briefly overview a few other approaches that use logic-based reasoning for

the task of WSC.

Waldinger proposes an approach based on automated deduction and program synthesis

[Waldinger, 2001]. Program synthesis refers to the automatic derivation of a program to meet

a given formal specification of its behaviour [Manna and Waldinger, 1980]. More formally,

given a valid input P (x) and specification R(x, y), the goal is to find a program f(x) such that

for an input a, if P (a) holds, then the output f(a) satisfies R(a, f(a)). In the deductive ap-

proach, the domain axioms and the program specification are represented by sequents, together

with a mathematical induction rule, in a three-column table that represent assertion, goals, and

outputs. Using the program synthesis approach, Waldinger [Waldinger, 2001] describes both

the service description and the user desired functionality in a first-order language. The service

description is the specification and the desired goal is the input or the query which is phrased

as a theorem. Waldinger then uses the SNARK theorem prover to construct a proof for this

problem. Finally, the answer (the composition) is extracted from a particular proof.

CHAPTER 2. BACKGROUND 31

Another similar approach is by Rao et al., in which they use Linear Logic (LL) theorem

proving for the WSC problem (e.g., [Rao et al., 2004]). They use OWL-S for the external rep-

resentation of the description of Web services and use LL to internally represent axioms and

proofs; the service functional (and non-functional) attributes are represented as proposition in

the logical axioms. One of the key advantages of using LL is that they are able to define and

distinguish the non-functional attributes of Web services through LL; they do so by translat-

ing the OWL-S service profiles to LL axioms. They then use a LL theorem prover to address

the problem of WSC. In particular, the LL theorem prover is used to prove if the user’s ob-

jective can be achieved by composition of available services. If so, the process model for the

composite service is automatically extracted from the proof.

Another notable work is by Ponnekanti and Fox [Ponnekanti and Fox, 2002], which de-

scribes a set of tools for building composition of Web services using rule-based planning. Each

service is represented by a Horn rule that, given a certain input, produces a particular output.

The resulting toolkit, called SWORD, uses Prolog to reason about the encoded rule-based rules

to generate a plan. One of the merits of this work is that it can compose information-gathering

services. The objective or the goal description is represented as desired inputs and outputs to

the system. SWORD then determines if the described behaviour can be generated using the

rule engine, if so it generates a composition plan for it using the execution trace of Prolog.

The current prototype version of the system cannot deal with services that have side-effects

(world-altering services), and seems to only compose information-gathering services.

Finally, Petrick and Bacchus propose a planner that is able to address incomplete knowl-

edge and sensing [Petrick and Bacchus, 2002, Petrick and Bacchus, 2004]. The key notion of

their knowledge-level planner PKS is that it is able to reason with multiple databases that cor-

respond to its knowledge (i.e., the agent’s knowledge) rather than the state of the world and

that the actions change the agent’s knowledge, rather than the state of the world. This planner

is able to construct conditional plans in a forward-search manner to deal with the incomplete

knowledge. This planner is not used within the context of the WSC problem, but the key no-

tions of this work can be applied to address incomplete information within the WSC problem.

2.4 Non-planning Approaches to the WSC Problem

In this section, we overview some of the non-planning approaches to the WSC problem. In

particular, we first overview two approaches that are based on workflow modeling of the

composite service [Schuster et al., 2000, Casati et al., 2000]. We then overview several pa-

CHAPTER 2. BACKGROUND 32

pers (e.g., [Zeng et al., 2003]) that also take a workflow or template-based approach, but

allow explicitly for optimization of Quality of Service (QoS). We call these QoS-aware

approaches. We then overview two automata approaches, one using the Petri Nets (e.g.,

[Hamadi and Benatallah, 2003, Zhovtobryukh, 2007, Valero et al., 2009]) and one using the

Roman Model [Calvanese et al., 2008]. We conclude this section by briefly discussing a few

other papers that did not fall into any of the categories mentioned above.

2.4.1 Workflows

In this section, we overview two workflow-based approaches, eFlow [Casati et al., 2000] and

Polymorphic Process Model (PPM) [Schuster et al., 2000]. Similar to how a composition tem-

plate specified in a HTN or Golog can provide guidance in meeting a specific objective, work-

flows too can provide such guidance. However, the workflow-based approaches considered

here (i.e., the traditional workflow-based approaches) usually provide more than just a guid-

ance, as they rely on some form of manual coupling of the services, and may allow for limited

flexibility or user customization. The workflow generally specifies how the abstract specifica-

tions of a service functionality are coupled, and at run time these will be binded to concrete

available services, usually through service providers.

One example of such a system is eFLOW [Casati et al., 2000]. In eFlow each composite

process is modeled by a graph (the flow structure or process schema) that includes service,

decision and event nodes. The service node represents the abstract specification of an atomic

or a composite service. The arcs in the graph specify how one service is connected to another.

The transition is only possible upon successful execution of a service that has the outgoing arc.

A successful instantiation of the process schema is called a service process instance. Note,

eFlows allow for non-determinism, hence, there may be multiple possible instantiation of the

same process schema.

The process schema for each composite service must be specified manually, but eFlow au-

tomatically binds the nodes with concrete services at run time. This is done via the eFlow

engine’s communication with the service broker that has a repository of all service descrip-

tion, and its job is to discover the actual service (and the service provider) that can meet the

functionality specified in the service node by looking at the input/output/parameter of the ser-

vice node. Also, eFlow performs online information gathering, as well as online execution of

world-altering actions. In particular, there is an event monitor whose job is to fire compensat-

ing nodes in the case of failure to undo the effect of actions. A set of compensating nodes have

CHAPTER 2. BACKGROUND 33

to be defined for each service to guarantee that all services executed successfully, or none did.

According to the authors, two forms of customizations are possible. The first is in the

selection of services from the service broker’s pool of services. This can be done by providing

a service selection rule in a language understandable to a service broker. The actual form

of these service selection rules and the kind of specification possible are not discussed. The

second is done using generic nodes. Generic nodes allow more flexibility with respect to

service selection. That is, instead of a service node one might use generic nodes to allow

multiple abstract functionality or more dynamic bounding of a service (i.e., generic nodes

provide a set of service nodes). For example, instead of a service node that provides air-

transportation, one might use a generic node that allows the selection of both air-transportation

and city-transportation. Our general framework can be updated for eFlow as follows.

Definition 2.5 (WSC as Workflow) A WSC as workflow is described as a 3-tuple (D, δ, φsoft)

where: D is a repository of process schema, δ is a specification of the desired behaviour in

a process schema, and φsoft is a specification of service-selection rule specified in a language

understandable to a service broker. WSC engine determines an instantiation of the desired

process schema or the δ.

Similar to eFlow, Polymorphic Process Model (PPM) [Schuster et al., 2000] also binds the

abstract services at run time. However, instead of just a single service provider or an enter-

prise in business terms, there could be a number of providers, called multi-enterprise processes

(MEPs), that are themselves workflows of activities modeled as state machines implemented

by different enterprises (activities are an abstract description of services). Similar to a generic

node, if an activity and its implementation are coupled, then this precludes another potential

implementation of the activity and, hence, limits the flexibility of the workflow. To capture all

potential implementations of an activity (i.e., instantiation of an abstract service), Schuster et

al. proposes to expand each activity to a subprocess that captures all alternatives as separate

activities, and leaves the choice of implementation at run time. By decoupling activity inter-

face from activity implementation their model allows individual enterprises (service providers)

to maintain some flexibility in choosing how to implement the activities, while still providing

guidance through activity interface, modeled as the state machines.

To conclude, workflow-based approaches considered here allow for limited form of op-

timization. In the next section, we overview a body of work that focuses specifically on how

services can be selected based on their Quality of Service (QoS), using optimization techniques.

CHAPTER 2. BACKGROUND 34

2.4.2 QoS-Aware

Several WSC approaches focus on the actual service selection problem and argue that the se-

lection of services based on their quality is an important problem that must be addressed as a

separate problem. In general they argue that there are four components to the WSC problem:

Planning, Discovery, Selection and Optimization, and Execution. The planning phase deter-

mines the execution order of the tasks in a template or workflow. Note a task is the abstract

specification of a services based on their functional property. The discovery process returns

a set of candidate services that meet the functionality of the tasks specified in the composi-

tion. This line of research addresses the problem of service selection and optimization at the

composition-construction-time based on both the functional (e.g., input and output matching)

and non-functional (e.g., cost, availability, and reputation) properties of a service. This is

addressed by encoding the problem as an optimization problem that can be solved using for

example: Integer Programming (e.g., [Zeng et al., 2003]), Mixed Integer Programming (e.g.,

[Alrifai and Risse, 2009]) or Genetic Algorithms (e.g., [Lécué, 2009]).

Next, we overview the required terminology taken from [Zeng et al., 2003]. Let si, i ∈

[1, ..., n] be a set of candidate services, and tj , j ∈ [1, ...,m] be set of tasks. The following are

some non-functional properties related to a service (local constraints):

• Cost cij is the amount that a service requester needs to pay in order to execute service

i using task j. This value is undetermined when service i cannot execute task j.

• Time tij measures the execution time between the moment the request is sent and the

moment the results are received.

• Availability aij is the probability that the service can be accessed and used. It can be

defined as the ratio of number of successful requests over the total number of invocations.

• Reputation rij is the measure of its trustworthiness. It can be defined as the average

ranking given to the service by the end users.

In addition, there could also be some global constraints, which can be thought of poli-

cies, regulations, or hard constraints that are over the whole selection, such as the user’s bud-

get [Alrifai and Risse, 2009]. This problem can be characterized as an optimization problem

whose objective is to minimize cost and time, and maximize availability and reputation while

adhering to the global constraints.

Lécué [Lécué, 2009] proposes a QoS-aware approach in the context of the semantic Web. In

particular, Lécué proposes to consider quality semantic links as additional optimization criteria.

CHAPTER 2. BACKGROUND 35

The semantic link between two services is defined by the semantic similarities between output

and input parameters of the two. Lécué argues that Genetic Algorithms provide a more scalable

solution to the optimization problem at hand, and his experiments support this claim.

We will not update our general framework for this approach, as the problem addressed in

this line of work is independent of the theory that describes the functional or non-functional

properties of services. For example, Lécué [Lécué, 2009] assumes that the functional prop-

erties of a service is specified in an ontology (for example OWL-S or BPEL), but again the

addressed problem is largely independent. Also, the line of work discussed here assumes an ex-

istence of some Web service discovery engine (e.g., UDDI (Universal, Description, Discovery,

Integration)) to locate the available services for each task. So going back to our differentiating

criteria, the QoS-aware approaches are guided-automation, offline approaches that may or may

not serve the semantic Web. The main focus of the QoS-aware approaches is optimizing for

the quality of services selected at the composition time.

2.4.3 The Petri Nets

Petri Nets is a formal tool for study and modeling of events and states in a distributed system

[Murata, 1989]. A Petri Net is a directed connected bipartite graph containing a finite set of

places (drawn as circles), finite set of transitions (drawn as rectangles), and transition input and

output function (drawn as arcs). Tokens occupy a place and they can move using transitions

from one place to another. A transition is enabled to fire (becomes potentially firable) whenever

there is a token in all of the places that have an arc into this transition. When a transition fires,

it removes one token from every place that has an arc into this transition (consumes the token)

and puts one token in all of the places that have an arc out of this transition.

The following definitions are taken from [Narayanan and McIlraith, 2002].

Definition 2.6 (Petri Nets [Narayanan and McIlraith, 2002]) A Petri Net is an algebraic

structure (P, T, I, O) composed of:

• Finite set of places, P = {p1, p2, ..., pn}.

• Finite set of transitions, T = {t1, t2, ..., tm}.

• Transition input function, I . I maps each transition ti to a multiset of P .

• Transition output function, O. O maps each transition ti to a multiset of P .

Definition 2.7 (Marking [Narayanan and McIlraith, 2002]) A marking in a Petri Net

(P, T, I, O) is a function µ, that maps every place into a natural number. If for a given mark-

CHAPTER 2. BACKGROUND 36

ing µ, µ(pi) = x, then it is said that the place pi holds x tokens at the marking µ. A special

marking, denoted by µ0, is called the initial marking.

Petri Net execution can continue until a deadlock marking is reached, meaning that it

reaches a marking in which no transitions can be fired. A sequence of firings (t1, ..., tn) that

take an initial marking µ0 to a new marking µN is called an occurrence sequence. A marking

is reachable if it is the marking reached by some occurrence sequence.

Petri Nets have many advantages that make them suitable for the WSC task. They have

a formal semantic, can be visualized, and have the ability to model sequentiality (e.g., prece-

dence constraint t2 after t1), concurrency and non-determinism. Petri Nets model concurrently

because it allows non-determinism, meaning that when there is more than one transition that is

enabled to fire, the Petri Nets fire a transition non-deterministically.

There are several Petri Nets approaches that address the task of WSC problem (e.g.,

[Narayanan and McIlraith, 2002, Hamadi and Benatallah, 2003, Zhovtobryukh, 2007]). In

these approaches, the functional properties of a service is specified as a Petri Net with one

input place and one output place. At any given time, a Web service can be in one of the fol-

lowing states: not instantiated, ready, running, suspended, or completed. When a service is

ready that means a token is in its input place. Similarly, a service is completed when there is a

token in its output place. Also note that several control constructs such as sequence, parallel,

condition, choice, and the iterate can be represented in Petri Nets.

Below is an updated version of our general framework (i.e., Definition 2.1).

Definition 2.8 (WSC via Petri Nets) A WSC problem via Petri Nets is described as

(Sinit ,D, δ) where: Sinit is the initial markings for the set of Petri Nets; D is the set of Petri

Nets, representing functional properties of a set of Web services; and δ is representation of

the desired behaviour via a marking for D. WSC determines a sequence of atomic services

whose execution achieves the goal such that this sequence is an occurrence sequence in the

reachability analysis of the marking δ for the set of Petri Nets D.

Narayanan and McIlraith in [Narayanan and McIlraith, 2002] automatically translate the

OWL-S description of Web services into Petri Nets. In particular, they translate each of the

OWL-S control constructs such as iterate, if-then-else, and sequence, into a Petri Net model

representation. In addition, they provide a set of computational analysis tools that enable au-

tomation of Web service simulation (i.e., simulation of the evolution of a Web service under

different conditions), validation (i.e., testing whether a Web service behaves as expected), ver-

ification and composition.

CHAPTER 2. BACKGROUND 37

Hamadi and Benatallah in [Hamadi and Benatallah, 2003] provide an algebra that allows

composition of services (i.e., creation of a new-value added service). They represent the con-

trol flow constructs such as the sequence, alternative, and iteration, using algebraic operations

defined by their proposed algebra, hence, they provide a semantic to the Web service com-

position constructs in terms of Petri Nets. Similarly, Zhovtobryukh in [Zhovtobryukh, 2007]

proposes another approach based on algebraic operators. However, this approach focuses on

the automatic goal-driven creation of the composite Web services via HTN-like structure. This

work also addresses limited user customization by allowing the user to specify the composition

goal (objective); so the composition goal takes into account possible limitations and constraints

of the user. However, the user constraints are treated as hard constraints rather than preferences.

Finally, in a more recent work, Valero et al. [Valero et al., 2009] developed a WSC ap-

proach based on Web Services Choreography Description Language (WS-CDL), while repre-

senting the WS-CDL behaviour in terms of Petri Nets. Using the formal semantics of Petri

Nets, they further validate and verify their solution for the WSC problem.

To conclude, the Petri Nets approach to the WSC problem is a guided-automation,

offline approach that can be used in the context of the semantic Web services (e.g.,

[Narayanan and McIlraith, 2002]). Also, the services considered in this approach are stateful.

This approach also does not optimize for quality with respect to preferences or constraints.

2.4.4 The Roman Model

The Roman Model originally referred to by Rich Hull in [Hull, 2005] is another automata-

based approach to the WSC problem. In the Roman Model approach, services are formally

specified as transition systems and the desired specification (functionality) is a target service

that is itself described as a transition system. The objective then is to synthesize an orchestrator

that realizes the target service by executing the available services [Calvanese et al., 2008].

Services in the Roman Model are stateful software components, capable of performing

operations. They are stateful because, depending on their state, they may offer a different

choice of operations to their client. The client (which could be an automated system) will

choose from one of the possible operations based on the state of the service, then the service

executes it and accordingly changes its current state. So in other words, when a service is being

used by a client the following three steps happen in sequence: (1) the client is given a set of

operations to choose from, (2) the system waits for the client to choose exactly one element

from the set, (3) the chosen operation is executed (this could result to termination or going

CHAPTER 2. BACKGROUND 38

back to step (1)) [Berardi et al., 2005, Hull and Su, 2005]. The following is a formal definition

of how a service is represented in a transition system [Calvanese et al., 2008].

Definition 2.9 (Service [Calvanese et al., 2008]) A service is a transition system S =

(O, S, s0, Sf , ρ), where:

• O is the set of possible operations that the service recognizes,

• S is the finite set of service’s states,

• s0 ∈ S is the initial state,

• Sf ⊆ S is the set of final states, and

• ρ ⊆ S ×O × S is the service’s transition relation, which accounts for its state changes.

An operation o is said to be executable if there exists a transition s −→o s′ in S (s′ is a

possible successor state of s). The following is an updated version of Definition 2.1.

Definition 2.10 (WSC via Roman Model) A WSC via Roman Model problem is described as

(D, δ) where: D is a set of available services specified in transition systems and δ is a spec-

ification of the target service as a transition system. WSC synthesizes an orchestrator that

realizes the target service, δ, by exploiting the available services, D.

Note that the transition system associated with the available services allows non-

determinism, but the transition system of the target service does not (because the target service

is fully controllable by the clients).

The orchestrator considers the operation chosen by the client (as specified by the target

service) and delegates it to one of the available services that is able to execute it. In other

words, the orchestrator realizes a target service, if it is able to delegate all the operators that

are executable by the target service to one of the available services. The goal of the WSC

problem for this approach is proving the existence of such an orchestrator for the problem.

There are several techniques to address the composition problem for this approach, including

an approach based on model checking of game structures, a simulation-based approach, and an

approach based on exploiting a reduction to Satisfiability (SAT) [Calvanese et al., 2008].

To summarize, the Roman Model is an offline, guided-automation approach to the WSC

problem. One of the drawbacks of the Roman Model approach is that it does not support data

(i.e., there is no way to represent the data and the data flow). However, since the client or the

user can choose an operation as specified by the target service, this model can handle some

limited notion of user preferences.

CHAPTER 2. BACKGROUND 39

Category Level of Optimality Context Offline vs. Stateless vs.

Automation online Stateful

Classical fully-automated limited some within offline stateless

Planning optimality semantic Web

Golog guided-automation limited semantic Web both stateful

optimality

HTN guided-automation some handle semantic Web both stateful

optimality

BPEL guided-automation limited not within both stateful

optimality semantic Web

Logic-Based & guided-automation optimality not within offline stateless

Theorem Proving not handled semantic Web

Figure 2.1: Summary of the AI planning approaches to the WSC problem.

Category Level of Optimality Context Offline vs. Stateless vs.

Automation online Stateful

Workflow-Based limited limited not within online stateless

automation optimality semantic Web

QoS-Aware guided-automation handles some within offline stateless

optimality semantic Web

The Petri Nets guided-automation optimality some within offline stateful

not handled semantic Web

The Roman guided-automation limited could be within offline stateful

Model optimality semantic Web

Figure 2.2: Summary of the non-planning approaches to the WSC problem.

CHAPTER 2. BACKGROUND 40

2.5 Summary

In this chapter, we overviewed some of the most popular approaches to the WSC problem with

a view to address their limitations in this thesis. The problem addressed in the approaches we

considered is an important piece of a larger set of problems that make up the Web service com-

position problem as a whole. We have divided the approaches into two main categories namely

the AI planning and the non-planning approaches. The AI planning techniques focused on

solving the composition problem by means of planning, whereas the non-planning approaches

focused on either the non-planning component of the composition or proposed a non-planning

approach to the problem. Figures 2.1 and 2.2 summarize the planning and non-planning ap-

proaches (respectively) with respect to our differentiating criteria.

Chapter 3

Characterizing Web Service Composition

3.1 Introduction

In Chapter 2 we described a general framework for the WSC problem while deliberately keep-

ing the different components high level. The purpose of this framework is to give a basic

definition of the WSC problem that can be adapted for the different approaches we overview.

In this chapter, following previous work (discussed in Section 2.3.2), we adapt this general

framework to provide a formal characterization of the WSC problem with customization. To

that end, we articulate a notion of quality (optimizing) with respect to user, context, or instance-

specific preferences (soft constraints) as well as a notion of enforcement with respect to hard

constraints (e.g., policies or regulations). We give two closely-related characterizations based

on how the WSC objective is specified. Given this characterization, we show how generating

customized compositions of Web services is related to a non-classical planning problem.

As mentioned previously there are many reasons why using the classical planning approach

to the WSC problem is not sufficient. Below we reiterate some of these reasons:

• Non-Final Goal: unlike classical planning, in the WSC problem we do not have a final-

state goal. Instead we are given a specification of a basic behaviour or an objective we

wish to achieve via a composition template.

• Plan with Complex Actions: in the WSC problem, Web services are specified as prim-

itive and/or complex actions in an action formalism. Therefore, the complex actions as

well as the primitive actions are the building blocks to constructing the composition and

in order to compose services, one needs to plan with complex actions. The classical

41

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 42

planning approach may face scalability problems if the complex actions are compiled

and represented as primitive [McIlraith and Fadel, 2002].

• Many Actions: the WSC problem can be data intensive resulting in planning domains

with tens of thousands of ground actions. The composition template dictates the ways

in which services can be composed, hence it can significantly reduce the search space

for a composition. This can overcome the scalability problem of the classical planning

approach to the WSC problem.

• Optimization with Respect to Soft Constraints: often, plan length is not the only

measure of quality, and while compositions are plentiful, it is the generation of a high-

quality composition with respect to rich measures of quality that is appealing.

• Enforcement of Hard Constraints: the composition templates are often further aug-

mented with hard constraints such as policies or regulations that need to be enforced on

the composition.

• Incomplete Knowledge: in the WSC problem, we often do not have complete informa-

tion about the initial state, hence information-gathering services have to be executed to

collect relevant information.

We start this chapter with a basic overview of OWL-S1 [Martin et al., 2007], an ontology

for Web services. We then discuss how OWL-S process models can be translated into an

action/planning formalism so that they are more amenable to AI planning. We also establish

a correspondence between the WSC problem and non-classical planning problem. Finally, we

overview the OWL-S to HTN translation with a view of modifying it to support customization.

The main contributions of this chapter is the characterization of the WSC problem with

customization. In the case where the composition template is specified as a Golog program,

we provide a characterization of customized composition in the situation calculus. Given this

characterization, we show how generating a composition is related to deductive planning. Fur-

thermore, we show how generating a preferred composition (customized with respect to both

soft and hard constraints) is related to preference-based planning.

Following previous work on the use of HTN planning for the WSC problem

[Sirin et al., 2005b], we provide a characterization of customized composition where the com-

position template is specified as an HTN. Given this characterization, we show how generating

1W3C Recommendation. Latest version is available at http://www.w3.org/Submission/OWL-S/

http://www.w3.org/Submission/OWL-S/

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 43

a composition is related to generating an HTN plan, and how generating a preferred composi-

tion is related to generating a preferred HTN plan.

Interestingly, HTNs can be characterized as a special case of Golog programs (i.e., an

HTN planning problem can be encoded in ConGolog) [Gabaldon, 2002]. In the final section

of this chapter, we review salient features of this translation. Furthermore, we augment this

translation to provide a situation calculus encoding of preference-based HTN planning. We use

this translation to provide a semantics for our preference specification languages in Chapter 4.

Furthermore, this provides a unifying framework for our characterization of the WSC problem

with customization because it shows how these two forms of composition templates are related.

3.1.1 Contributions

The following are the main contributions of this chapter.

• Characterized the WSC problem with customization based on the specification of the

objective as a Golog generic procedures together with a set of constraints. Our charac-

terization is in the situation calculus and enables the use of deductive planning to generate

a composition

• Defined a notion of preference-based planning within the HTN planning formalism

• Augmented the translation of OWL-S services into HTN planning to support customiza-

tion. This translation translates OWL-S process models as well as OWL-S service pro-

files into corresponding HTN planning elements

• Characterized the WSC problem with customization based on the HTN-specification of

the objective together with a set of constraints. This characterization enables the use of

HTN planning for generating the composition (i.e., a plan returned by an HTN planner

is the composition)

• Augmented the translation of HTN planning in the situation calculus to provide a situa-

tion calculus encoding of preference-based HTN planning. This characterization is used

to provide the semantics of our preference languages. This characterization also provides

a unifying framework for characterizing the WSC problem with customization because

it shows how these two forms of composition templates are related.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 44

3.2 OWL-S: From Services to Actions

OWL-S [Martin et al., 2007] is a Web ontology [Horrocks et al., 2003] for Web services that

was developed with a view to supporting automated discovery, enactment and composition

of Web services. The OWL-S ontology has three major components: service profile, process

model, service grounding. Service profile indicates “what the service does”. It can be used for

service discovery (or the requester) to determine if the service meets the required needs. The

service profile is used to advertise the service by describing its functional properties (e.g., input,

output, precondition, and effects) and non-functional properties (e.g., service trust, reliability,

subject, cost, etc). The process model describes how the service works and how to use the

service. It describes how to request the service and furthermore, it explains what happens

when the service is executed. Finally, service grounding explains how to interact with the

service. Often service grounding will specify a communication protocol or service-specific

details of how to contact the service.

OWL-S defines three classes of processes: atomic, composite and simple processes. Each

process has input, output, precondition and effects. Atomic processes have no subprocesses

and can be executed in a single step. Simple processes provide an abstract view for an existing

process. However, unlike atomic processes a simple process is not associated with a grounding.

A composite process is composed of other processes via control constructs such as Sequence,

Split, Split-Join, Any-Order, Choice, If-Then-Else, Repeat-While, Repeat-Until, and Iterate.

Web service composition systems generally translate OWL-S process models into in-

ternal representations such as HTN, PDDL, or Golog that are more amenable to AI

planning (e.g., [Narayanan and McIlraith, 2002, McIlraith and Fadel, 2002, McDermott, 2002,

Sirin et al., 2005b]). These translations generally translate OWL-S process models as primi-

tive and/or complex actions in an action formalism such as the situation calculus[Reiter, 2001].

Through these translations OWL-S is given a situation calculus semantics.

3.3 The Customization of the WSC Problem via Golog

The situation calculus and first-order logic can be used to describe the functional and non-

functional properties of Web services. Next, we review the essentials of the situation calculus

and Golog. We then provide a characterization of the WSC problem with customization.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 45

3.3.1 Preliminaries

Situation Calculus

The situation calculus is a sorted logical language for specifying and reasoning about dynam-

ical systems [Reiter, 2001]. The sorts of the language are situation, action, and a catch-all

object sort. Situations are sequences of actions that represent a history of the world from an

initial situation, which is denoted by S0. The distinguished function do(a, s) maps a situation

and an action into a new situation, thus inducing a tree of situations rooted in S0. Relational

fluents (or simply fluents) are situation-dependent predicates that describe the properties that

hold true in a particular situation2. Thus, a fluent is a predicate with a situation argument, e.g.,

F (x, s). Finally the atomic expression Poss(a, s) is true if action a is possible in situation s.

Web services such as the Web-exposed application at www.weather.com are viewed as

actions in the situation calculus and are described as actions in terms of a situation calculus

basic action theory, D. A basic action theory in the situation calculus D includes domain

independent foundational axioms, and domain dependent axioms. A situation s′ precedes a

situation s, i.e., s′ ⊏ s, means that the sequence s′ is a proper prefix of sequence s. More details

can be found in [Reiter, 2001, Narayanan and McIlraith, 2002, McIlraith and Son, 2002].

In the situation calculus, the planning problem is characterized as deductive planning (e.g.,

[Green, 1969, Reiter, 2001]). That is plans are generated as a side-effect of theorem prov-

ing. Given a planning problem and a goal formula, the planning problem is to find an action

sequence that will lead to a state that satisfies the goal. More formally, given the planning

problem (D, G) where D is the situation calculus basic action theory, and G is the specifica-

tion of the goal formula, the deductive planning task is to prove that there exists a situation s

such that the goal G is satisfied. I.e.,

D |= (∃s).executable(s) ∧G(s) (3.1)

where executable(s)
def
= (∀a, s∗).do(a, s∗) ⊑ s ⊃ Poss(a, s∗). Note, s is a situation that

results from executing the sequence of actions (i.e., the plan) a1,, an in S0.

2We do not consider functional fluents in this chapter and thus omit their description.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 46

Golog

Golog3 [Reiter, 2001] is a high-level logic programming language for the specification and

execution of complex actions in dynamical domains. It builds on top of the situation calculus

by providing Algol-inspired extralogical constructs for assembling primitive situation calcu-

lus actions into complex actions (aka programs), δ. These complex actions simply serve as

constraints upon the situation tree. Complex action constructs include the following:

nil – the empty program

a – primitive action

φ? – test action

πx. δ – non-deterministic choice of argument

δ1; δ2 – sequences (δ1 is followed by δ2)

δ1|δ2 – non-deterministic choice between δ1 and δ2

if φ then δ1 else δ2 endif – conditional

while φ do δ endW – loop

proc P (v) δ endProc – procedure

In this thesis (originally proposed in [Sohrabi et al., 2006]), we also include the construct

anyorder[δ1, . . . , δn] which denotes the non-deterministic choice of all possible permutations of

the sequencing of δ1, . . . , δn. This construct supports the specification of very flexible generic

procedures. For example, one can define an anyorder construct over the following programs:

book accommodations, book city-to-city transportation and book local transportation. This

indicates that there does not exists a pre-defined ordering of these procedures. However, users

may then wish to add constraints or preferences on top of these. In Chapter 4 we discuss how

preferences can be specified over these generic procedures.

The conditional and while-loop constructs are defined in terms of other constructs. For

the purposes of WSC we generally treat iteration as finitely bounded by a parameter k. Such

finitely bounded programs are called tree programs. That is we assume that every process

or program is going to terminate eventually. And in fact many services either are assigned a

timeout (e.g., Air Canada allows ten minutes to complete a purchase), or allow a predefined

number of attempts (e.g., your account will get suspended if you unsuccessfully try to login

more than three times).

3We refer to Golog with its more recent semantics of ConGolog.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 47

if φ then δ1 else δ2 endIf
def
= [φ?; δ1] | [¬φ?; δ2]

while1(φ) δ endWhile
def
= if φ then δ endIf

whilek(φ) δ endWhile
def
= if φ then [δ; while k−1(φ)δ endWhile] endIf

These constructs can be used to write programs in the language of the domain theory, or

more specifically, they can be used to specify both composite Web services and also generic

procedures for WSC. Among the appeals of Golog is its procedural specification which is very

much like a textual specification of a flexible workflow; its ability to treat complex actions as

first-class objects in the language; and the fact that it is first-order, allowing the easy specifica-

tion of data (a pervasive element in Web services) as a parameterization of actions. E.g.,4

bookAirT icket(x) ; if far then bookRentalCar(y) else bookTaxi(y) endIf

bookRentalCar(x) ; bookHotel(y).

There are two popular semantics for Golog programs: the original evaluation semantics

[Reiter, 2001] and a related single-step successor transition semantics that was proposed for

on-line execution of concurrent Golog (ConGolog) programs [De Giacomo et al., 2000]. The

transition semantics is axiomatized through two predicates Trans(δ, s, δ′, s′) and Final(δ, s).

Given an action theory D, a program δ and a situation s, Trans defines the set of possible

successor configurations (δ′, s′) according to the action theory. Final defines whether a program

successfully terminated, in a given situation. Trans and Final are defined for every complex

action. A few examples follow. (See [De Giacomo et al., 2000] for details):

Trans(nil, s, δ′, s′) ≡ False

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s

Trans([δ1; δ2], s, δ
′, s′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ Trans(δ1, s, δ
′′, s′)

4Following convention we will generally refer to fluents in situation-suppressed form, e.g., at(Toronto)
rather than at(Toronto, s). Reintroduction of the situation term is denoted by [s]. Variables are universally

quantified unless otherwise noted.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 48

Trans([δ1 | δ2], s, δ
′, s′) ≡ Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Trans(π(x)δ, s, δ′, s′) ≡ ∃x.Trans(δvx, s, δ
′, s′)

Final(nil, s) ≡ TRUE

Final(a, s) ≡ FALSE

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Thus, given the program bookCar(x); bookHotel(y), if the action bookCar(x) is possible in

situation s, then

Trans([bookCar(x); bookHotel(y)], s, bookHotel(y), do(bookCar(x), s))

describes the only possible transition according to the action theory. do(bookCar(x), s) is the

transition and bookHotel(y) is the remaining program to be executed. Using the transitive clo-

sure of Trans, denoted Trans∗, one can define a Do predicate as follows. This Do is equivalent

to the original evaluation semantics Do [De Giacomo et al., 2000].

Do(δ, s, s′)
def
= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′). (3.2)

Given a domain theory, D and Golog program δ, program execution must find a se-

quence of actions a (where a is a vector of actions) such that: D |= Do(δ, S0, do(a, S0)).

Do(δ, S0, do(a, S0)) denotes that the Golog program δ, starting execution in S0 will legally

terminate in situation do(a, S0), where do(a, S0) abbreviates do(an, do(an−1, . . . , do(a1, S0))).

Thus, given a generic procedure, described as a Golog program δ, and an initial situation S0,

we would like to infer a terminating situation do(a, S0) such that the vector a denotes a se-

quence of Web services that can be performed to realize the generic procedure.

From Services to Golog

As mentioned earlier, WSC systems generally translate description of services provided in the

OWL-S process models into primitive and/or complex actions in an action formalism such

as the situation calculus (e.g., [Narayanan and McIlraith, 2002, McIlraith and Son, 2002]). In

particular, the atomic process in OWL-S is translated into a situation calculus action. Special

care is given to encode the input, output, precondition, and effect of the atomic process (its

functional properties) in the situation calculus terms. The OWL-S composite process is repre-

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 49

sented as complex action in the situation calculus using Golog. Further details can be found in

[Narayanan and McIlraith, 2002].

Following this translation, the following definition taken from [Sirin et al., 2005b] defines

the so-called OWL-S WSC problem in the situation calculus using Golog.

Definition 3.1 (Adapted from [Sirin et al., 2005b]) The OWL-S WSC problem PW is a 3-

tuple (s0, C,K), where s0 is the initial state, K is a collection of OWL-S process models,

and C is a possibly composite OWL-S process defined in K. Then π = p1...pn (a sequence of

atomic processes defined in K) is a solution/composition for PW if and only if:

D |= Do(δ, S0, do(a, S0)) (3.3)

where a = a1, ...an, D is the situation calculus basic action theory axiomatizing K and s0, δ

is the Golog specification of the complex action defined for C as defined by the action theory

(following the above translation), and ai are the primitive actions that correspond to atomic

process pi as defined by the action theory (following the above translation).

3.3.2 Customized Composition of Web services via Golog

Following the form of our general framework, we now give a definition of the WSC problem

with customization where all the elements are defined either in the situation calculus or have

a situation calculus semantics. We assume the existing relationship between OWL-S WSC

problem PW and Golog as defined in Definition 3.1.

Definition 3.2 (Customization of the WSC Problem via Golog) A WSC problem with cus-

tomization is described as a 5-tuple (D, O, δ, φhard , φsoft) where:

• D is a situation calculus basic action theory describing functional properties of the services,

• O is a first-order logic theory describing the non-functional properties of the Web services,

• δ is a generic procedure described in Golog,

• φhard is a specification of hard constraints either in Golog or in LTL,

• φsoft is a formula expressing soft constraints. This specification language should have its

semantics defined in the situation calculus (e.g., LPP [Bienvenu et al., 2011]).

A composition a, customized with respect to the hard constraints, φhard , is a solution to

(D, O, δ, φhard) if and only if

D ∪O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ φhard(s) (3.4)

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 50

A composition a, customized with respect to both the soft and hard constraints, φsoft and φhard ,

is a solution to (D, O, δ, φhard , φsoft) if and only if

D ∪O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ φhard(s)

∧ 6 ∃s′.[Do(δ, S0, s
′) ∧ φhard(s

′) ∧ pref(s′, s, φsoft)] (3.5)

where pref(s′, s, φsoft) is defined in the situation calculus stating that a situation s’ is at

least as preferred as a situation s with respect to a preference formula φsoft . Further

Do(δ, S0, do(a, S0)) denotes that the Golog program δ, starting execution in S0 will legally ter-

minate in situation do(a, S0), where do(a, S0) abbreviates do(an, do(an−1, . . . , do(a1, S0))).

Hence, a composition is a sequence of Web services, a, whose execution starting in the

initial situation (note, S0 is described within the situation calculus basic action theory) enforces

the generic procedure and hard constraints terminating successfully in do(a, S0). Thus, given a

generic procedure, described as a Golog program δ, and an initial situation S0, we would like to

infer a terminating situation do(a, S0) such that a denotes a sequence of Web services that can

be performed to realize the generic procedure. A customized composition with respect to both

soft and hard constraints, a, is a composition that yields a most preferred terminating situation

(i.e., a is optimal).

In the next two propositions, we show how generating a customized composition is related

to non-classical planning. Note, we will refer to goals that express properties that must hold

throughout the execution of the plan as temporally extended goals.

Proposition 3.1 Composition a, customized with respect to the hard constraints, φhard , is a

solution to the WSC problem with customization (D, O, δ, φhard) as defined in Definition 3.2, if

and only if a is a solution to (i.e., a plan for) the planning problem (D∪O,G) with temporally

extended goal G, where δ and φhard constitute a conjunctive temporally extended goal G.

Proposition 3.2 Composition a, customized with respect to both the soft and hard constraints,

φsoft and φhard , is a solution to the WSC problem with customization (D, O, δ, φhard , φsoft)

as defined in Definition 3.2, if and only if a is a solution to (i.e., an optimal plan for) the

preference-based planning problem (D∪O,G, φsoft) with temporally extended goalG, where δ

and φhard constitute a conjunctive temporally extended goal G and φsoft constitute the property

to be optimized.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 51

It can be seen by inspection that the above propositions follow directly from the definition

of deductive planning in the situation calculus, Equation 3.1. In particular, s = do(a, S0) is a

situation that results from executing the sequence of actions a, starting in the initial situation

S0, such that the goal G is satisfied. This is analogous to the successful terminating situation s

that results from executing the sequence of actions a, in the initial situation S0, while enforcing

the Golog generic procedure and the hard constraints.

Given, the above propositions, we can use non-classical planning for the WSC problem

with customization. In particular, we can use preference-based planning to generate a cus-

tomized composition. In this thesis, we generate compositions using a planner that builds on

top of a Prolog implementation of a Golog interpreter. In Chapter 5, Section 5.2, we discuss

how our planner GOLOGPREF, computes the preferred composition, and prove its correctness.

3.4 The Customization of the WSC Problem via HTNs

In this section, we briefly overview HTN planning, provide a translation of OWL-S based

WSC problem to HTN planning, and provide a characterization of the WSC problem with

customization via HTNs.

3.4.1 Preliminaries

HTN Planning

An Hierarchical Task Network (HTN) planning problem can be viewed as a generalization

of the classical planning paradigm [Ghallab et al., 2004]. An HTN domain contains, besides

regular primitive actions, a set of tasks or high-level actions. Tasks can be successively refined

or decomposed by the application of so-called methods. When this happens, the task is replaced

by a new, intuitively more specific task network which a set of tasks plus a set of restrictions

(often ordering constraints) that its tasks should satisfy. The HTN planning problem consists

of finding a primitive decomposition of a given (initial) task network.

Returning to our Travel example the task of arranging travel can be decomposed into ar-

ranging transportation, accommodations, and local transportation. Each of these tasks can suc-

cessively be decomposed into other subtasks based on alternative modes of transportation and

accommodations, eventually reducing to primitive actions that can be executed in the world.

In planning, this decomposition and search is performed by an HTN planner. The merit of

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 52

HTNs is the intuitive nature of task hierarchies and the extensive computational machinery.

The following is a definition of HTN planning taken from [Ghallab et al., 2004].

Definition 3.3 (HTN Planning Problem. Adapted from [Ghallab et al., 2004])

An HTN planning problem is a 3-tuple P = (s0, w0, D) where s0 is the initial state, w0 is a

task network called the initial task network, and D is the HTN planning domain which consists

of a set of operators and methods.

A domain is a pair D = (O,M) where O is a set of operators and M is a set of methods. An

operator is a primitive action, described by a triple o =(name(o), pre(o), eff(o)), corresponding

to the operator’s name, preconditions and effects. In our example, ignoring the parameters,

operators might include: book-train, book-hotel, and book-flight.

A task consists of a task symbol and a list of arguments. A task is primitive if its task

symbol is an operator name and its parameters match, otherwise it is nonprimitive. In our

example, arrange-trans and arrange-acc are nonprimitive tasks, while book-flight and book-

car are primitive tasks.

A method, m, is a 4-tuple (name(m), task(m),subtasks(m), constr(m)) corresponding to

the method’s name, a nonprimitive task and the method’s task network, comprising subtasks

and constraints. Method m is relevant for a task t if there is a substitution σ such that σ(t)

=task(m). Several methods can be relevant to a particular nonprimitive task t, leading to dif-

ferent decompositions of t. In our example, the method with name by-flight-trans can be used

to decompose the task arrange-trans into the subtasks of booking a flight and paying, with the

constraint (constr) that the booking precede payment. An operator o may also accomplish a

ground primitive task t if their names match.

Definition 3.4 (Task Network. Adapted from [Ghallab et al., 2004])

A task network is a pair w = (U, C) where U is a set of task nodes and C is a set of constraints.

Each task node u ∈ U contains a task tu. If all of the tasks are primitive, then w is called

primitive; otherwise it is called nonprimitive.

In our example, we could have a task network (U,C) where U = {u1, u2}, u1 =book-

car, and u2= pay, and C is a precedence constraint such that u1 must occur before u2 and a

before-constraint such that at least one car is available for rent before u1.

Definition 3.5 (Plan. Adapted from [Ghallab et al., 2004])

a = o1o2 . . . ok is a plan for HTN planning program P = (s0, w0, D) if there is a primitive

decomposition of w0, w, of which a is an instance.

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 53

Finally, we define the notion of preference-based planning (published in

[Sohrabi et al., 2009]). To do so we assume the existence of a reflexive and transitive

relation � between plans. If a1 and a2 are plans for P and a1 � a2 we say that a1 is at least

as preferred as a2. We use a1 ≺ a2 as an abbreviation for a1 � a2 and a2 6� a1.

Definition 3.6 (Preference-based HTN Planning) An HTN planning problem with user pref-

erences is described as a 4-tuple P = (s0, w0, D,�) where � is a preorder between plans.

A plan a is a solution to P if and only if: a is a plan for P ′ = (s0, w0, D) (P without the

preferences) and there does not exists a plan a′ for P ′ such that a′ ≺ a.

The � relation can be defined in many ways. In Chapter 4 we describe PDDL3, which

defines � quantitatively through a metric function.

From Services to HTN

In this thesis, we rely on the translation of the OWL-S based WSC problem to HTN planning.

Our translation is similar to that in [Sirin et al., 2005b]. We augment this translation in order

to be able to specify compelling soft constraints to support customization. We first describe

how to encode an OWL-S process model as elements of HTN planning (i.e., operators and

methods). Then we describe how to encode the service profile. Encoding the service profile

as a component of HTN planning will enable users to specify preferences over how to select

services based on their non-functional properties (i.e., those specified in the service profile).

Our translation, similar to that in [Sirin et al., 2005b], also encodes each atomic process

as an HTN operator. We also encode each composite and simple process as an HTN method.

Where our translation differs is that we associate each method with a unique name. Having a

name for a method allows preferences to refer to methods by their name. This is particularly

important in preferences that describe how to decompose a particular task. Since a task can be

realized by more than one method, being able to distinguish each method by its name allows

the user to express preferences over which methods they prefer, or in other words, how they

prefer the task to be realized. In Chapter 4, we will give examples of such preferences. Below

we show how to translate the Sequence and Choice construct. The translations for the rest of

the constructs is similar. See [Sirin et al., 2005b] for more details of the translation.

Translate-Sequence(Q)

Input: an OWL-S definition of a composite processQ in the formQ1;Q2;...;Qk with Sequence

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 54

control construct.

Output: an HTN method M.

Procedure:

(1) let v = the list of input parameters defined for Q

(2) let Pre = conjunct of all preconditions of Q

(3) for all i : 1 ≤ i ≤ k : let ni be a task node for Qi

(4) let C= {before(n1, P re), (ni, ni+1)|1 ≤ i < k}

(5) Return M = (Nm, Q(v), {n1, n2, ..., nk}, C), where Nm is a unique method name.

Translate-Choice(Q)

Input: an OWL-S definition of a composite process Q in the form Q1;?Q2;?...;?Qk with

Choice control construct.

Output: a collection of HTN methods M.

Procedure:

(1) let v = the list of input parameters defined for Q

(2) let Pre = conjunct of all preconditions of Q

(3) for all i : 1 ≤ i ≤ k

(4) let ni be a task node for Qi

(5) let Mi = (Nmi
, Q(v), {ni}, {before(ni, P re)}), where Nmi

is a unique method name.

(6) Return M = {M1, ...,M2}.

In addition, for every process and subprocesses in the process model that is associated with

a service (i.e., is executable on the Web), we compile its service profile as extra properties of

their corresponding HTN element. Hence, if an atomic/composite process is associated with

a service, its corresponding HTN operator/method will be associated with that service profile.

We capture this extra property using a predicate isAssociatedWith.

For example, let us assume that the Air Canada service can be described by an atomic

process AP and service profile SP. In addition, assume that the service profile SP has-name

AirCanada, has-url www.aircanada.com, has-language English, has-trust high, has-reliability

high. Then we will encode the atomic process AP into an HTN operator with the same name

as described above. Next, we would capture the service profile of the service Air Canada

associated with the atomic process AP by the binary predicate isAssociatedWith(AP, SP). Note,

AP is the name of the encoded HTN operator. In the case of composite process we would have

the name of the corresponding HTN method. The profile information of the service profile

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 55

SP would now be described by predicates has-language(SP, English), has-trust(SP, High), and

has-reliability(SP, High).

The following definition establishes the relationship between the plans found for an HTN

planning problem and for compositions of the OWL-S WSC problem. This definition is based

on the correctness theorem of the OWL-S to HTN translation given in [Sirin et al., 2005b,

Theorem 5].

Definition 3.7 (Adapted from [Sirin et al., 2005b]) Let PW = (s0, C,K) be the OWL-S

WSC problem, where s0 is the initial state, K is a collection of OWL-S process models, and C

is a possibly composite OWL-S process defined in K. Then π = p1...pn (a sequence of atomic

processes defined in K) is a solution to (i.e., a composition for) PW if and only if a = a1...an

is a solution to (i.e., a plan for) P = (s0, w0, D), where

• w0 is generated by the OWL-S to HTN translation for the OWL-S process C,

• D is generated by the OWL-S to HTN translation for the OWL-S process models K, and

• ai are the primitive actions that correspond to atomic process pi as defined by the OWL-S to

HTN translation.

3.4.2 Customized Composition of Web services via HTNs

We now give a definition of the WSC problem with customization, following the form of our

general framework definition given in Chapter 2. Note, we now assume the existing relation-

ship between OWL-S WSC problem and HTN planning problem as defined in Definition 3.7.

Definition 3.8 (Customization of the WSC Problem via HTNs) Let P = (s0, w0, D) be

an HTN planning problem whose solution is also a solution to an OWL-S WSC problem as

defined in Definition 3.7. A WSC problem with customization is then described as a 6-tuple

(Sinit ,D, O, δ, φhard , φsoft) where:

• Sinit is the initial state s0,

• D ∪ O is the HTN domain description D, describing functional and non-functional

properties of the Web services5,

• δ is the HTN initial task network w0 specifying the objective,

• φhard is a specification of the hard constraints specified in (a subset of) LTL,

• φsoft is a specification of soft constraints.

5O is specified as an HTN special predicate that encodes the OWL-S service profiles

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 56

A composition a, customized with respect to the hard constraints, φhard , is a solution to

(Sinit ,D, O, δ, φhard) if and only if a is a solution to (i.e., a plan for) the HTN planning

problem (s0, w0, D) that adheres to φhard .

A composition a, customized with respect to both the soft and hard constraints, φsoft and φhard ,

is a solution to (Sinit ,D, O, δ, φhard , φsoft) if and only if a is a solution to (i.e., a plan for) the

preference-based HTN planning problem (s0, w0, D,�) that adheres to φhard , where � is a

preorder between plans as defined by φsoft .

The above definition shows how generating a customized composition is related to gen-

erating a plan using HTN planning. This shows that we can use preference-based planning

to generate customized compositions. We show in Chapter 5, how we generate customized

compositions using preference-based planning.

3.5 Situation Calculus Specification of HTN Planning

Next, we describe an encoding of HTN planning in Golog/ConGolog. In particular, we describe

an existing translation of the HTN planning into the situation calculus entailment of ConGolog

(an extension of Golog with concurrency and interrupts), which we augment and extend to

provide an encoding of preference-based HTN planning. The situation calculus encoding of the

HTN planning problem and the preference-based HTN planning problem provides a unifying

framework for our characterization of the WSC problem with customization because it shows

how these the two forms of composition templates we use, HTNs and Golog, are related. In

this section, we review the salient features of this translation. The situation calculus6 encoding

of HTN planning also helps us with the semantics of our preference languages.

A number of researchers have pointed out the connection between HTN and ConGolog. In

this thesis, we appeal to the Gabaldon [Gabaldon, 2002] encoding of HTN planning problem

in Golog/ConGolog. In short, the translation defines a way to construct a logical theory and

formula Ψ(s) such that Ψ(s) is entailed by the logical theory if and only if the sequence of

actions encoded by s is a solution to the original HTN planning problem.

More specifically, the initial HTN state s0 is encoded as the initial situation, S0. Each literal

l is mapped to a fluent or non-fluent relation in the situation calculus, as appropriate. The HTN

domain description maps to a corresponding situation calculus domain description, D, where

6By situation calculus we mean the situation calculus entailment of ConGolog

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 57

for every operator o there is a corresponding primitive action a, such that the preconditions and

the effects of o are axiomatized in D as action precondition axioms and successor state axioms

respectively. In addition, D has the unique name axioms, axioms describing the initial situa-

tions, and domain-independent foundational axioms for the situation calculus. Every method

and nonprimitive task together with constraints is encoded as a ConGolog procedure. R is the

set of procedures in the ConGolog domain theory.

To deal with partially ordered task networks, following Gabaldon’s translation, we add

two new primitive actions start(P (v)) and end(P (v)), to each procedure P that corre-

sponds to an HTN task or method. In addition, we add the fluents executing(P (v), s) and

terminated(X, s), where P (v) is a ConGolog procedure and X is either P (v) or a primitive

action a. executing(P (v), s) states that P (v) is executing in situation s, terminated(X, s) states

that X has terminated in s. executing(a, s) where a is a primitive action, is defined to be false.

The successor state axioms for these fluents follow. They show how the actions start(P (v))

and end(P (v)) change the truth value of these fluents:

executing(P (v), do(a, s)) ≡ a = start(P (v))∨ executing(P (v), s) ∧ a 6= end(P (v))

terminated(X, do(a, s)) ≡ X = a∨ (X ∈ R ∧ a = end(X)) ∨ terminated(X, s)

Note, the two primitive actions start(P (v)), end(P (v)) actions are helper actions (they are

auxiliary); hence, they are not returned as part of the plan.

Definition 3.9 (HTN Planning in the Situation Calculus) An HTN planning problem with

preferences described as a 4-tuple (s0, w,D,�), where s0 is the initial state, w is the initial

task network, D is the HTN planning domain, and � is a preorder between plans, is encoded

in the situation calculus as a 5-tuple (D, C,∆, δ0,Φsc) where D is the basic action theory, C

is the set of ConGolog axioms, ∆ is the sequence of procedure declarations for all ConGolog

procedures in R, δ0 is an encoding of the initial task network in ConGolog, and Φsc is a map-

ping of the preference relation � in the situation calculus. A plan a is a solution to the HTN

problem (s0, w,D) if and only if:

D ∪ C |= (∃s)Do(∆; δ0, S0, s) ∧ s = do(a, S0) (3.6)

A plan a is a solution to preference-based HTN problem (s0, w,D,�) if and only if:

D ∪ C |= (∃s)Do(∆; δ0, S0, s) ∧ s = do(a, S0)

∧∄s′.[Do(∆; δ0, S0, s
′) ∧ pref(s′, s,Φsc)] (3.7)

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 58

where pref(s′, s,Φsc) (defined in Definition 4.7) denotes that the situation s′ is preferred to

situation s with respect to the preference formula Φsc, and Do(δ, S0, do(a, S0)) denotes that the

ConGolog program δ, starting execution in S0 will legally terminate in situation do(a, S0).

3.6 Summary and Discussion

In this chapter we gave two closely-related characterizations of WSC with customization, based

on how the WSC objective is specified. Given this characterization, we showed how generating

customized compositions of Web services is related to a non-classical planning problem. With

this characterization of the WSC problem with customization in hand, we now move to the

problem of how to specify the soft and hard constraints.

In this chapter, we assume for the most part that relevant information is gathered offline,

before composition is constructed. Additionally, we also assume the planning domain is de-

terministic, meaning that an action or service’s behaviour is deterministic (i.e., an action trans-

forms a state into a single known successor state). At face value, many exposed Web services

may appear to behave non-deterministically, but this apparent non-determinism is often predi-

cated on a lack of information. For example, one cannot predict in advance whether a particular

book can be purchased at amazon.com, so the outcome of the action buy-book(X) may appear

non-deterministic, but once it is determined whether or not the book is in stock, the outcome is

determined. Similarly, other sources of apparent non-determinism are predicated on unknown

information that cannot be observed, or that cannot be observed until execution time. Such

forms of non-determinism can be modeled away by enumerating a set of outcomes, condi-

tioned on (possibly unobservable) aspects of state. For example, while from an applicant’s

perspective, whether or not a mortgage approval service will grant a mortgage appears non-

deterministic, but it is actually a deterministic process, predicated on some aspect of state that

is unknown to the applicant. Thus, the service can be modeled as a deterministic action. This

latter form of non-determinism relates to the notion of model-lite planning that has emerged in

recent years (e.g., [Kambhampati, 2007]).

In Chapter 6 we remove the assumption that information is gathered offline, and address the

information-gathering problem with a view to producing high-quality compositions. In so do-

ing, we are able to address the class of non-deterministic Web service behaviour that originates

from a lack of information that is observable and not predicated on the context at execution

time. Gathering such information, as we do in Chapter 6, allows us to effectively determinize

the action outcome. We do so via a middle-ground execution engine that simulates world-

CHAPTER 3. CHARACTERIZING WEB SERVICE COMPOSITION 59

altering services but executes information-gathering services to obtain relevant information as

it becomes necessary to do so in order to plan. This addresses a large class of, what appear to

be, non-deterministic services.

Nevertheless, there are other classes of non-determinism in the domain that are due to lack

of predictability of the outcome of a service or run-time failures, that our approach currently

may not be able to handle. There are a number of different ways that our work can be extended

in order to address these classes of problems.

For example, we can exploit the planning as model checking approach (e.g.,

[Bertoli et al., 2010]) and in particular the recent work by Kuter et al. [Kuter et al., 2009]

in which they describe an approach that combines the non-deterministic version of SHOP2,

ND-SHOP2 [Kuter and Nau, 2004] with the MBP planner (e.g., [Traverso and Pistore, 2004])

in order to address the non-determinism. Another interesting approach would be to model

this non-determinism as deterministic actions predicated on unobservable state, and then to

characterize the composition task as a conformant planning task. We could then, for exam-

ple, exploit the recent reformulation approaches to conformant or contingent planning (e.g.,

[Palacios and Geffner, 2007]) to address the composition problem. Regardless of how we

choose to extend our work, an important problem is to ensure some notion of guaranteed opti-

mality. To that end, we can exploit the recent work by Shaparau et al. [Shaparau et al., 2006]

in order to deal with the issue of optimality and non-determinism, in some measure. This is an

interesting area for future work.

Chapter 4

Specifying Soft and Hard Constraints

4.1 Introduction

In the previous chapter, we characterized the WSC problem with customization with respect

to soft and hard constraints. In this chapter, we describe how to specify these constraints. To

that end, we first design a set of desirable criteria, evaluate the existing specification languages

with respect to this set, and extend the existing languages to meet our set of desirable criteria.

As discussed in the introduction, we argue that customization is an important problem and

a critical and missing component of most existing approaches to the WSC problem. Hard

constraints are a useful way of enforcing business rules and policies. Many customers are

concerned with enforcement of hard constraints, often in the form of corporate policies and/or

government regulations. Policies or regulations are a set of constraints imposed by an authority

that define an acceptable behaviour or characteristic of an agent, person, or an organization.

Policies or regulations hence are a set of constraints imposed on the composition that define

an acceptable composition. If commerce is being performed across multiple governmental

jurisdictions, there may be a need to ensure that laws and regulations pertaining to commerce

are enforced appropriately. A company may wish to ensure that all transactions comply with

company policies. For example, they might impose on their employees when traveling, to

always use their corporate credit card for their travel expenses.

Software that is developed for use by a particular corporation or jurisdiction will have the

enforcement of such regulations built in. For Web services that are published for use by the

masses this is not the case, and the onus is often on the customer to ensure that regulations

are enforced when the composition is constructed from multiple service providers. For inter-

jurisdictional or international business, different regulations may apply to different aspects

60

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 61

of the composition. Hence, customizing the composition of Web service by imposing hard

constraints and to that end, providing a mechanism for generating compositions that adhere to

such constraints is an important problem and one that we address in this thesis.

In contrast, preferences or soft constraints are a set of properties that define the quality of the

composition. They differ from hard constraints because their satisfaction is not mandatory but

desirable. User preferences are important, because they enable a user to specify properties of

solutions that make them more or less desirable. The composition system can use preferences

to find preferred solutions among (often large) families of solutions.

User preferences are also critical because they can express a preference for how the compo-

sition is performed. A key component of Web service composition is the selection of specific

services that are used to realize the composition. In AI planning, primitive actions (the ana-

logue of services) are selected for composition based on their preconditions and effects, and

there is often only one primitive action that realizes a particular effect. For many WSC prob-

lems, the task can be realized by a diversity of different services, offering comparable, but

not identical services. By integrating user preferences into the composition problem, prefer-

ences over services (the how) can be specified and considered alongside preferences over the

solutions (the what).

4.1.1 Contributions

The following are the main contributions of this chapter.

• Designed a set of desirable criteria for specification of preferences, tailored the task of

the WSC problem.

• Evaluated the existing preference language LPP [Bienvenu et al., 2006,

Bienvenu et al., 2011] with respect to our set of desirable criteria. To that end, we

describe LPP , a rich qualitative preference language proposed by Bienvenu et al. We

also discuss how we can specify service selection preferences within the LPP language.

LPP , unlike many other preference languages, provides a facility to stipulate the

relative strength of preferences. Furthermore, LPP is qualitative in nature, facilitating

preference specification. We use this language to specify preferences in our system

GOLOGPREF which we discuss in Chapter 5.

• Extended the preference language LPP to address our set of desirable criteria. To that

end, we extend LPP and we name the updated language LPH. The proposed prefer-

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 62

ence language augments the preference language LPP with HTN-specific constructs.

Among the HTN-specific properties that we add to LPH, is the ability to express pref-

erences over how tasks in our HTN are decomposed into subtasks, preferences over

the parameterizations of decomposed tasks, and a variety of temporal and non-temporal

preferences over the task networks themselves. We use LPH in our system HTNPLAN

which we discuss in Chapter 5.

• Evaluated of the existing preference language, PDDL3 [Gerevini and Long, 2005] with

respect to our set of desirable criteria. To that end, we show how PDDL3 preferences

can be specified and aggregated. We also show how PDDL3 enables the expression of

temporally extended preferences.

• Extended PDDL3 to meet our set of desirable criteria. Our extension to PDDL3 is similar

to our extension for LPP as it allows users to specify preferences over HTN constructs.

This was done by augmenting PDDL3 with three new constructs that indicate the oc-

currence, initiation, and termination of tasks. Our extension also enables expression of

action-centric preferences, which in turn allows users to specify preferences over the

functional as well as non-functional properties of services. We discuss how we can spec-

ify these non-functional properties of services using PDDL3. Our PDDL3 extension is

used in our system HTNPLAN-P which we discuss in Chapter 5.

• Designed a set of desirable criteria for specification of hard constraints (e.g., policies

and regulations) and discussed how to specify the hard constraints using the existing

languages.

In Chapter 5, we will discuss how to compute preferred plans/compositions, given the

specification of preferences and policies discussed in this chapter.

4.2 Set of Desirable Criteria for Constraint Specification

In order to evaluate our preference specification language, we design a set of desirable criteria

that we wish our languages to satisfy. We start this section with a set of desirable criteria for

preference specification. The following is our proposed list.

• State-Centric and Action-Centric: often the preference language specifies state related

constraints. That is they identify preferred states along the plan trajectory. While this

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 63

is interesting we also wish to be able to express preferences over the occurrence of both

primitive and complex actions within the plan trajectory. Preferences over complex ac-

tions can specify a preference over how they decompose into primitive actions.

• Functional and Non-Functional Properties of Services: services are associated with

four properties (inputs, outputs, preconditions and effects), called functional properties

of services. Services are also associated with their non-functional properties. These

properties are often used to describe the features of the service so as to ease their discov-

ery and selection. The following is a possible list of non-functional properties: service

name, service author, service language, service trust, service subject, service reliability,

and service cost. An ideal preferences language should enable preferences over both

functional and non-functional properties of services. That is, the preference language

should support the expression of preferences over the selection of services.

• Distinct from Domain Specification: the specification of a preference formula should

be distinct from the specification of the domain. Separating the two enables users to share

HTN method definitions within the domain specification while individualizing prefer-

ences that relate to those methods.

• Conditional: the preference language should be able to express conditional preferences.

The conditional preferences make contextualization of preferences possible.

• Temporally Extended: the preference language should be able to express temporally ex-

tended preferences. That is it should be able to express preferences that involve multiple

states within a plan trajectory.

• Handle Relative Strength and Inconsistencies: the preference language should provide

a facility to stipulate the relative strength of preferences. It should also be able to encode

conflicting constraints or inconsistencies that may arise.

• Can Benefit from and Benefit the Planning Community: while it may be possible to

design a preference language that satisfies our set of desirable criteria, it would be ideal

to leverage (reuse and/or extend) an existing, broadly adopted preference language. This

makes it possible to both benefit from existing research in planning and to benefit the

planning community.

Our preference language should be well balanced with respect to expressivity and tractabil-

ity. That is the preference language, while rich, and expressive, should be easy to reason with.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 64

The following is a set of desirable criteria for the specification of hard constraints. Simi-

larly, the hard constraints specification language should be balanced with respect to expressiv-

ity and tractability.

• Easy to Reason and Integrate: it should be easy to reason and integrate the hard con-

straints into our system.

• Pruning: the hard constraints should facilitate pruning.

• Benefit from Existing Languages: the hard constraints can be specified in an exist-

ing language, which makes it possible to benefit from the existing research within the

community.

4.3 Specifying Preferences in LPP

In this section, we describe a first-order language, called LPP that we use for specifying user

preferences in our system GOLOGPREF. We will also discuss how one can specify service

selection preferences in LPP . LPP was proposed in [Bienvenu et al., 2006] for preference-

based planning. It is richly expressive, enabling the expression of static as well as the temporal

preferences. That is preferences can talk about the temporal relationship between different as-

pect of the plan and not just about the final state. Furthermore, LPP is qualitative in nature,

facilitating elicitation. Unlike many ordinal preference languages, this language provides a fa-

cility to stipulate the relative strength of preferences. LPP is an extension of the PP language

proposed by Son and Pontelli [Son and Pontelli, 2006] capable of representing temporal and

aggregation of preferences. However, LPP has a different semantics from PP . In addition,

the LPP language provides a total order on preferences. That is not the case with the PP

language, because PP allows for incomparability.

To help illustrate the expressive power of the LPP language, we go back to our Travel ex-

ample. A generic procedure, easily specified in Golog, might say: In any order, book inter-city

transportation, book local accommodations and book local transportation. With this generic

procedure in hand an individual user can specify their hard constraints (e.g., Lara needs to be

in Chicago July 29-Aug 5, 2006.) together with a list of preferences described in LPP .

To understand the preference language, consider the composition we are trying to generate

to be a situation – a sequence of actions or Web services executed from the initial situation. A

user specifies his or her preferences in terms of a single, so-called General Preference Formula.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 65

This formula is an aggregation of preferences over constituent properties of situations (i.e.,

compositions). The basic building block of the preference formula is a Trajectory Property

Formula which describes properties of (partial) situations (i.e., compositions). Furthermore,

the so-called Atomic Preference Formulae can be used to describe the relative strength or im-

portance of different preferences. The definitions that follow in this section are taken from

[Bienvenu et al., 2006, Bienvenu et al., 2011].

Note, in this section we distinguish between the set of fluent predicates, F , and the set of

non-fluent predicates, N , representing properties that do not change over time.

Definition 4.1 (Trajectory Property Formula (TPF) [Bienvenu et al., 2006])

A trajectory property formula is a sentence drawn from the smallest set B where:

1. F ⊂ B

2. N ⊂ B

3. If f ∈ F , then final(f) ∈ B

4. If a ∈ A, then occ (a) ∈ B

5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1,

next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).

final(f) states that fluent f holds in the final situation, occ (a) states that action a occurs in

the present situation, and next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2) are basic Linear

Temporal Logic (LTL) [Emerson, 1990] constructs.

TPFs establish properties of preferred situations. By combining TPFs using boolean con-

nectives we are able to express a wide variety of properties of situations. Some examples

follow. Note, to simplify the examples many parameters have been suppressed. For legibility,

variables are bold faced, constants start with uppercase, we abbreviate eventually(occ(ϕ)) by

occ′(ϕ), and we refer to the preference formulae by their labels.

final(at(Home)) (P1)

(∃ c).occ′(bookAir(c, Economy,Direct)) ∧member(c, StarAlliance) (P2)

always(¬((∃ h).hotelBooked(h) ∧ hilton(h))) (P3)

(∃ h, r).(occ′(bookHotel(h, r)) ∧ paymentOption(h, V isa)

∧ starsGE(r, 3) (P4)

P1 states that the user is at home in the final situation. P2 states that at some point the user

books a direct economy flight with a Star Alliance carrier. Recall there was no stipulation in

the generic procedure regarding the mode of transportation between cities or locally. P3 states

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 66

that a Hilton hotel never be booked while P4 states that at some point the user books a hotel

that accept Visa credit cards and has a rating of 3 or more.

To define a preference ordering over alternative properties of situations, LPP defines

Atomic Preference Formulae (APFs). Each alternative being ordered comprises two compo-

nents: the property of the situation, specified by a TPF, and a value term which stipulates the

relative strength of the preference. The incorporation of the value terms reduces the incompa-

rability of user preferences and better captures users preferences.

Definition 4.2 (Atomic Preference Formula (APF) [Bienvenu et al., 2006])

Let V be a totally ordered set with minimal element vmin and maximal element vmax. An atomic

preference formula is a formula ϕ0[v0]≫ ϕ1[v1]≫ ...≫ ϕn[vn], where each ϕi is a TPF, each

vi ∈ V , vi < vj for i < j, and v0 = vmin. When n = 0, atomic preference formulae correspond

to TPFs.

An APF expresses a preference over alternatives. An APF explicitly refers to a value from

the total set V which is the level of satisfaction described the user. Note that vmin is the most

preferred and vmax is the least preferred. In what follows, we let V = [0, 1], but we could

instead choose a strictly qualitative set like {best < good < indifferent < bad < worst} since

the operations on these values are limited to max and min. Returning to our example, the

following APFs express an ordering over Lara’s preferences.

P2[0]

≫ (∃ c,w).occ′(bookAir(c, Economy,w) ∧member(c, StarAlliance)[0.2]

≫ occ′(bookAir(Delta, Economy,Direct))[0.5] (P5)

(∃ t).occ′(bookCar(National, t))[0]

≫ (∃ t).occ′(bookCar(Alamo, t))[0.2]

≫ (∃ t).occ′(bookCar(Avis, t))[0.8] (P6)

(∃ c).occ′(bookCar(c, SUV))[0]≫ (∃ c).occ′(bookCar(c, Compact))[0.2] (P7)

P5 states that Lara prefers direct economy flights with a Star Alliance carrier, followed by

economy flights with a Star Alliance carrier, followed by direct economy flights with Delta

airlines. P6 and P7 are preference over cars. Lara strongly prefers National and then Alamo

over Avis, followed by all other car-rental companies. Finally she slightly prefers an SUV over

a compact with any other type of car a distant third.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 67

To allow the user to specify more complex preferences and to aggregate preferences, Gen-

eral Preference Formulae (GFPs) extend the language to conditional, conjunctive, and disjunc-

tive preferences.

Definition 4.3 (General Preference Formula (GPF) [Bienvenu et al., 2006])

A formula Φ is a general preference formula if one of the following holds:

• Φ is an APF

• Φ is γ : Ψ, where γ is a TPF and Ψ is a GPF [Conditional]

• Φ is one of

- Ψ0 &Ψ1 & ...&Ψn [General Conjunction]

- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a GPF.

Continuing our example:

(∀ h, c, e,w).always(¬hotelBooked(h) : ¬occ′(bookAir(c, e,w))) (P8)

far : P5 (P9)

P3&P4&P6&P7&P8&P9 (P10)

P8 states that Lara prefers not to book her air ticket until she has a hotel booked. P9

conditions Lara’s airline preferences on her destination being far away. (If it is not far, she will

not fly and the preferences are irrelevant.) Finally, P10 aggregates previous preferences into

one formula.

4.3.1 The Semantics of LPP

In this section, we briefly overview the semantics of LPP . Understanding the semantics of

this language is important because our preference language, LPH builds on theLPP language

and therefore inherits its semantics for the constructs that they share. In Section 4.4.1 we will

discuss the semantics of LPP while focusing only on the semantics of our extension to LPP .

The semantics of the preference language LPP is achieved through assigning a weight

to a situation s with respect to a GPF, Φ, written ws(Φ). This weight is a composition of its

constituents. For TPFs, a situation s is assigned the value vmin if the TPF is satisfied in s, vmax

otherwise. Recall that in our example above vmin = 0 and vmax = 1, though they could equally

well have been a qualitative e.g., [excellent, abysmal]. Similarly, given an APF, and a situation

s, s is assigned the weight of the best TPF that it satisfies within the defined APF. Returning

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 68

to our example above, for P6 if a situation (composition) booked a car from Alamo rental car,

it would get a weight of 0.2. Finally GPF semantics follow the natural semantics of boolean

connectives. As such General Conjunction yields the maximum of its constituent GPF weights

and General Disjunction yields the minimum of its constituent GPF weights. The definitions

that follow are taken from [Bienvenu et al., 2006, Bienvenu et al., 2011]. For a full explanation

of the situation calculus semantics, please see [Bienvenu et al., 2006].

Definition 4.4 (Basic Desire Satisfaction [Bienvenu et al., 2006]) LetD be an action theory,

and let s′ and s be situations such that s′ ⊑ s. The situations beginning in s′ and terminating

in s satisfy ϕ just in the case that D |= ϕ[s′, s]. We define ws′,s(ϕ) to be the weight of the

situations originating in s′ and ending in s with respect to TPF ϕ. ws′,s(ϕ) = vmin if ϕ is

satisfied, otherwise ws′,s(ϕ) = vmax.

Note that for readability we are going to drop s′ from the index, i.e., ws(ϕ) = ws′,s(ϕ) in the

special case of s′ = S0.

Definition 4.5 (Atomic Preference Satisfaction [Bienvenu et al., 2006]) Let s be a situation

and Φ = ϕ0[v0]≫ ϕ1[v1]≫ ...≫ ϕn[vn] be an atomic preference formula. Then ws(Φ) = vi

if D |= ϕi[S0, s] and D 6|= ϕj[S0, s] for all 0 ≤ j ≤ i, and ws(Φ) = vmax if no such i exists.

Definition 4.6 (General Preference Satisfaction [Bienvenu et al., 2006]) Let s be a situa-

tion and Φ be a general preference formula. Then ws(Φ) is defined as follows:

• ws(ϕ0[v0]≫ ϕ1[v1]≫ ...≫ ϕn[vn]) is defined above

• ws(γ : Ψ) =

vmin if ws(γ) = vmax

ws(Ψ) otherwise

• ws(Ψ0 &Ψ1 & ...&Ψn) = max{ws(Ψi) : 1 ≤ i ≤ n}

• ws(Ψ0 | Ψ1 | ... | Ψn) = min{ws(Ψi) : 1 ≤ i ≤ n}

We conclude this section with the following definition which shows us how to compare two

situations (and thus two compositions) with respect to a GPF:

Definition 4.7 (Preferred Situations [Bienvenu et al., 2006]) A situation s1 is at least as pre-

ferred as a situation s2 with respect to a GPF Φ, written pref(s1, s2,Φ) if ws1(Φ) ≤ ws2(Φ).

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 69

4.3.2 Integrated Optimal Web Service Selection

Most WSC systems use AI planning techniques and as such generally ignore the important

problem of Web service selection or discovery, assuming it will be done by a separate match-

maker. The work presented in this thesis is significant because it enables the selection of

services for composition based, not only on their inputs, outputs, preconditions and effects but

also based on other non-functional properties. As such, users are able to specify properties of

services that they desire alongside other properties of their preferred solution, and services are

selected that optimize for the users preferences in the context of the overall composition.

To see how the selection of services can be encoded, we reintroduce the service parame-

ter u which was suppressed from the example in the previous section (discussion of LPP).

Revisiting P2, and P4, we see how the selection of a service u is easily realized within our

preference framework with preference P2’ and P3’.

(∃ c,u).occ′(bookAir(c, Economy,Direct,u)) ∧member(c, StarAlliance)

∧ serviceType(u, AirT icketV endor) ∧ sellsT ickets(u, c) (P2’)

(∃ h, r,u).occ′(bookHotel(h, r,u)) ∧ paymentOption(h, V isa)

∧ serviceType(u, HotelRoomV endor) ∧ sellsRooms(u,h)

∧ starsGE(r, 3) (P3’)

P2’ causes GOLOGPREF to prefer booking air tickets with an air ticket vendor that sells

the tickets of a carrier that is a member of Star Alliance. Similarly, P3’ causes GOLOGPREF to

prefer booking hotel with a hotel vendor that has hotels that accept visa and that have a rating

of 3 or more.

4.4 Specifying Preferences in LPH

In this section, we propose the language LPH that modifies and extends the LPP qualitative

preference language proposed in [Bienvenu et al., 2006] to capture HTN-specific preferences.

We use this language to specify the formula φsoft that appears in Definition 3.4 in Chapter 3.

In designing a preference specification language over HTNs, we made a number of strate-

gic design decisions. We first considered adding our preference specifications directly to the

definitions of HTN methods. This seemed like a natural extension to the hard constraints that

are already part of method definitions. Unfortunately, this precludes easy contextualization of

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 70

methods relative to the task the method is realizing. For example, in the Travel domain, many

methods may eventually involve the primitive operation of paying, but a user may prefer differ-

ent methods of payment dependent upon the high-level task being realized (e.g., When booking

a car, pay with amex to exploit amex’s free collision coverage, when booking a flight, pay with

my Aeroplan-visa to collect travel bonus points, etc.). We also found the option of including

preferences in method definitions unappealing because we wished to separate domain-specific,

but user-independent knowledge, such as method definitions, from user-specific preferences.

Separating the two, enables users to share method definitions but individualizes the preferences.

This led us to propose LPH, a declarative specification language for qualitative HTN-tailored

preferences.

Our LPH language has the ability to express preferences over certain parameterization

of a task (e.g., preferring one task grounding to another), over a particular decomposition of

nonprimitive tasks (i.e., prefer to apply a certain method over another), and a soft version of the

before, after, and in between constraints. A soft constraint is defined via a preference formula

whose evaluation determines when a plan is more preferred than another. However, unlike the

task network constraints which will prune or eliminate those plans that have not satisfied them,

not meeting a soft constraint simplify deems a plan to be of poorer quality.

Below we give an updated definition for Trajectory Property Formula in LPH.

Definition 4.8 (Trajectory Property Formula (TPF)) A basic desire formula is a sentence

drawn from the smallest set B where:

1. If l is a literal, then l ∈ B and final(l) ∈ B

2. If t is a task, then occ(t) ∈ B

3. If m is a method, and n = name(m), then apply(n) ∈ B

4. If t1, and t2 are tasks, and l is a literal, then

before(t1, t2), holdBefore(t1, l), holdAfter(t1, l), holdBetween(t1, l, t2) are in B.

5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1, next(ϕ1),

always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).

final(l) states that the literal l holds in the final state, occ (t) states that the task t occurs in

the present state, and next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2) are basic LTL

constructs. apply (n) states that a method whose name is n is applied to decompose a non-

primitive task. before(t1, t2) states a precedence ordering between two tasks. holdBefore(t1, l),

holdAfter(t1, l), holdBetween(t1, l, t2) state a soft constraint over when the fluent l is preferred

to hold. (i.e., holdBefore(t1, l) state that l must be true right before the last operator descender

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 71

of t1 occurs). Combining occ(t) with the rest of LPH language enables the construction of

preference statements over parameterizations of tasks.

TPFs establish properties of different states within a plan. By combining TPFs using

boolean and temporal connectives, we are able to express other properties of state. The follow-

ing are a few examples from our Travel domain1.

occ′(book-flight(Economy,Aircanada)) (P1)

(∃c).occ′(book-car(c, Enterprise)) (P2)

apply′(by-car-local(SUV, Avis)) (P3)

before(arrange-trans, arrange-acc) (P4)

holdBefore(hotelReservation, arrange-trans) (P5)

always(¬(occ′(pay(Mastercard)))) (P6)

(∃h, r).occ′(book-hotel(h, r)) ∧ starsGE(r, 3) (P7)

(∃c).occ′(book-flight(c,Economy,Direct,WindowSeat)) ∧ member(c, StarAlliance) (P8)

P1 states that the user eventually books an economy flight from Air Canada. P2 states that

at some point the user books a car with Enterprise. P3 states that at some point, the by-car-

local method is applied to book an SUV from Avis. P4 states that the arrange-trans task

occurs before the arrange-acc task. P5 states that the hotel is reserved before transportation

is arranged. P6 states that the user never pays by Mastercard. P7 states that at some point the

user books a hotel that has a rating of 3 or more. P8 states that at some point the user books a

direct economy window-seated flight with a Star Alliance carrier.

These examples show how the language gives users the ability to express their preferences

over a particular paramaterization of tasks and also some temporal relation among them. To

define a preference ordering over alternative properties of states, Atomic Preference Formulae

(APFs) are defined. Each alternative comprises two components: the property of the state,

specified by a TPF, and a value term which stipulates the relative strength of the preference.

The definition of APF is the same as in LPP . Here are a few APF examples.

P3[0]≫ apply′(by-car-local(SUV, National))[0.3] (P9)

apply′(by-car-trans)[0]≫ apply′(by-flight)[0.4] (P10)

occ′(book-train)[0]≫ occ′(book-car)[0.4] (P11)

1Again to simplify the examples many parameters have been suppressed. For legibility, variables are bold

faced, constants start with uppercase, we abbreviate eventually(occ(ϕ)) by occ′(ϕ), eventually(apply (ϕ)) by

apply ′, and we refer to the preference formulae by their labels.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 72

P9 states that the user prefers that the by-car-local method rents an SUV and that the rental

car company Avis is preferred to National. P10 states that the user prefers to decompose the

arrange-trans task by the method by-car-trans rather than the by-flight method. Note that the

task is implicit in the definition of the method. P11 states that the user prefers traveling by train

over renting a car.

As in LPP , General Preference Formulae (GPFs) extend the language to conditional, con-

junctive, and disjunctive preferences, allowing the user to specify more complex preferences.

The definition of GPF in LPH is the same as in LPP . General conjunction (resp.general

disjunction) refines the ordering defined by Ψ0&Ψ1& ...&Ψn (resp. Ψ0|Ψ1|...|Ψn) by sorting

indistinguishable states using the lexicograping ordering. Continuing our example:

occ(arrange-trans) : (∃c).occ′(book-car(c, Avis)) (P12)

occ(arrange-local-trans) : P2 (P13)

drivable : P11[0]≫ occ′(book-flight)[0.3] (P14)

P5&P7&P1&P9&P10&P11&P13&P14 (P15)

P12 states that if inter-city transportation is being arranged then the user prefers to rent a car

from Avis. P13 states that if local transportation is being arranged the user prefers Enterprise.

P14 states that if the distance between the origin and the destination is drivable then the user

prefers to book a train over booking a car over booking a flight. P15 aggregates preferences

into one formula.

4.4.1 The Semantics of LPH

To define the semantics of LPH and help us prove the correctness and optimality of our algo-

rithm, we appeal to Gabaldon’s translation of HTN planning into the situation calculus entail-

ment of ConGolog programs discussed in Section 3.5.

Similar to LPP , the semantics of LPH is achieved through assigning a weight to a situa-

tion s with respect to a GPF, Φ, written ws(Φ). This weight is a composition of its constituents.

For TPFs, a situation s is assigned the value vmin if the TPF is satisfied in s, vmax otherwise.

Similarly, given an APF, and a situation s, s is assigned the weight of the best TPF that it sat-

isfies within the defined APF. Finally GPF semantics follow the natural semantics of boolean

connectives. As such General Conjunction yields the minimum of its constituent GPF weights

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 73

and General Disjunction yields the maximum.

Similar to Gabaldon [Gabaldon, 2004] and following LPP , we use the notation ϕ[s′, s] to

denote that ϕ holds in the sequence of situations starting from s′ and terminating in s. Also we

use the notation s′ ⊏ s to denote that the sequence s′ precedes a situation s, i.e., the sequence

s′ is a proper prefix of sequence s. Next, we will show how to interpret TPFs in the situation

calculus.

If f is a fluent, we will write f [s′, s] = f [s′] since fluents are represented in situation-

suppressed form. If r is a non-fluent, we will have r[s′, s] = r since r is already a situation

calculus formula. Furthermore, we will write final(f)[s′, s] = f [s] since final(f) means that

the fluent f must hold in the final situation.

The TPF occ(X) states the occurrence of X which can be either an action or a procedure.

written as:

occ(X)[s′, s] =

do(X, s′) ⊑ s if X ∈ A

do(start(X), s′) ⊑ s if X ∈ R

The TPF apply(P (v)) will be interpreted as follows:

apply(P (v))[s′, s] = do(start(P (v)), s′) ⊑ s

Boolean connectives and quantifiers are already part of the situation calculus and require

no further explanation here. The LTL constructs are interpreted in the same way as in

[Gabaldon, 2004]. We interpret the rest of the connectives as follows2.

before(X1, X2)[s
′, s] = (∃s1, s2 : s

′ ⊑ s1 ⊑ s2 ⊑ s)

{terminated(X1)[s1] ∧ ¬executing(X2)[s1] ∧ ¬terminated(X2)[s1] ∧ occ(X2)[s2, s]}

holdBefore(X, f)[s′, s] = (∃s1 : s
′ ⊑ s1 ⊑ s){f [s1] ∧ occ(X)[s1, s]}

holdAfter(X, f)[s′, s] = (∃s1 : s
′ ⊑ s1 ⊑ s){terminated(X)[s1] ∧ f [s1]}

holdBetween(X1, f,X2)[s
′, s] = (∃s1, s2 : s

′ ⊑ s1 ⊑ s2 ⊑ s)

{terminated(X1)[s1] ∧ ¬executing(X2)[s1] ∧ ¬terminated(X2)[s1] ∧ occ(X2)[s2, s]}

∧ (∀si : s1 ⊑ si ⊑ s2)f [si]

From here, the semantics follows that of LPP .

2We use the following (∃s1 : s′ ⊑ s1 ⊑ s)Φ = (∃s1){s
′ ⊑ s1 ∧ s1 ⊑ s ∧ Φ}

(∀s1 : s′ ⊑ s1 ⊑ s)Φ = (∀s1){[s
′ ⊑ s1 ∧ s1 ⊑ s] ⊂ Φ}

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 74

4.5 Specifying Preferences in our PDDL3 Extension

In this section, we extend the popular PDDL3 preference language to meet our set of desirable

criteria. As argued earlier, supporting preferences over how tasks are decomposed, their pre-

ferred parameterizations, and the conditions underwhich these preferences hold, is compelling.

It goes beyond the traditional specification of preferences over the properties of states within

plan trajectories to provide preferences over non-functional properties of the planning prob-

lem including how some planning objective is accomplished. This is particularly useful when

HTN methods are realized using Web service software components, because these services

have many non-functional properties that distinguish them (e.g., credit cards accepted, country

of origin, trustworthiness, etc.) and that influence user preferences.

PDDL3 preferences are highly expressive, however they are solely state centric, identify-

ing preferred states along the plan trajectory. To develop a preference language for HTN we

add action-centric constructs to PDDL3 that can express preferences over the occurrence of

primitive actions (operators) within the plan trajectory, as well as expressing preferences over

complex actions (tasks) and how they decompose into primitive actions. For example, we are

able to express preferences over which sets of subtasks are preferred in realizing a task (e.g.,

When booking inter-city transportation, I prefer to book a flight) and preferred parameters to

use when choosing a set of subtasks to realize a task (e.g., I prefer to book a flight with United).

4.5.1 Overview of PDDL3

The Planning Domain Definition Language (PDDL) is the de facto standard input language

for many planning systems. PDDL3 [Gerevini and Long, 2005, Gerevini et al., 2009] extends

PDDL2.2 to support the specification of preferences and hard constraints over state properties

of a trajectory. These preferences form the building blocks for definition of a PDDL3 metric

function that defines the quality of a plan. In this context, preference-based planning neces-

sitates maximization (or minimization) of the metric function. In what follows, we describe

those elements of PDDL3 that are most relevant to our work. In particular, the current imple-

mentation of our preference-based HTN planner does not support the numeric and temporal

subset of PDDL3. Namely, the PDDL3 constructs such as within, always-within, hold-during,

and hold-after are not supported as they explicitly mention time.

Temporally extended preferences/constraints PDDL3 specifies temporally extended pref-

erences and temporally extended hard constraints in a subset of LTL [Emerson, 1990]. Both

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 75

are declared using the :constraints construct and are interpreted over a sequence of states

that result from legal execution of a sequence of actions. always, sometime, at-most-once,

sometime-after, at-end sometime-before are among the constructs allowed in PDDL3. Note

that unlike LPP , the temporal operators cannot be nested in PDDL3.

Preferences are given names in their declaration, which are used elsewhere to refer to the

preference. The following PDDL3 code illustrates one preference and one hard constraint3.

(forall (?l - light)(preference p-light (sometime (turn-off ?l))))

(always (forall ?x - explosive)(not (holding ?x)))

The p-light preference advocates that the agent eventually turns off all the lights. The

unnamed hard constraint states that an explosive object cannot be held by the agent anywhere

in a valid plan.

If a preference is externally universally quantified, it defines a family of preferences, com-

prising an individual preference for each binding of the variables in the quantifier. Thus, prefer-

ence p-light defines an individual preference for each object of type light in the domain.

Precondition Preferences Precondition preferences are atemporal formulae that express

conditions that ideally should hold in the state in which the action is performed. Precondition

preferences are defined as part of the action’s precondition.

Simple Preferences Simple preferences express a preference for certain conditions to hold

in the final state of the plan. Simple preferences are atemporal formulae and are declared as

part of the goal. For example, the following PDDL3 code:

(:goal (preference p-truck (at Truck Depot1)))

specifies a simple preference (that truck is at Depot1). Simple preferences can also be

quantified.

Metric Function The PDDL3 metric function defines the quality of the plan. PDDL3 defines

an is-violated function that takes as input a preference name and records the number of

individual preferences in the name family of preferences that have been violated by the plan.

Although preferences are boolean formulae, they can be violated numerous times if they are

scoped by a universal quantifier in their definition. Furthermore, the quality of the plan can also

depend on the function total-time, which returns the plan length. In our implementation,

since we generate sequential plans, this corresponds to the number of actions in the plan.

3Note, variables start with “?”. Constants start with uppercase.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 76

σ |= (at-end φ) iff sn |= φ

σ |= (always φ) iff ∀i : 0 ≤ i ≤ n, si |= φ

σ |= (sometime φ) iff ∃i : 0 ≤ i ≤ n, si |= φ

σ |= (sometime-after φ ψ) iff ∀i if si |= φ then ∃j : i ≤ j ≤ n, sj |= ψ

σ |= (sometime-before φ ψ) iff ∀i if si |= φ then ∃j : 0 ≤ j < i, sj |= ψ

Figure 4.1: Semantics of a subset of PDDL3’s temporal formulae. We assume σ =
〈(s0, t0) · · · (sn, tn)〉.

Figure 4.1, defines when φ is satisfied in a trajectory σ (abbreviated σ |= φ) for a subset of

the temporal language of PDDL3. Trajectory σ = 〈(s0, t0) · · · (sn, tn)〉 represents a sequence

of state-time pairs that results from the execution of the sequence of actions in the plan. More

details can be found in [Gerevini and Long, 2005, Gerevini et al., 2009].

Finally, it is also possible to define whether we want to maximize or minimize the metric,

and how we want to weigh its different components. For example, the PDDL3 metric function:

(:metric minimize (+

(* 40 (is-violated p-light))

(* 20 (is-violated p-truck))))

specifies that it is twice as important to satisfy preference p-light as to satisfy preference

p-truck.

Since it is always possible to transform a metric that requires maximization into one that

requires minimization, we will assume that the metric is always being minimized. Further

note that inconsistent preferences are handled automatically using the PDDL metric function

as discussed above. The metric function is a weighted sum of individual preference formulae.

This function is then minimized by our planning approach. In doing so, it makes an appropriate

trade off between inconsistent preferences so that it can optimize the metric function.

Finally, we now complete the formal definition for HTN planning with PDDL3 preferences.

Given a PDDL3 metric function M the HTN preference-based planning problem with PDDL3

preferences is defined by Definition 3.6, where the relation � is such that π1 � π2 if and only

if M(π1) ≤M(π2).

4.5.2 PDDL3 Extension for HTN Planning

One of our desirable criteria was adapting and/or extending a specification language that is

broadly adopted within the planning community. To that end, we decided to leverage the

popularity of PDDL3 as a language for our specifying our preferences.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 77

PDDL3 extends PDDL2.2 to support the specification of preferences and hard constraints

over state properties of a trajectory. Here, we extend PDDL3 to incorporate complex action-

centric preferences over HTN tasks. This gives users the ability to express preferences over

certain parameterization of a task (e.g., preferring one task grounding to another or constraints

over action properties) and over a particular decomposition of nonprimitive tasks (i.e., prefer

to apply a certain method over another). In the context of the WSC problem, following the

translation of the OWL-S based WSC problem to HTN planning, how to decompose a tasks is

analogous to realizing a service using its process model. This is particularly important when

the process model is constructed using the Choice construct and users may prefer one choice

over another.

As in PDDL3 each preference formula is given a name and a metric value (i.e., penalty

if the preference formula is not satisfied). The quality of a plan is defined using a metric

function. A lower metric value indicates higher satisfaction of the preferences, and vice versa.

PDDL3 supports specification of preferences that are temporally extended in a subset of LTL.

We extended PDDL3 to give users the ability to express preferences over how to decompose

tasks as well as expressing preferences over the preferred parameterization of a task

To support preferences over task occurrences (primitive and nonprimitive) and task decom-

positions, we added three new constructs to PDDL3: occ(a), initiate(X) and terminate(X),

where a is a primitive task (i.e., an operator or an atomic process), and X is either a task (i.e.,

a composite process’ name and its input parameters) or a name of method (i.e., the unique

method name assigned for each method during the translation). occ(a) states that the primitive

task a occurs in the present state. On the other hand initiate(t) and terminate(t) state, respec-

tively, that the task t is initiated or terminated in the current state. Similarly initiate(n) (resp.

terminate(n)) states that the application of method named n is initiated (resp. terminated) in

the current state. These new constructs can be used within simple and temporally extended

preferences and constraints, but not within precondition preferences.

The following are a few temporally extended preferences from our Travel domain that use

the above extension4.

(preference p1 (always (not (occ (pay MasterCard)))))

(preference p2 (sometime (occ (book-flight SA Eco Direct Window))))

(preference p3 (imply (close origin dest)

(sometime (initiate (by-rail-trans)))))

4For simplicity many parameters have been suppressed. Variables are existentially quantified and start with

“?”. Constants start with uppercase.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 78

(preference p4 (sometime-after (terminate (arrange-trans))

(initiate (arrange-acc))))

(preference p5 (sometime-after (terminate arrange-acc)

(initiate get-insurance)))

(preference p6 (always (imply (and (hasBookedFlight ?y)

(hasAirline ?y ?x)

(member ?x SA))

(sometime (occ (pay ?y CIBC))))))

(preference p7 (always (imply (hasBookedCar ?z)

(sometime (occ (pay ?z AE)))))

The p1 preference states that the user never pays by Mastercard. Note here that payment

with MasterCard is thought of as an atomic process. The p2 preference states that at some

point the user books a direct economy window-seated flight with a Star Alliance (SA) carrier.

Here, booking a flight is believed to be a composite process. The p3 preference states that

the by-rail-trans method is applied when origin is close to destination (i.e., the user prefer

the train if origin is close to destination). The p4 states that arrange-trans task is terminated

before the arrange-acc task begins (for example: finish arranging your transportation before

booking a hotel). In other words, the user prefers booking their accommodations after their

transportation. Similarly, p5 states that the task arrange-acc is terminated before the task get-

insurance begins. That is, the user prefers getting their insurance after their accommodations.

The p6 preference states that if a flight is booked with a Star Alliance (SA) carrier, pay using

the user’s CIBC credit card. Finally p7 preference states that if a car is booked, the user prefers

to pay with their American Express (AE) credit card.

4.5.3 The Semantics

The semantics of the preference language (our HTN extension to PDDL3) comprises two parts:

(1) a formal definition of the satisfaction of individual preference formulae, and (2) a formal

definition of the aggregation of preferences through an objective function. The satisfaction of

individual preference formulae is defined by mapping HTN decompositions and LTL formu-

lae into the situation calculus. In so doing, satisfaction of a preference formula is reduced to

entailment of the formula in a logical theory. Preference formulae are composed into a metric

function. The semantics of the metric function, including the aggregation of quantified pref-

erences via the is-violated function, is defined in the same way as in PDDL3, following

[Gerevini and Long, 2005].

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 79

The satisfaction of the preference formulae is defined by a translation of formulae into

the situation calculus. Formulae are satisfied if their translations are entailed by the situation

calculus logical theory representing the HTN planning problem and plan. The translation of

our HTN constructs are more complex, so we begin with the original elements of PDDL3.

The translation to the situation calculus proceeds as follows. Since we are operating

over finite domains, all universally quantified PDDL3 formulae are translated into individ-

ual grounded instances of the formulae. Simple preferences (resp. constraints) are translated

into the corresponding situation calculus formulae. Temporally extended preferences (resp.

constraints) are translated into situation calculus formulae following the translation of LTL

formulae into the situation calculus by [Gabaldon, 2004] and [Bienvenu et al., 2006].

To define the semantics of our HTN extension, we again appeal to Gabaldon’s translation of

HTN planning into the situation calculus entailment of a ConGolog program [Gabaldon, 2002]

discussed in Section 3.5. ConGolog is a logic programming language built on top of the situa-

tion calculus that supports the expression of complex actions.

In addition to this translation, we need to deal with the new elements of PDDL3 that we

introduced: occ(a), initiate(X), and terminate(X). To this end, again following Gabaldon’s

translation we add two new primitive actions start(P (v)), end(P (v)), to each procedure P that

corresponds to an HTN task or method. In addition, we add the fluents executing(P (v), s) and

terminated(X, s), where P (v) is a ConGolog procedure and X is either P (v) or a primitive

action a. executing(P (v), s) states that P (v) is executing in situation s, terminated(X, s) states

that X has terminated in s. executing(a, s) where a is a primitive action, is defined to be false.

occ(a), initiate(X), and terminate(X) are translated into the situation calculus by building

situation calculus formulae that are evaluated when they appear in a preference formula. Below

we define these formulae, using a notation compatible with Gabaldon’s translation, in which

ϕ[s′, s] denotes that the (temporal) expression ϕ holds over the situation fragment s, that starts

in situation s′.

occ(a) tells us the first action executed is a: occ(a)[s′, s] = do(a, s′) ⊑ s

initiate(X) and terminate(X) are interpreted as follows:

initiate(X)[s′, s] =

do(X, s′) ⊑ s if X ∈ A

do(start(X), s′) ⊑ s if X ∈ R

terminate(X)[s′, s] =

do(X, s′) ⊑ s if X ∈ A

do(end(X), s′) ⊑ s if X ∈ R,

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 80

where s′ ⊑ s denotes that situation s′ is a predecessor of situation s, and A is a set containing

all primitive actions. The satisfaction of our HTN constructs is now reduced to an entailment.

Definition 4.9 Given a preference formula ϕ in one of these forms occ(X) initiate(X),

terminate(X), and D, C, ∆, δ0, the elements of the situation calculus encoding of the

preference-based planning problem (see Section 3.5), ϕ is satisfied if and only if

D ∪ C |= Do(∆; δ0, S0, s) ∧ ϕ[S0, s]

For further details (semantics of other constructs), please see Section 4.4.1,

[Gabaldon, 2002] and [Bienvenu et al., 2006].

4.5.4 Service Selection Preferences

Service selection or discovery is a key component of the WSC problem. However, the only

other approaches, to our knowledge, that treat this as a preference optimization task integrated

with actual composition are [Sirin et al., 2005a] and our Golog related work discussed in Sec-

tion 4.3.2. In [Sirin et al., 2005a], they rely on extending an OWL-S ontology to include ab-

stract processes that refer to service profiles. These descriptions also need to be represented

as assertions in an OWL ontology, and an OWL-DL reasoner needs to undertake the task of

matching and ranking services based on their service selection preferences. Unfortunately,

combining OWL-DL reasoning with planning can create significant performance challenges

since one needs to call the OWL-DL reasoner many times during the planning phase, leading

to very expensive computations.

We took a different approach to selecting preferred services in our Golog related work

discussed in Section 4.3.2. In our approach, we added a service parameter u to each action

in the planning problem. Occurrence of this action during the plan with a preferred service

parameter argument ensured that a particular service was used. However, we did not discuss

how the service parameter was encoded nor we discussed a translation of OWL-S to Golog or

to the actions in the planning problem.

Our approach for HTNs is different. Following discussion in the translation of the OWL-S

based WSC problem to HTN planning Section 3.4.1, during the translation phase we com-

pile each service profile as an extra property of its corresponding HTN element. Note that

not all processes will be associated to a service since a process can correspond to an internal

subprocess of the service. We only associate profiles with Web-accessible processes. We cap-

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 81

ture the profile property using a binary predicate isAssociatedWith(process, service-profile).

The service-profile serves as an index for the profile information and is encoded as additional

predicates (e.g., has-language(service-profile, language), has-trust(service-profile, trust), has-

reliability(service-profile, reliability), etc). Below are some service selection preferences for

our Travel domain.

(preference p8 (always (imply (and (initiate ?x)

(isAssociatedWith ?x ?y))

(has-trust ?y High)))

(preference p9 (sometime (and (initiate ?z)

(isAssociatedWith ?z ?y)

(has-name ?y AirCanada))))

(preference p10 (always (not (and (initiate ?z)

(isAssociatedWith ?z ?y)

(has-reliability ?y Low)))))

p8 states that the user prefers selecting services that have high trust values. p9 states that a

user prefers to invoke the AirCanada service. Lastly, p10 states that the user prefers to never

select low reliability services.

4.6 Specifying Hard Constraints

In addition to preferences, a particular context, user, or problem may necessitate the enforce-

ment of hard constraints. Hard constraints are a useful way of enforcing business rules and

policies. We consider and focus specifically on hard constraints in the form of policies or reg-

ulations. Policies or regulations are a set of constraints imposed by an authority that define

an acceptable behaviour or characteristic of an agent, person, or an organization. Policies or

regulations, hence are a set of constraints imposed on the composition that define an accept-

able composition. For example, if commerce is being performed across multiple governmental

jurisdictions, there may be a need to ensure that laws and regulations pertaining to commerce

are enforced appropriately. In a smart-building setting, we may wish to enforce temperature

or lighting policies. To realize this, we must have a means of specifying these further hard

constraints.

Policies and regulations are an important aspect of semantic Web services. A number

of researchers have proposed approaches to both regulation representation and regulation en-

forcement as part of semantic Web service tasks (e.g., [Tonti et al., 2003]). Kolovski et al.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 82

[Kolovski et al., 2005] proposed a formal semantics for the WS-policy [WS-Policy, 2006] lan-

guage by providing a mapping to a Web ontology language OWL and describing how an OWL-

DL reasoner could be used to enforce policies. They provided two translations of WS-Policy

to OWL-DL by treating policies as instances and classes in the DL framework. Chun et al.

[Chun et al., 2005] considered policies imposed on both service selection and on the entire

composition, expressed using RuleML [RuleML, 2008]. In their work, policies take the form

of condition-action pairs providing an action-centric approach to policy enforcement. There

has also been work on compliance checking, using a constraint-based approach that is similar

in spirit to regulation enforcement (e.g., [Hoffmann et al., 2009b]).

Also noteworthy is the work of [McIlraith and Son, 2002] in which they represent and rea-

son with hard constraints. However, they provide a way of precompiling these constraints into

action preconditions rather than algorithmic pruning at run time.

There has also been work on compliance checking using a constraint-based approach that is

similar in spirit to regulation enforcement (e.g., [Hoffmann et al., 2009b]). Also, recent work

[Hoffmann et al., 2009a] has considered integrity constraints, and proposed various ways to

solve the ramification problem.

There are at least two types of regulations, inter-organizational and intra-organizational

[Chun et al., 2004]. Inter-organizational is a type of regulation that is imposed by one orga-

nization or a corporation, for example, on their employees or clients. An intra-organizational

regulation involves more than one organization and is usually on the whole composition of

services. Hence, it is important to have a reasoning framework that can impose regulations not

only at design time of the templates but also at the composition construction time.

Regulations are traditionally enforced at design time by verifying that a workflow, com-

position, or software adheres to the regulations. For example, software developed for use by

a particular corporation will have the enforcement of such regulations built in. However, for

Web services that are designed for use in multiple scenarios, policies and regulations must be

enforced and properties verified in a context-specific manner as new compositions are con-

structed. Hence, in this thesis, we ensure hard constraints are enforced by simply pruning

partial plans that do not adhere to them. This allows enforcement of regulations during com-

position construction. In Chapter 6, we provide an algorithm that specifies exactly how this

pruning occurs within the HTN composition algorithm.

During our regulation enforcement phase, we ensure that the computed composition pre-

serves certain properties of the world. These types of regulations can be specified potentially

by state conditions that must hold during the composition. Hence, rather than having action-

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 83

centric rules in the form of RuleML or rule-based languages, we are interested in assertions

that must be enforced during the composition. Classically this form of verification has been

represented in LTL [Emerson, 1990] or some combination of first-order logic with temporal

logic (e.g., [Gerth et al., 1995]).

In this thesis, the form of hard constraints we are concerned with does not necessarily

provide guidance towards a solution in the same sense as preferences; however, they provide

pruning strategies during the composition phase. That is, upon violation of hard constraints, we

immediately prune the part of the search space that is disallowed by the hard constraints. This

is similar to how temporal formulae provide pruning in TLPlan [Bacchus and Kabanza, 2000]

and TALPlan [Kvarnström and Doherty, 2000]. However, the composition template (here the

HTN structure) should still be feasible and the imposed regulations should not be in contra-

diction with or invalidate the HTN structure. For example, in the Travel example, where the

desired behaviour is to book a flight and to book an accommodation only, it should not be pos-

sible to impose (temporal) policies that mention booking of any other task not mentioned in

the HTN structure. For example, imposing a policy that forces booking a car from Avis should

not be possible since booking a car is not part of the desired behaviour.

To specify hard constraints, we have restricted our policy and regulation specifications to

a subset of LTL that deals with safety or maintenance properties combined with conditionals.

This restriction was a design decision rather than a limitation in our ability to deal with arbitrary

LTL formulae. Hence, we represent regulations in a subset of LTL considering for the most

part the never and always modalities. While specifying the hard constraints in this subset could

still invalidate the HTN structure, it is easier to specify valid policies with respect to the HTN

structure while providing powerful pruning.

Below are some example regulations that corporations might impose on their employees

when traveling:

1. Always book flights with US-carriers.

2. Never book business or first-class flights.

3. Get pre-approval for travel outside the US.

4. Always pay for flights and hotels with your corporate credit card.

As an example, the first regulation above can be written in LTL as follows5:

� [((hasBookedFlight ?y) ∧ (hasAirline ?y ?x)) ⇒ (USCarrier ?x)]

5� is a symbol for always.

CHAPTER 4. SPECIFYING SOFT AND HARD CONSTRAINTS 84

4.7 Summary and Discussion

We now go back to our preference languages and reiterate how they satisfy our set of desirable

criteria. Our proposed language LPH is both action- and state-centric and has the ability to

express conditional and temporally extended preferences. LPH is action-centric because it

includes constructs occ and apply. LPH has the ability to express preferences over certain

parameterization of a task (e.g., preferring one task grounding to another), over a particular

decomposition of nonprimitive tasks (i.e., prefer to apply a certain method over another), and

a soft version of the before, after, and in-between constraints. Furthermore, through assigning

weights LPH has the ability to express relative strength of preferences. It has a well defined

semantics in the situation calculus and is easy to reason with. Finally, the specification of LPH

preferences are disjoint from the specification of the domain.

Our PDDL3 extension for HTN planning is also both action- and state-centric and enables

expression of both conditional and temporally extended preferences. Specification of a prefer-

ence over this language is also done separately from the specification of the domain description.

We defined a semantics for our preference language in the situation calculus. Our preference

language particularly handles preferences over non-functional properties of services (or ser-

vice selection preferences). Since our language is an extension to a popular and acceptable

preference language we are able to use many of the features already in place. For example,

because PDDL3 already handles inconsistencies, inconsistencies for our preference language

is automatically handled. Furthermore, we can reuse existing research including an existing

compilation technique [Baier et al., 2009] to encode the satisfaction of temporally extended

preferences into predicates of the domain.

Finally, we go back to our proposed hard constraints specification language and reiterate

how they satisfy our set of desirable criteria. We chose to specify the hard constraints in

a subset of LTL. This means that the hard constraints specification language already has a

defined semantics, and we are able to benefit from the already existing and acceptable language.

Furthermore, we specifically chose this subset of LTL constructs because they easily facilitate

pruning techniques.

Chapter 5

Computing Optimized Compositions

5.1 Introduction

In Chapter 3 we established that there is a correspondence between generating a customized

composition of Web services and a non-classical planning problem, where the objective of

the planning problem can be specified as a composition template together with a set of con-

straints to be optimized or enforced. While a composition template can be represented in a

variety of different ways, in this thesis, we consider two representations: Golog and HTNs.

Also in Chapter 4 we discussed different forms of specifying soft and hard constraints. Re-

flecting on the state-of-the-art techniques for planning with preferences, in this chapter, we

address the problem of computing optimal compositions. The approaches we describe differ

with respect to the specification of the composition template, Golog or HTNs, the specification

of preferences, LPP , LPH, or PDDL3, and the specification of hard constraints. We pro-

pose algorithms that integrate preference-based reasoning, exploit and advance state-of-the-art

heuristic search, prove properties of these algorithms, implement and evaluate our systems, and

ultimately illustrate the applicability of our proposed approaches.

Figure 5.1 summarizes the four systems we discuss in this chapter: GOLOGPREF,

HTNPLAN, HTNPLAN-P, and HTNWSC-P. Each of these systems uses heuristic search

but differ with respect to the forms of the composition templates, specification of soft and hard

constraints, and the nature of the heuristics. Heuristic-guided search is an effective method for

efficient plan generation. While an admissible heuristic, a heuristic that never overestimates

the cost of reaching the goal if used in an A*-like algorithm, guarantees optimality, inadmissi-

ble heuristics lead to finding plans quickly, but do not guarantee optimality. GOLOGPREF and

HTNPLAN which use an admissible heuristic, are provably optimal preference-based systems.

85

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 86

System Composition Soft Hard Optimal?

Template Constraints Constraints

GOLOGPREF Golog LPP Golog (or LTL) Yes

HTNPLAN HTN LPH - Yes

HTNPLAN-P HTN Extended PDDL3 - Under certain conditions

HTNWSC-P HTN Extended PDDL3 LTL Under certain conditions

Figure 5.1: Summary of our systems.

Indeed, the first solution they generate is the best solution with respect to the given prefer-

ences. However, HTNPLAN-P and HTNWSC-P exploit inadmissible heuristics to compute

preferred solutions in a best-first, incremental approach. HTNPLAN-P and HTNWSC-P per-

form the search in a series of episodes, returning solutions with increasing quality. We show

that despite use of inadmissible heuristics, under some condition we can guarantee optimality.

Furthermore, while GOLOGPREF exploits Golog to specify the composition template, the

other systems use HTNs to specify the composition template. Unfortunately, the state of the

art in HTN planning was not capable of reasoning about preferences. Hence, before addressing

the WSC composition with preferences, we first propose incorporating preferences into HTN

planning and as a result develop our two preference-based HTN planners, HTNPLAN and

HTNPLAN-P. Both of our preference-based planners are built as an extension to the SHOP2

planner [Nau et al., 2003].

SHOP2 is a highly optimized domain-independent HTN planning system that received an

award for its performance in the 2002 International Planning Competition (IPC-2002). SHOP2

is different from other HTN planning systems because it plans for tasks in the same order

that they later can be executed. To do so SHOP2 keeps track of the current state of the world

at every step of the planning phase and plans forward from the initial state. SHOP2 allows

the task networks to be partially ordered and generates a plan, which is a sequence of actions

(instantiated operators) that achieve the initial task network. SHOP2 has additional features that

make it ideal for the WSC problem. Namely, it is able to reason with axioms and has the ability

to call external procedures. Nevertheless, SHOP2 has limited ability to perform preference

reasoning. In particular, if there is more than one way of decomposing a task using different

methods, SHOP2 sorts the alternatives based on the order written in the domain description,

then it selects the first method whose precondition is satisfied. This if-then-else ordering of

SHOP2 provides a means of reflecting a preference for achieving a task one way over another.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 87

This limited form of preference has to be hard-coded into the SHOP2 domain description and

cannot be customized by an individual user without recoding the HTN domain.

Our implemented preference-based HTN planners are able to take advantage of many of

SHOP2’s features. Nevertheless, in order to reason with rich expressive preferences, our ex-

tension ensures true non-determinism. To do so, our extension to SHOP2 disables SHOP2’s

interpretation of the if-then-else statement, enabling all task decompositions to be included in

the generation of a plan that addresses to the soft and hard constraints. That is, if a task can

be decomposed using two different methods, both of these methods are considered, not just

the first applicable one. This broadening of the search space provides the flexibility to support

reasoning with soft and hard constraints.

Given our advancements to the state of the art in HTN planning with preferences, we then

go back to address the generation of customized composition through planning. Our system

HTNWSC-P builds on HTNPLAN-P and further advances it by being able to enforce hard

constraints. We use pruning to eliminate those compositions that violate hard constraints. That

is, we ensure the hard constraints are enforced by simply pruning partial plans that do not

adhere to them. This allows enforcement of regulations or policies during composition con-

struction time. HTNWSC-P is also capable of handling service selection preferences. Hence,

our composition framework implemented in HTNWSC-P can simultaneously optimize, at run

time, the selection of services based on their functional and non-functional properties, while en-

forcing stated hard constraints. Experimental evaluation supports our claim that our approach

can indeed provide a computational basis for the development of effective, state-of-the-art

techniques for generating customized compositions of Web services.

5.1.1 Contributions

The following are the main contributions of this chapter.

• Proposed algorithms that can compute optimal solutions both for when the composition

template is specified as Golog and as HTNs

• Analyzed and proved properties of these algorithms including correctness and optimality

(again for both the Golog and the HTN approach)

• Proposed preference-based heuristic search techniques that are tailored to HTN planning

• Implemented proof-of-concept systems that implement our approaches

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 88

• Evaluated the implemented systems

5.2 GOLOGPREF: Computing Optimal Compositions

In this section, we will discuss our system GOLOGPREF. GOLOGPREF addresses the WSC

problem with customization, Definition 3.2, where the composition template is specified in

Golog, the soft constraints, φsoft , is specified in LPP [Bienvenu et al., 2006] and the hard

constraints, φhard , is specified as a Golog program (or as LTL). Our system can be used to select

an optimal solution from among families of solutions that achieve the user’s stated objective.

GOLOGPREF, is implemented in Prolog and for the purposes of evaluation, integrated with a

selection of Web services that were appropriate to our test domain.

5.2.1 Algorithm and its Properties

In this section, we present an algorithm for computing optimal compositions and prove proper-

ties of our algorithm. GOLOGPREF’s algorithm relies on our defined notion of WSC problem

with customization (see Definition 3.2). In the discussion of the algorithm, we use C instead

of φhard and Φ instead of φsoft . Note again that Φ is specified in LPP . In particular, Φ is a

GPF that describes the given preferences.

A Golog program places constraints on the situation tree that evolves from S0. As men-

tioned in Section 3.3.1 for the purposes of WSC we generally treat iteration as finitely bounded

by a parameter k. As such, any implementation of Golog is effectively doing planning in a

constrained search space, searching for a legal termination of the Golog program. The actions

that define this terminating situation are the plan. In the case of composing Web services, this

plan is a composition as shown in Chapter 3.

To compute a composition that satisfies the preferences while meeting the hard constraints,

we search through this same constrained search space to find the best terminating situation.

Our approach, embodied in a system called GOLOGPREF, searches for this optimal termi-

nating situation by modifying the PPLAN approach to planning with preferences proposed in

[Bienvenu et al., 2006].

Note, in GOLOGPREF we specify the hard constraint C as a Golog program but

in previous work Golog has been extended to deal with temporally extended goals

[McIlraith and Son, 2002]. For the rest of this section, we assume C is specified in Golog.

In particular, GOLOGPREF performs best-first search through the constrained search space re-

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 89

sulting from the Golog program, δ;C. Note, this is a constrained search space where the hard

constraint C is of type final state goal. The search is guided by an admissible evaluation func-

tion that evaluates partial plans with respect to whether they satisfy the preference formula, Φ.

The admissible evaluation function is the optimistic evaluation of the preference formula, with

the pessimistic evaluation and the plan length used as tie breakers where necessary, in that or-

der. Optimistic (resp. pessimistic) weights are defined based on optimistic (resp. pessimistic)

satisfaction of preferences. Optimistic satisfaction assumes that any part of the formula not yet

satisfied will eventually be satisfied. Pessimistic satisfaction assumes the opposite.

The preference formula Φ is evaluated over intermediate situations (partial compositions)

by exploiting progression as described in [Bienvenu et al., 2006]. Informally, progression takes

a situation and a temporal logic formula (TLF), evaluates the TLF with respect to the state of

the situation, and generates a new formula representing those aspects of the TLF that remain to

be satisfied in subsequent situations. Note again that we assume that C is specified in Golog,

but if it was specified in LTL, we can similarly use progression to evaluate it.

In GOLOGPREF, we likewise transition through the Golog program, now using Trans, how-

ever with the generation of each new situation term, GOLOGPREF progresses the preference

formula and computes the weight of the situation (which represents a partial composition) rela-

tive to the progressed preference formula, ordering situations on the frontier based on PPLAN’s

[Bienvenu et al., 2006] admissible evaluation function. GOLOGPREF expands situations on

the frontier based on this best-first search heuristic until it finds a solution.

Figure 5.2 provides a sketch of the basic GOLOGPREF algorithm following from PPLAN .

The full GOLOGPREF algorithm takes as input a 5-tuple (D, O, δ, C,Φ). For ease of expli-

cation, our algorithm sketch in Figure 5.2 explicitly identifies the initial situation of D, init,

the Golog program, δ;C which we refer to as pgm and Φ, which we refer to as pref. GOLOG-

PREF returns a sequence of Web services, i.e. a plan, and the weight of that plan. The frontier

is a list of nodes of the form [optW, pessW, pgm, partialPlan, state, pref], sorted by optimistic

weight, pessimistic weight, and then by length. The frontier is initialized to the input program

and the empty partial plan, its optW, pessW corresponds to evaluation of the input preference

formula in the initial state and pref corresponds to the progression of the preference formula.

On each iteration of the while loop, GOLOGPREF removes the first node from the frontier

and places it in current. If the Golog program of current is nil then the situation associated

with this node is a terminating situation. If it is also the case that optW=pessW, then GOLOG-

PREF returns current’s partial plan and weight. Otherwise, it calls the function EXPAND with

current’s node as input.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 90

GOLOGPREF(init, pgm, pref)

frontier← INITFRONTIER(init, pgm, pref)

while frontier 6= ∅
current← REMOVEFIRST(frontier)

% establishes current values for progPgm, partialPlan, state, progPref

if progPgm=nil and optW=pessW

return partialPlan, optW

end if

neighbours← EXPAND(progPgm, partialPlan, state, progPref)

frontier← SORTNMERGE(neighbours, frontier)

end while

return [],∞

EXPAND(progPgm, partialPlan, state, progPref) returns a list of new nodes to add to the

frontier. If partialPlan=nil then EXPAND returns []. Otherwise, EXPAND uses Golog’s

Trans to determine all the executable actions that are legal transitions of progPgm in state

and to compute the remaining program for each.

It returns a list which contains, for each of these executable actions a a node

(optW, pessW,newProgPgm, newPartialPlan, newState, newProgPref)

and for each action a leading to a terminating state, a second node

(realW, realW, nil, newPartialPlan, newState, newProgPref).

Figure 5.2: A sketch of the GOLOGPREF algorithm.

EXPAND returns a new list of nodes to add to the frontier. If progPgm is nil then no

new nodes are added to the frontier. Otherwise, EXPAND generates a new set of nodes of

the form [optW, pessW, prog, partialPlan, state, pref]. These nodes are generated for each

action that is a legal Golog transition of pgm in state. For actions leading to terminating states,

EXPAND also generates a second node of the same form with replacing optW and pessW with

their actual weights. The generated nodes by EXPAND are then sorted and merged with the

frontier. The nodes are sorted by their optW, pessW, and then by their length. The while loop

terminates if an empty frontier is reached, and in that case we return the empty plan indicating

that no solution was found. We next prove the correctness of our algorithm.

Theorem 5.1 (Soundness and Optimality) Let P=(D, O, δ, C,Φ) be a WSC problem with

customization, where δ is specified in Golog. Given as input P , GOLOGPREF returns a plan a

that is a solution to (D, O, δ, C,Φ) , and returns [] (i.e., no solution) otherwise.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 91

Proof: We first prove that the algorithm terminates1. There are two ways that GOLOGPREF

terminates. First, either the frontier is empty, in which case GOLOGPREF returns “[]” (i.e.,

no solution). Second, if progPgm = nil (i.e., the progressed program is empty) and optW =

pessW, in which case GOLOGPREF returns this plan. We appeal to the fact that the program

δ is a tree program. Hence, the nodes generated by expand will eventually hit bottom, and

we will eventually run out of nodes and reach the empty frontier. Thus, the algorithm always

terminates. Next, we observe that a is a solution to (D, O, δ, C). This is a simple proof by

cases over Trans and Final. Next, we prove that a is optimal, by assuming and exploiting

the correctness of progression of preference formulae proven in [Bienvenu et al., 2006], the

admissibility of our evaluation function, and the bounded size of the search space generated by

the Golog program δ;C. Suppose for contradiction that a is not optimal. This mean that there

exists a plan a′ which is more preferred than a (i.e., has a better weight). That means either

(1) a node corresponding to a′ was generated and was placed behind the node that corresponds

to a. But this is a contradiction, as we keep the frontier sorted at all times (i.e., if weight of

a′ was better, the node that corresponds to it should have been placed in front of the node that

corresponds to a not behind). Or (2) there is an ancestor node that corresponds to a′ that is

behind the node that corresponds to a. But this is not possible because of the admissibility of

our evaluation function. This complete the proof.

5.2.2 Implementation and Evaluation

We have implemented a system that generates a solution to the WSC problem with cus-

tomization. Our implementation, GOLOGPREF, builds on an implementation of PPLAN

[Bienvenu et al., 2006] and an implementation of IndiGolog [Reiter, 2001] both in SWI Pro-

log2. GOLOGPREF interfaces with Web services through the implementation of domain-

specific scrapers developed using AgentBuilder 3.2, and AgentRunner 3.2, Web agent de-

sign applications developed by Fetch Technologies c©. Among the sites we have scraped are

Mapquest, and several air, car and hotel services. The information gathered is collected in

XML and then processed by GOLOGPREF.

We tested GOLOGPREF in the Travel domain. Our tests serve predominantly as a proof

of the concept and to illustrate the utility of GOLOGPREF. Our generic procedure which is

represented in Golog was very simple, allowing flexibility in how it could be instantiated.

1This proof is similar to the correctness proof of PPLAN [Bienvenu et al., 2006, Bienvenu et al., 2011]
2See [Reiter, 2001] for a description of the translation of D to Prolog.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 92

What follows is an example of the Prolog encoding of a GOLOGPREF generic procedure.

anyorder[bookAcc, bookCityToCityTranspo, bookLocalTranspo]

proc(bookAcc(Location, Day, Num),

[stayWithFriends(Location) | bookHotel(Location, Day, Num)]).

proc(bookLocalTranspo(Location, StartDay, ReturnDay),

[getRide(Location, StartDay, ReturnDay) |

walk(Location) | bookCar(Location, StartDay, ReturnDay)]).

proc(bookCityToCityTranspo(Location, Des, StartDay, ReturnDay),

[getRide(Location, Des, StartDay, ReturnDay) |

bookAir(Location, Des, StartDay, ReturnDay) |

bookCar(Location, Des, StartDay, ReturnDay)]).

We tested our GOLOGPREF generic procedure with 3 different user profiles: Jack the im-

poverished university student, Lara the picky frequent flyer, and Conrad the corporate executive

who likes timely luxury travel. Each user lived in Toronto and wanted to be in Chicago for spe-

cific days. A set of rich user preferences were defined for each user along the lines of those

illustrated in Section 3. These preferences often required access to different Web information,

such as driving distances.

Not surprisingly, in all cases, GOLOGPREF found the solution to the WSC problem with

customization (i.e., an optimal solution) for the user. Compositions varied greatly ranging

from Jack who arranged accommodations with friends; checked out the distance to his local

destinations and then arranged his local transportation (walking since his local destination was

close to where he was staying); then once his accommodations were confirmed, booking an

economy air ticket Toronto-Chicago with one stop on US Airways with Expedia. Lara on the

other hand, booked a hotel (not Hilton), booked an intermediate-sized car with National, and a

direct economy air ticket with Star Alliance partner Air Canada via the Air Canada Web site.

The optimality and the diversity of the compositions, all from the same generic procedure,

illustrate the flexibility afforded by our approach.

Figure 5.3 shows the number of nodes expanded relative to the search space size for 6

test scenarios. The full search space represents all possible combinations of city-to-city trans-

portation, accommodations and local transportation available to the users which could have

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 93

CASE NODES NODES TIME NODES IN

NUMBER EXPANDED CONSIDERED (SEC) FULL SEARCH SPACE

1 104 1700 14.38 28,512

2 102 1647 13.71 28,512

3 27 371 2.06 28,512

4 27 368 2.09 28,512

5 99 1692 14.92 28,512

6 108 1761 14.97 28,512

Figure 5.3: Test results for 6 scenarios run under 64bit Ubuntu Linux with 2.66 GHz CPU.

been considered. These results illustrate the effectiveness of the heuristic used to find optimal

compositions.

To conclude, highlights of the GOLOGPREF implementation include the use of progression

for evaluation of preference formulae and an admissible heuristic to guide best-first search,

guaranteeing optimality. We tested GologPref on diverse scenarios applied to the same generic

procedure. Our tests serve predominantly as a proof of the concept and to illustrate the utility

of GOLOGPREF. Results illustrated the diversity of compositions that could be generated from

the same generic procedure. The number of nodes expanded by the heuristic search was several

orders of magnitude smaller than the grounded search space, illustrating the effectiveness of

the heuristic and the Golog program in guiding search.

5.3 HTNPLAN: Computing Optimal Plans

As previously mentioned, we also exploit the use of HTNs to specify the composition tem-

plate. Unfortunately, the state of the art in HTN planning was not capable of reasoning about

preferences. Hence, before addressing the WSC problem with customization where the com-

position template is specified as HTNs, we first propose two HTN planners with preferences,

HTNPLAN and HTNPLAN-P. Hence, in this section and the next we discuss HTN planning

with preferences and in Section 5.5 we return to the WSC composition with customization

problem using our advancement in HTN planning with preferences.

In this section, we present our preference-based HTN planner, HTNPLAN. In particular, we

discuss how HTNPLAN addresses the preference-based HTN planning problem in Definition

3.6, where the preference relation, �, is defined using our preference language LPH. To com-

pute preferred plans, we propose an approach based on forward-chaining heuristic search. Our

heuristic uses an admissible evaluation function measuring the satisfaction of preferences over

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 94

partial plans. We use progression to evaluate the preference formula satisfaction over partial

plans. Our empirical evaluation demonstrates the effectiveness of our HTNPLAN heuristics.

Recall that we appeal to a situation calculus semantics of our preference language and of HTN

planning (see Section 4.4.1 and Section 3.5).

5.3.1 Progression

Given a situation and a temporal formula, progression evaluates the temporal formula with

respect to the state of a situation to generate a new formula representing parts of the formula

that remain to be satisfied. Progression has been used previously in forward chaining planners

such as TLPlan [Bacchus and Kabanza, 2000] and TALPlan [Kvarnström and Doherty, 2000],

where the hard constraints in the form of domain control knowledge are efficiently evaluated

using progression. In this section, we use progression to evaluate the satisfaction of our pref-

erence formula. In particular, we define the progression of the constructs we added/modified

from LPP for our preference language LPH.

To define the progression, similar to [Bienvenu et al., 2006] we add the propositional con-

stants TRUE and FALSE to both the situation calculus and to our set of TPFs, where D �

TRUE and D 2 FALSE for every action theory D. We also add the TPF occNext(X), and

applyNext(P (v)) to capture the progression of occ(X) and apply(P (v)). Below we show the

progression of the added constructs. Recall A is a set of primitive actions and R is the set of

ConGolog procedures that correspond to the set of methods.

Definition 5.1 (Progression) Let s be a situation, and let ϕ be a TPF. The progression of ϕ

through s, written ρs(ϕ), is given by:

• If ϕ=occ(X) then ρs(ϕ) = occNext(X) ∧ eventually(terminated(X))

• Ifϕ = occNext(X) , then ρs(ϕ) =

TRUE if X ∈ A ∧ D |= ∃s′.s = do(X, s′)

TRUE if X ∈ R ∧D |= ∃s′.s = do(start(X), s′)

FALSE otherwise

• If ϕ = apply(P (v)), then ρs(ϕ) = applyNext(P (v)) ∧ eventually(terminated(P (v)))

• If ϕ = applyNext(P (v)), then ρs(ϕ) =

TRUE if D |= ∃s′.s = do(start(P (v)), s′)

FALSE otherwise

• If ϕ = before(X1, X2), holdBefore(X, f), holdAfter(X, f), or holdBetween(X1, f,X2),

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 95

then ρs(ϕ) =

TRUE if ws(ϕ) = vmin

FALSE otherwise

To see how the other constructs are progressed please refer to [Bienvenu et al., 2006].

5.3.2 Admissible Evaluation Function

In this section, we describe an admissible evaluation function using the notion of optimistic

and pessimistic weights proposed in [Bienvenu et al., 2006] that provide a bound on the best

and worst weights of any successor situation with respect to a GPF Φ. Optimistic weights,

w
opt
s (Φ) are defined based on optimistic satisfaction of a preference formula while pessimistic

weights w
pess
s (Φ)) are defined based on pessimistic satisfaction of a preference formula. As

before we use the notation ϕ[s′, s] to denote that ϕ holds in the sequence of situations starting

from s′ and terminating in s. Optimistic satisfaction (ϕ[s′, s]opt) views optimistically the

satisfaction of the preference formula and hence assumes that any parts of the preference

formula not yet proven to be false will eventually be satisfied. Assuming the opposite,

pessimistic satisfaction (ϕ[s′, s]pess) views pessimistically the satisfaction of the preference

formula and hence assumes that any formula not yet falsified will never get satisfied. The

following definitions highlight the key differences between our work (shows how our added

constructs are evaluated) and the definitions in [Bienvenu et al., 2006].

occ(X)[s′, s]opt
def
=

do(X, s′) ⊑ s ∨ s′ = s if X ∈ A

do(start(X), s′) ⊑ s ∨ s′ = s if X ∈ R

occ(X)[s′, s]pess
def
=

do(X, s′) ⊑ s if X ∈ A

do(start(X), s′) ⊑ s if X ∈ R

apply(P (v))[s′, s]opt
def
= do(start(P (v)), s′) ⊑ s ∨ s′ = s

apply(P (v))[s′, s]pess
def
= do(start(P (v)), s′) ⊑ s

If ϕ = before(X1, X2), holdBefore(X, f), holdAfter(X, f) holdBetween(X1, f,X2),

then ϕ[s′, s]opt
def
= ϕ[s′, s]pess

def
= ws′,s(ϕ)

The following theorem describes some important properties of the optimistic and pes-

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 96

simistic weight functions. It has been taken from [Bienvenu et al., 2006].

Theorem 5.2 ([Bienvenu et al., 2006]) Let sn = do([a1, ..., an], S0), n ≥ 0 be a collection of

situations, ϕ be a TPF, Φ a general preference formula, andwopt
s (Φ), wpess

s (Φ) be the optimistic

and pessimistic weights of Φ with respect to s. Then for any 0 ≤ i ≤ j ≤ k ≤ n,

1. D |= ϕ[si]
pess ⇒ D |= ϕ[sj], D 6|= ϕ[si]

opt ⇒ D 6|= ϕ[sj],

2.
(

wopt
si

(Φ) = wpess
si

(Φ)
)

⇒ wsj(Φ) = wopt
si

(Φ) = wpess
si

(Φ),

3. wopt
si

(Φ) ≤ wopt
sj

(Φ) ≤ wsk(Φ), w
pess
si

(Φ) ≥ wpess
sj

(Φ) ≥ wsk(Φ)

Definition 5.2 (Evaluation function. Adapted from [Bienvenu et al., 2006])

Let s = do(a, S0) be a situation and let Φ be a general preference formula. Then

fΦ(s)
def
= ws(Φ) if a is a plan, otherwise fΦ(s)

def
= wopt

s (Φ).

Theorem 5.2 states that the optimistic weight is non-decreasing and never over-estimates the

real weight. Thus, fΦ is admissible and when used in best-first search, the search is optimal.

5.3.3 Implementation and Evaluation

In this section, we describe our best-first search, preference-based HTN planner. Figure 5.4

outlines the algorithm. HTNPLAN takes as input P = (s0, w,D,Φ) where s0 is the initial

state, w the initial task network (not to be confused by weights), D is the HTN planning

domain, and Φ the general preference formula, and returns a sequence of ground primitive

operators, i.e., a plan, and the weight of that plan. The frontier is a list of nodes of the form

[optW, pessW, w, partialP, s, pref], sorted by optimistic weight, pessimistic weight, and then by

plan length. The frontier is initialized to the initial task network w, the empty partial plan, its

optW, pessW, and pref corresponding to the progression and evaluation of the input preference

formula in the initial state.

On each iteration of the while loop, HTNPLAN removes the first node from the frontier

and places it in current. If w is empty, the situation associated with this node is a terminating

situation. Then HTNPLAN returns current’s partial plan and weight. Otherwise, it calls the

function EXPAND with current’s node as input.

EXPAND returns a new list of nodes that need to be added to the frontier. The new nodes

are sorted by optW, pessW, and merged with the remainder of the frontier. If w is nil then the

frontier is left as is. Otherwise, it generates a new set of nodes of the form [optW, pessW, newW,

newPartialP, newS, newProgPref], one for each legal ground operator that can be reached by per-

formingw using a partial-order forward decomposition procedure (PFD) [Ghallab et al., 2004].

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 97

Currently HTNPLAN uses SHOP2 [Nau et al., 2003] as its PFD. Hence, the current implemen-

tation of HTNPLAN is an implementation of SHOP2 with user preferences. For each primitive

task leading to terminating states, EXPAND generates a node of the same form but with optW

and pessW replaced by the actual weight. If we reach the empty frontier, we return the empty

plan (i.e., no solution is found).

Theorem 5.3 (Soundness and Optimality) Let P=(s0, w,D,Φ) be a HTN planning problem

with user preferences. Given as input P , HTNPLAN returns a plan π that is a solution to

(s0, w,D,Φ), and returns [] (i.e., no solution) otherwise.

Proof: We first prove that the algorithm terminates. There are two ways that HTNPLAN ter-

minates. First, either the frontier is empty, in which case HTNPLAN returns “[]” (i.e., no

solution). Second, if w = ∅ (i.e., the initial task network is empty) and optW = pessW, in

which case HTNPLAN returns this plan. We appeal to the fact that PFD procedure is sound

and complete. Hence, the nodes generated by expand will eventually hit bottom, and we will

eventually run out of nodes and reach the empty frontier. Thus, the algorithm always termi-

nates. Next we prove that π is an optimal plan, by assuming and exploiting the correctness of

progression of preference formula, and admissibility of our evaluation function. Suppose for

contradiction that π is not optimal. This mean that there exists a plan π′ which is more pre-

ferred than π (i.e., has a better weight). That means either (1) a node corresponding to π′ was

generated and was placed behind the node that corresponds to π. But this is a contradiction, as

we keep the frontier sorted at all times (i.e., if weight of π′ was better the node that corresponds

to it should have been placed in front of the node that corresponds to π not behind). Or (2)

there is an ancestor node that corresponds to π′ that is behind the node that corresponds to π.

But this is not possible because of the admissibility of our evaluation function.

HTNPLAN is an HTN planner with preferences that computes an optimal plan (solution to

the HTN planning problem with preferences). In Section 5.5 we will go back to addressing the

WSC problem with customization given our advancement in HTN planning with preferences.

Experiments

We implemented our preference-based HTN planner, HTNPLAN, on top of the LISP imple-

mentation of SHOP2 [Nau et al., 2003]. Note again that we ensure true non-determinism. That

is if a task can be decomposed using two different methods, then both of these methods are

considered, not just the first applicable one. All experiments were run on a Pentium 4 HT,

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 98

HTNPLAN(s0, w, D, pref)

frontier← INITFRONTIER(s0, w, pref)

while frontier 6= ∅
current← REMOVEFIRST(frontier)

% establishes values of w, partialP, s, progPref

if w= ∅ and optW=pessW then

return partialP, optW

neighbours← EXPAND(w, D, partialP, s, progPref)

frontier← SORTNMERGE(neighbours, frontier)

return [],∞

Figure 5.4: A sketch of the HTNPLAN algorithm.

3GHZ CPU, and 1 GB RAM, with a time limit of 1800 seconds (30 min). Since the optimality

of HTNPLAN-generated plans was established in Theorem 5.3, our objective was to evaluate

the effectiveness of our heuristics in guiding search towards an optimal plan.

Since there are no benchmarks for HTN preference-based planning we tested

HTNPLAN with ZenoTravel and Logistics domains, which were adapted from the International

Planning Competition (IPC). In particular, we augmented these domains with LPH prefer-

ence test suites. ZenoTravel domain is taken from the IPC-2002 [Fox and Long, 2002] and the

Logistics domain from IPC-2000 [Nau et al., 2001]. The planning competition is a bi-annual

event, hosted at the ICAPS planning venue with the objective of providing benchmarks for

comparison and evaluation of planning systems, highlighting challenges in the planning com-

munity, and proposing new directions for research.

The ZenoTravel domain involves transporting people on aircrafts that can fly at two alterna-

tive speeds between locations. In the numeric variant the planes consume fuel at different rates

according to the speed of travel, and distances between locations vary. The simple-time variant

combines the speed of travel with the associated costs. We used both. The Logistics domain

involves transporting packages to different destinations using trucks for delivery within cities

and planes for between cities. Some of the preferences we used in the evaluations are as fol-

lows: we prefer that the high priority packages be delivered first, we prefer to use trucks with

lower gas consumptions, and we prefer certain truck routes to another. The problems become

harder as the number of objects and/or number of tasks in the domain increases.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 99

Prob SHOP2 HTNPLAN

Plan NE Time NE NC Time PL

1 12 172 0.61 78 88 1.19 22

2 155 1628 8.60 448 547 9.45 26

3 230 2234 11.15 76 97 1.05 23

4 230 2234 11.10 361 413 4.67 23

5 485 6331 74.10 240 276 8.14 38

6 487 6226 113.20 1084 1218 63.60 46

7 720 6724 50.46 211 250 4.63 31

8 720 6724 50.90 699 808 13.63 28

9 851 9152 165.22 2689 3066 142.7 40

10 2069 23200 205.10 2290 2733 91.25 34

11 2875 27022 369.20 609 704 17.20 30

12 3956 35789 275.30 304 361 5.10 22

13 >8K >104K >1800 150 167 5.64 63

14 >13K >143K >1800 2153 2922 80.01 35

15 >13K >136K >1800 1624 1910 36.02 29

16 >31K >293K >1800 1510 1848 24.80 21

(a) ZenoTravel domain

Prob SHOP2 HTNPLAN

Plan NE Time NE NC Time PL

1 80 1297 1.27 73 93 0.64 14

2 90 540 0.28 19 24 0.20 12

3 808 4597 4.00 301 404 2.22 18

4 1024 10665 79.95 1626 1820 49.56 42

5 1024 10665 79.95 98 115 2.30 42

6 1260 6320 4.66 130 172 1.04 14

7 2178 15104 17.20 27 32 0.22 20

8 2520 14728 12.47 29 40 0.33 16

9 21776 114548 119.1 866 1163 9.44 15

10 >28K >264K >1800 1062 1437 13.21 19

11 >28K >239K >1800 1767 2417 32.76 14

12 >30K >118K >1800 1417 1925 21.07 20

13 >42K >368K >1800 2398 2968 82.62 42

14 >54K >407K >1800 858 1088 19.26 33

15 >65K >428K >1800 37 48 0.46 24

16 >67K >376K >1800 451 618 5.14 22

(b) Logistic domain

Figure 5.5: Our criteria for comparisons are number of Nodes Expanded (NE), number of

applied operators; number of Nodes Considered (NC), the number of nodes that were added to

the frontier, and time measured in seconds. Note, NC is equal to NE for SHOP2. PL is the Plan

Length and # Plan is the total number of plans.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 100

In order to evaluate the effectiveness of HTNPLAN it would have been appealing to eval-

uate our planner with a preference-based planner that also makes use of procedural control

knowledge. But since no comparable planner exists, and it would not have been fair to com-

pare HTNPLAN with a preference-based planner that does not use control knowledge, we

compared HTNPLAN with SHOP2, using a brute-force technique for SHOP2 to determine an

optimal plan. In particular, SHOP2 generated all plans that satisfied the HTN specification and

then evaluated each to find an optimal plan. Note that the times reported for SHOP2 do not

actually include the time for posthoc preference evaluation, so they are lower bounds on the

time to compute an optimal plan.

Figure 5.5 reports our experimental results for ZenoTravel and the Logistics domain. The

problems varied in preference difficulty and are shown in the order of difficulty with respect to

number of possible plans (# Plan) that satisfy the HTN control.

The results show that, in all but the first two cases of the ZenoTravel domain, SHOP2 re-

quired more time to find an optimal plan, and expanded more nodes. In particular, note that

in a number of problems, for example problems 13 and 14 SHOP2 ran out of time (1800

seconds) while HTNPLAN found an optimal plan well within the time limit. Also note that

HTNPLAN expands far fewer nodes in comparison to SHOP2, illustrating the effectiveness of

our evaluation function in guiding search.

5.4 HTNPLAN-P: Computing High-Quality Plans

In the previous section, we discussed HTNPLAN, a provably optimal preference-based plan-

ner; however, with large search spaces, finding this optimal plan may not be feasible. As

an alternative, to compute preferred plans quickly by exploring inadmissible heuristics, we

propose a best-first, incremental search in the plan search space induced by the HTN initial

task network. We implemented a system called HTNPLAN-P which takes as input, speci-

fication of preferences in our PDDL3 extension and computes plans with increasing quality.

That is, HTNPLAN-P addresses the preference-based HTN planning problem in Definition

3.6, where the preference relation, �, is defined through PDDL3 metric function. The two im-

portant heuristics we use are the Optimistic Metric Function (OM) and the Lookahead Metric

Function (LA). The OM function estimates optimistically the metric value resulting from the

current node. LA function estimate the metric of the best successor to the current node.

In this section, we first discuss the preprocessing step required before search. Then, we dis-

cuss our algorithm, heuristics, and prove the properties of our algorithm. Our evaluation shows

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 101

that our implemented HTN planner with preferences, HTNPLAN-P, is competitive with the

state of the art in preference-based reasoning. In the next section, putting everything together,

we go back to address the WSC problem with customization.

5.4.1 Preprocessing HTN problems

Before searching for a most preferred plan, we preprocess the original problem. This is needed

in order to make the planning problem more easily manageable by standard planning tech-

niques. We accomplish this objective by removing all of the modal operators appearing in the

preferences. The resulting domain, has only final-state preferences, and all preferences refer to

state properties.

By converting the temporally extended preferences into final-state preferences, our heuris-

tic functions are only defined in terms of domain predicates, rather than being based on

non-standard evaluations of an LTL formula, such as the ones used by other approaches

[e.g. [Bienvenu et al., 2006], [Bienvenu et al., 2006]]. Nor do we need to implement special-

ized algorithms to reason about LTL formulae such as the progression algorithm used by

TLPLAN [Bacchus and Kabanza, 1998].

Further, by removing the modal operators occ, initiate, and terminate we provide a way

to refer to these operators via state predicates. This allows us to use standard HTN planning

software as modules of our planner, without needing special modifications such as a mechanism

to keep track of the tasks that have been decomposed or the methods that have been applied.

Preprocessing Tasks and Methods

Our preferences can refer to the occurrence of tasks and the application of methods. In order to

reason about task occurrences and method applications, we preprocess the methods of our HTN

problem. In the compiled problem, for each nonprimitive task t that occurs in some preference

of the original problem, there are two new predicates: executing-t and terminated-t. If

a0a1 · · · an is a plan for the problem, and ai and aj are respectively the first and last primitive

actions that resulted from decomposing t, then executing-t is true in all the states in between

the application of ai and aj , and terminated-t is true in all states after aj . This is accomplished

by adding new actions at the beginning and end of each task network in the methods that

decompose t. Further, for each primitive task (i.e., operator) t occurring in the preferences, we

extend the compiled problem with a new occ-t predicate, such that occ-t is true iff t has just

been performed.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 102

Finally, we modify each method m whose name n (i.e., n = name(m)) that occurs in

some preference. We use two predicates executing-n and terminated-n, whose updates are

realized analogously to their task versions described above.

Preprocessing the Modal Operators

We replace each occurrence of occ(t), initiate(t), and terminate(t) by occ-t when t is

primitive. We replace the occurrence of initiate(t) by executing-t, and terminate(t) by

terminated-twhen t is nonprimitive. Occurrences of initiate(n) are replaced by executing-n,

and terminate(n) by terminated-n.

Up to this point all our preferences exclusively reference predicates of the HTN problem,

enabling us to apply standard techniques to simplify the problem further.

Temporally Extended and Precondition Preferences

We use an existing compilation technique [Baier et al., 2009] to encode the satisfaction of tem-

porally extended preferences into predicates of the domain. For each LTL preference ϕ in the

original problem, we generate additional predicates for the compiled domain that encode the

various ways in which ϕ can become true. Indeed, the additional predicates represent a finite-

state automaton for ϕ, where the accepting state of the automaton represents satisfaction of the

preference. In our resulting domains, we axiomatically define an accepting predicate for ϕ,

which represents the accepting condition of ϕ’s automaton. The accepting predicate is true at

a state s if and only if ϕ is satisfied at s. Quantified preferences are compiled into parametric

automata for efficiency.

Precondition preferences, preferences that should ideally hold in the state in which the

action is performed, are compiled away as conditional action costs. For each precondition

preference, we associate a counter function in the compiled domain, that is incremented when-

ever an action has been performed violating some of its precondition preferences. This process

is exactly the same as the one used in the HPLAN-P planner [Baier et al., 2009].

This compilation technique enables us to reason about LTL formulae, something we could

have also done using TLPLAN’s progression algorithm [Bacchus and Kabanza, 1998]. How-

ever, because it basically encodes in the new predicates all the possible ways in which the

formula can be progressed, it allows us to avoid defining a progression mechanism in our plan-

ner. It also allows us to define heuristics that are only be based on the evaluation of domain

predicates; this is beneficial, since we can compute these heuristics quickly.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 103

1: function HTNPBP(s0, w0,D, METRICFN,HEURISTICFN)

2: frontier ← 〈s0, w0, ∅〉 ⊲ initialize frontier

3: bestMetric ← worst case upper bound

4: while frontier is not empty do

5: current ← Extract best element from frontier

6: 〈s, w, partialP 〉 ← current

7: lbound ← METRICBOUNDFN(s)
8: if lbound < bestMetric then ⊲ pruning by bounding

9: if w = ∅ and current’s metric < bestMetric then

10: Output plan partialP

11: bestMetric ← METRICFN(s)

12: succ← successors of current

13: frontier ← sort and merge succ into frontier

Figure 5.6: A sketch of our HTN preference-based planning algorithm.

5.4.2 Algorithm

We address the problem of finding a most preferred decomposition of an HTN by performing

a best-first, incremental search in the plan search space induced by the initial task network.

The search is performed in a series of episodes, each of which returns a sequence of ground

primitive operators (i.e., a plan that satisfies the initial task network). During each episode, the

search performs branch-and-bound pruning—a search node is pruned from the search space,

if we can prove that it will not lead to a plan that is better than the one found in the previous

episode. In the first episode no pruning is performed. In each episode, search is guided by inad-

missible heuristics, designed specifically to guide the search quickly to a good decomposition.

The remainder of this section describes the heuristics we use, and the planning algorithm.

Our HTN preference-based planning algorithm outlined in Figure 5.6 performs a best-first,

incremental search in the space of decompositions of a given initial task network. It takes as

input a planning problem (s0, w0, D), a metric function METRICFN, and a heuristic function

HEURISTICFN.

The main variables kept by the algorithm are frontier and bestMetric. frontier contains

the nodes in the search frontier. Each of these nodes is of the form 〈s, w, partialP 〉, where s

is a plan state, w is a task network, and partialP is a partial plan. Intuitively, a search node

〈s, w, partialP 〉 indicates that task network w remains to be decomposed in state s, and that

state s is reached from the initial state of the planning problem s0 by performing the sequence

of actions partialP . frontier is initialized with a single node 〈s0, w0, ∅〉, where ∅ represents

the empty plan. Its elements are always sorted according to the function HEURISTICFN. On

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 104

the other hand, bestMetric is a variable that stores the metric value of the best plan found so

far, and it is initialized to a high value representing a worst case upper bound.

Search is carried out in the main while loop. In each iteration, HTNPLAN-P extracts the

best element from the frontier and places it in current . Then, an estimation of a lowerbound

of the metric value that can be achieved by decomposing w – current’s task network – is

computed (Line 7) using the function METRICBOUNDFN. Function METRICBOUNDFN will

be computed using the optimistic metric function described in the next subsection.

The algorithm prunes current from the search space if lbound is greater than or equal to

bestMetric (line 8). Otherwise, HTNPLAN-P checks whether or not current corresponds to

a plan (this happens when its task network is empty). If current corresponds to a plan, the

sequence of actions in its tuple is returned and the value of bestMetric is updated.

Finally, all successors to current are computed using the Partial-order Forward Decomposi-

tion procedure (PFD) [Ghallab et al., 2004]. However, note that we compute all the successors,

that is, instead of choosing one applicable ground instance of an operator or a method, we con-

sider them all, in order to generate all possible successors. The new nodes are then sorted and

merged into the frontier based on the HEURISTICFN function. The algorithm terminates when

frontier is empty.

5.4.3 Heuristics

Our algorithm searches for a plan in the space of all possible decompositions of the initial task

network. HTNs that have been designed specifically to be customizable by user preferences

may contain tasks that could be decomposed by a fairly large number of methods. In this

scenario, it is essential for the algorithm to be able to evaluate which methods to use to decom-

pose a task in order to get to a reasonably good solution quickly. The heuristics we propose in

this section are specifically designed to address this problem. All heuristics are evaluated in a

search node 〈s, w, partialP 〉.

Optimistic Metric Function (OM) This function is an estimate of the best metric value

achievable by any plan that can result from the decomposition of the current task network w.

Its value is computed by evaluating the metric function in s, but assuming that (1) no further

precondition preferences will be violated in the future, (2) temporally extended preference that

are violated and that can be proved to be unachievable from s are regarded as false, (3) all

remaining preferences are regarded as satisfied. To prove that a temporally extended prefer-

ence p is unachievable from s, OM uses a sufficient condition: it checks whether or not the

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 105

automaton for p is currently in a state from which there is no path to an accepting state. Recall

that an accepting state is reached when the preference formula is satisfied.

OM provides a lower bound on the best plan extending the partial plan partialP assuming

that the metric function is non-decreasing in the number of violated preferences. This is the

function used as METRICBOUNDFN in our planner. OM is a variant of “optimistic weight”

[Bienvenu et al., 2006].

Pessimistic Metric Function (PM) This function is the dual of OM . While OM regards

anything that is not provably violated (regardless of future actions) as satisfied, PM regards

anything that is not provably satisfied (regardless of future actions) as violated. Its value is

computed by evaluating the metric function in s, but assuming that (1) no further precondition

preferences will be violated in the future, (2) temporally extended preferences that are satisfied

and that can be proved to be true in any successor of s are regarded as satisfied, (3) all remaining

preferences are regarded as violated. To prove that a temporally extended preference p is true

in any successor of s, we check whether in the current state of the world the automaton for

p would be in an accepting state that is also a sink state, i.e., from which it is not possible to

escape, regardless of the actions performed in the future.

For reasonable metric functions (e.g., those that are non-decreasing in the number of vio-

lated preferences), PM is monotonically decreasing as more actions are added to partialP .

PM provides good guidance because it is a measure of assured progress towards the satisfac-

tion of the preferences.

Lookahead Metric Function (LA) This function is an estimate of the metric of the best

successor to the current node. It is computed by conducting a two-phase search. In the first

phase, a search for all possible decompositions of w is performed, up to a certain depth k,

where k depends on the domain. In the second phase, for each of the resulting nodes, a single

primitive decomposition is computed, using depth-first search. The result of LA is the best

metric value among all the fully decomposed nodes. Intuitively, LA estimates the metric value

of a node by first performing an exhaustive search for decompositions of the current node, and

then by approximating the metric value of the resulting nodes by the metric value of the first

primitive decomposition that can be found, a form of sampling of the remainder of the search

space.

Depth (D) We use the depth as another heuristic to guide the search. This heuristic does not

take into account the preferences. Rather, it encourages the planner to find a decomposition

soon. Since the search is guided by the HTN structure, guiding the search toward finding a

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 106

Strategy Check whether If tied If tied

No-LA OM1 < OM2 PM1 < PM2 -

LA LA1 < LA2 OM1 < OM2 PM1 < PM2

Figure 5.7: Strategies to determine whether a node n1 is better than a node n2. OM is the

optimistic-metric, PM is the pessimistic-metric, and LA is the look-ahead heuristic.

plan using depth is natural. Other HTN planners such as SHOP2 also use depth or depth-first

search to guide the search to find a plan quickly.

The HEURISTICFN function we use in our algorithm corresponds to a prioritized sequence

of the above heuristics, in which D is always considered first. As such, when comparing two

nodes we look at their depths, returning the one that has a higher depth value. If the depths are

equal, we use the other heuristics in sequence to break ties. Figure 5.7 outlines the sequences

we have used in our experiments. For example, LA breaks a tie between two nodes at equal

depth by first comparing the LA function of those nodes, then by comparing the value of OM ,

and if still tied, by comparing the value of PM .

5.4.4 Optimality and Pruning

Since we are using inadmissible heuristics, we cannot guarantee that the plans we generate are

optimal. The only way to do this is to run our algorithm until the space is exhausted. In this

case, we prove that the final plan returned is guaranteed to be optimal.

The first property required in the proof is that the pruning of the algorithm is sound.

Definition 5.3 (Sound Pruning) Pruning strategy is sound if and only if whenever a node is

pruned (line 8) the metric value of any plan extending this node will exceed the current bound

bestMetric. This means that no state will be incorrectly pruned from the search space.

Exhaustively searching the search space is not reasonable in most planning domains, how-

ever here we are able to exploit properties of our planning problem to make this achievable

some of the time. Specifically, most HTN specifications severely restrict the search space so

that, relative to a classical planning problem, the search space is exhaustively searchable. Fur-

ther, in the case where our preference metric function is additive, our OM heuristic function

enables us to soundly prune partial plans from our search space (since we use the OM function

as METRICBOUNDFN in our planner).

The following is taken from [Baier et al., 2009].

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 107

HTNPLAN-P

No-LA LA SGPlan5 HPLAN-P

#Prb #S #Best #S #Best #S #Best #S #Best

Travel 41 41 3 41 37 41 1 41 17

Rovers 20 20 4 20 19 20 1 11 2

Trucks 20 20 6 20 15 20 11 4 2

Figure 5.8: Comparison between two configurations of HTNPLAN-P, HPLAN-P, and

SGPlan5 on Rovers, Trucks, and Travel domains. Entries show number of problems in each

domain (#Prb), number of solved instances in each domain (#S) by each planner, and number

of times each planner found a plan of equal or better quality to those found by all other planners

(#Best). All planners were run for 60 minutes, and with a limit of 2GB per process.

Proposition 5.1 ([Baier et al., 2009]) The OM function provides sounds pruning if the met-

ric function is non-decreasing in the number of satisfied preferences, non-decreasing in plan

length, and independent of other state properties.

A metric is non-decreasing in plan length if one cannot make a plan better by increasing its

length only (without satisfying additional preferences).

Theorem 5.4 If the algorithm performs sound pruning, then the last plan returned, if any, is

optimal.

Proof: The proof follows the proof of optimality for the HPLAN-P planner [Baier et al., 2009].

We know each planning episode returns a better plan. We also know that the algorithm stops

only when the final planning episode has rejected all possible plans. Moreover, because of

sound pruning, the algorithm never prunes states incorrectly from the search space. Therefore,

no better plan than the last returned plan exists.

5.4.5 Implementation and Evaluation

Our implemented HTN preference-based planner, HTNPLAN-P, has two modules: a prepro-

cessor and a preference-based HTN planner. The preprocessor reads PDDL3 problems and

generates a SHOP2-style planning problem with only simple (final-state) preferences. The

planner itself is a modification of the LISP version of SHOP2 [Nau et al., 2003] that implements

the algorithm and heuristics described above. Our modification ensures true non-determinism

that is if a task can be decomposed using two different methods, then both of these methods

are considered, not just the first applicable one.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 108

We had three objectives in performing our experimental evaluation: to evaluate the relative

effectiveness of our heuristics, to compare our planner with state-of-the-art preference-based

planners, and to compare our planner with other HTN preference-based planners. As shown

in Figure 5.7 we evaluated the effectiveness of our various heuristics in obtaining plans with

good quality (i.e., with low metric value). We compared HTNPLAN-P with SGPlan5 and

HPLAN-P– the top performers in the IPC-2006 preferences track. Unfortunately, we were

unable to achieve our third objective, since we could not obtain a copy of SCUP, the only HTN

preference-based planner we know of [Lin et al., 2008] (see Chapter 2).

We used three domains for the evaluation: the Rovers domain, the Trucks domain, both

standard IPC benchmark domains; and the Travel domain, which is a domain of our own

making. In the Rovers domain the goal is to sample scientific data such as rock and soil, or take

images from different objects by navigating rovers between the different surfaces. However, a

rover can only traverse between different waypoints if there is a visible path from the source

to the destination. In addition, each rover is equipped for either soil, rock, image, or some

combination of them. In the Trucks domain, similar to the Logistic domain, the goal is to move

packages between locations by trucks. However, the packages need to be delivered under

certain constraints (deadlines).

Both the Rovers and Trucks domains comprised the preferences from IPC-2006, qualitative

preferences track, where preferences were specified in PDDL3. In Rovers domain we used the

HTN designed by the developers of SHOP2 for IPC-2000 and in Trucks we created our own

HTN. We modified the HTN in Rovers very slightly to reflect the true non-determinism in

our HTNPLAN-P planner: i.e., if a task could be decomposed using two different methods,

then both methods would be considered, not just the first applicable one. We also modified

the IPC-2006 preferences slightly to ensure fair comparison between planners. In particular,

we removed preferences that could never be achieved because of the constraints imposed by

the HTN. Such preferences would always cause the planner to exhaustively search the entire

search space before termination. For example, if the HTN task is to collect rock from location

waypoint3, a preference for collecting rocks from other locations will never be met because the

HTN structure will never consider sampling rock from other locations. The Rovers and Trucks

problems sets comprised 20 problems. The number of preferences in these problem sets ranged

in size, with several having over 100 preferences per problem instance.

The Travel domain is a PDDL3 formulation of the domain used throughout this thesis. Its

problem set was designed in order to evaluate the preference-based planning approaches based

on two dimensions: (1) scalability, which we achieved by increasing the branching factor and

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 109

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 15 30 120 300 900 3600

M
et

ric

Time (sec.)

No-LA

LA

Figure 5.9: Added metric vs. time for the two strategies in the Trucks domain. Recall that a

low metric value means higher quality plan. When a problem is not solved at time t, we add its

worst possible metric value (i.e. we assume no satisfied preferences).

grounding options of the domain, and (2) the complexity of the preferences, which we achieved

by injecting inconsistencies (i.e., conflicts) among the preferences. In particular, we created 41

problems with preferences generated automatically with increasing complexity. For example

problem 3 has 27 preferences with 8 conflicts in the choice of transportation while problem 40

has 134 preferences with 54 conflicts in the choice of transportation.

Our experiments evaluated the performance of four planners: HTNPLAN-P with the No-LA

heuristic, and HTNPLAN-P with the LA heuristic, SGPlan5 [Hsu et al., 2007], and HPLAN-

P– the latter two being the top preference-based planners at IPC-2006. Each planner was

run on 41 problems in the Travel domain, and 20 problems in the Rovers domain. Results

are summarized in Figure 5.8, and show that HTNPLAN-P generated plans that in all but a

few cases equalled or exceeded the quality of plans returned by HPLAN-P and SGPlan5. The

results also show that HTNPLAN-P performs better on the three domains with the LA heuristic.

Conducting the search in a series of episodes does help in finding better-quality plans. To

evaluate this, we calculated the percent metric improvement (PMI), i.e., the percent difference

between the metric of the first and the last plan returned by our planner (relative to the first

plan). The average PMI is 40% in Rovers, 72% in Trucks, and 8% in Travel.

To compare the relative performance between LA and No-LA, we averaged the percent

metric difference (relative to the worst plan) in problems in which the configurations found a

different plan. This difference is 45% in Rovers, 60% in Trucks, and 3% in Travel, all in favour

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 110

of LA. We also created 18 instances of the Travel domain where we tested the performance

between LA and No-LA on problems with preferences represented in our HTN extension to

PDDL3. The average PMI for these problems is 13%, and the relative performance between

the two is 5%.

Finally, Figure 5.9 shows the decrease of the sum of the metric value of all instances of

the Trucks domain relative to solving time. We observe a rapid improvement during the first

seconds of search, followed by a marginal one after 900 seconds. Other domains exhibit similar

behaviour.

5.5 HTNWSC-P: Computing High-Quality Compositions

In the previous sections we addressed the problem of HTN planning with preferences by

proposing two preference-based HTN planners. In this section, putting all the different required

pieces together we go back to address the problem of how to compute a preferred composition

while enforcing the hard constraints. In particular, we present our system, HTNWSC-P, that

addresses the WSC composition with customization, Definition 3.8, where the composition

template is specified as HTNs, the soft constraints, φsoft , is specified in our PDDL3 exten-

sion and the hard constraints, φhard , is specified in a subset of LTL. Our system builds on

HTNPLAN-P’s algorithm and is able to use pruning to eliminate those compositions that vio-

late the hard constraints. That is, we ensure the hard constraints (e.g., regulations or policies)

are enforced by simply pruning partial plans that do not adhere to them. (I.e., upon viola-

tion of the hard constraints, we immediately prune that part of the search space). This allows

enforcement of the hard constraints during composition construction time.

Our composition framework, embodied in our system HTNWSC-P, can simultaneously

optimize, at run time, the selection of services based on functional and non-functional proper-

ties and their groundings, while enforcing stated hard constraints. It also explores the use of

the heuristic search discussed in Section 5.4.3. Our implementation now combines the HTN

representation of composition template, the optimization of rich user preferences specified in

our PDDL3 extension, and adherence to LTL hard constraints all within one system. Experi-

mental evaluation on our system, HTNWSC-P, shows that our approach can be scaled as we

increase the number of preferences and the number of services.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 111

1: function HTNWSC(s0, w0,D, METRICFN,HEURISTICFN, HARDCONSTRAINTS)

2: frontier ← 〈s0, w0, ∅〉 ⊲ initialize frontier

3: bestMetric ← worst case upper bound

4: while frontier is not empty do

5: current ← Extract best element from frontier

6: 〈s, w, partialP 〉 ← current

7: if SATISFIESHARDCONSTRAINTS(S) then ⊲ pruning to enforce hard constraints

8: lbound ← METRICBOUNDFN(s)
9: if lbound < bestMetric then ⊲ pruning suboptimal partial plans

10: if w = ∅ and current’s metric < bestMetric then

11: Output plan partialP

12: bestMetric ← METRICFN(s)

13: succ← successors of current

14: frontier ← sort and merge succ into frontier

Figure 5.10: A sketch of our HTNWSC algorithm.

5.5.1 Algorithm

Our algorithm is outlined in Figure 5.10. Our HTNWSC planner performs best-first, incre-

mental search (i.e., always improves on the quality of the plans returned). This algorithm is

an extension to the Algorithm 5.6, where we added line 7. If the state violates the hard con-

straints (i.e., SATISFIESHARDCONSTRAINTS(S) returns false), this node will be pruned from

the search space. In the case that hard constraints are expressed in LTL, they are enforced by

progressing the formula as the plan is constructed (e.g., [Bacchus and Kabanza, 2000]). The

rest of the algorithm is the same as before.

Although the HTN representation of the composition template greatly reduces the search

space, a task can be decomposed by a fairly large number of methods corresponding to a large

number of services that can carry out the same task. Hence, we use the heuristics proposed

in Section 5.4.3 to guide the search towards finding a high-quality composition quickly. The

HEURISTICFN function we use in our algorithm is a prioritized sequence of our heuristics.

However, as shown in the previous section the best combination is to use D, LA, OM , and

PM , in that order, when comparing two nodes. Hence, if the depths are equal, we use the other

heuristics in sequence to break ties. We will use this prioritized sequence in our evaluations.

The search space for a composition is reduced by the HTN specification of the composition

template, imposing the hard constraints, and by further sound pruning that results from the in-

cremental search. In particular, the OM function provides sound pruning if the metric function

is non-decreasing in the number of satisfied preferences, non-decreasing in plan length, and

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 112

independent of other state properties. A metric is non-decreasing in plan length if one cannot

make a plan better by increasing its length only (without satisfying additional preferences).

Using inadmissible heuristics does not guarantee generation of an optimal plan. However,

we have shown in the previous section that in the case the search is exhausted, the last plan

returned is guaranteed to be optimal. In our algorithm we are pruning those states that violate

the hard constraints, so optimality is with respect to the subset of plans that adhere to the hard

constraints.

Proposition 5.2 If the algorithm performs sound pruning, then the last plan returned, if any,

is optimal.

Proof: The proof follows the proof of optimality for the HPLAN-P planner [Baier et al., 2009]

and is similar to the proof of Theorem 5.4. We know each planning episode returns a better

plan. We also know that the algorithm stops only when the final planning episode has rejected

all possible plans. Moreover, because of sound pruning, pruning by the OM heuristic and by

the enforcement of the hard constraints, the algorithm never prunes states incorrectly from the

search space. Therefore, no better plan than the last returned plan exists.

5.5.2 Implementation and Evaluation

We implemented our WSC system using the HTN representation of the composition template,

preferences specified in PDDL3 syntax, hard constraints specified as LTL formulae, and the

user’s initial task specified as HTN’s initial task network. Our implementation, HTNWSC-P,

builds on our earlier work HTNPLAN-P and implements the algorithm and heuristic described

above. We used a 15 minute time out and a limit of 1 GB per process in all our experiments.

HTNWSC-P builds on the effective search techniques for HTNPLAN-P, which was shown

to generate better quality plans faster than the leading planners from the IPC-2006 planning

competition. We had three main objectives in performing our experimental evaluation. We

wanted to evaluate the performance of our implementation as we increased the number of

preferences and the number of services. We also wanted to compare our work with other

WSC planners that use HTNs. Unfortunately, we were unable to achieve our third objective,

since we could not obtain a copy of SCUP [Lin et al., 2008], the only other HTN planner with

preferences we know of (see Chapter 2).

We used the Travel domain described in this thesis as our benchmark. Note that

HTNPLAN-P was additionally evaluated with IPC-2006 planning domains as discussed in

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 113

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7

M
et

ri
c

Problem No.

HTNWSC-P
Worst Metric

Optimal Metric

Figure 5.11: Evaluating the quality of the last plan as the number of preferences increases.

A low metric value means higher quality plan. Worst Metric is a metric value if none of the

preferences are satisfied.

Section 5.4.5. The problem sets we used were designed to help us achieve our first and second

objectives. We achieved this by adding more preferences some of which could potentially be

conflicting with each other, and by increasing the number of services, achieved by increasing

the branching factor and grounding options of the domain. To this end, we automatically gener-

ated 7 problems where the number of services was kept constant and the number of preferences

was increased. We similarly generated 10 problems with increasing number of services, keep-

ing the number of preferences constant. The preferences were rich, temporally extended pref-

erences over task groundings and task decompositions. Note that we used a constant number

of hard constraints in each problem.

Figure 5.11 shows the last metric value returned by HTNWSC-P for the 7 problems with

increasing number of preferences and constant number of services. It also shows the Worst

and Optimal Metric value for these problems. Worst Metric is the metric value of the problem

if none of the preferences are satisfied while Optimal Metric is the best possible metric value

achievable. The result shows that HTNWSC-P finds a very close to optimal solution within

the time limit. Furthermore, similar to the HTNPLAN-P’s performance in Section 5.4.5, we

observe a rapid improvement during the first seconds of search, followed by a marginal one

after that.

Next, we evaluated the performance of HTNWSC-P by increasing the number of available

services. This results in having more methods and operators in the HTN description, hence,

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 114

Problem Service First Plan Last Plan

Time(s) Time(s)

1 10 0.22 580.00

2 30 0.23 610.00

3 50 0.21 636.00

4 70 0.22 640.00

5 110 0.23 643.00

6 130 0.24 656.00

7 150 0.24 660.00

8 170 0.26 668.00

9 190 0.24 671.00

10 210 0.25 673.00

Figure 5.12: Time comparison between the first and last plan returned as we increase the

number of services in the problem.

the number of possible ways to decompose a single task increases. This causes the number

of nodes in the frontier to blow up according to the algorithm described in Section 5, and the

planner to run out of stack. There are two common ways HTN planners solve this problem.

Combining the advantages of both, we propose a middle-ground solution to the problem.

One way to avoid the problem is to have a limit on the size of the frontier as in

[Lin et al., 2008]. However, this approach only works if the size is relatively small. More-

over, many possible decompositions and high-quality solutions could potentially be removed

from the search space. Another approach is to use the if-then-else non-determinism semantics

taken for example by SHOP2. In this semantics, if there are several methods m1 to mk that can

be used to decompose a task t, method m1 should be used if it is applicable, else method m2,

else method m3, and so forth. Hence, the order in which the methods are written in the domain

description can influence the quality of the results. This simple ordering is considered a form

of user preferences in [Nau et al., 2003]. Hence, users must write different versions of a do-

main description to specify their preferences. However, this form of preferences is very limited

and is analogous to writing different composition templates for different users as opposed to

customizing one fixed, generic composition template to meet users’ differing needs.

In this experiment, we employed a combination of the above two approaches, modifying

our algorithm to place a limit on the number of applicable methods for a task. Our search con-

sidered all tasks by considering all of their corresponding nodes in the frontier , but we limited

the number of applicable methods for each task. Note that with this approach we might also

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 115

potentially prune good-quality plans, but the likelihood of this is small compared to limiting

the size of the frontier. Nevertheless, our optimality result does not hold for this experiment.

Our results are summarized in Figure 5.12. In Chapter 6 we propose another solution, within

the context of our middle-ground execution that allows us to soundly perform what we call

localized data optimization, whenever possible. Doing so will ensure that optimality results

hold while we improve on the performance of HTNWSC-P.

Figure 5.12 shows the time to find the first and the last plan within the time-out. The

experiments are run on the 10 problem sets with constant preferences and increasing service

numbers. Note that the metric value of all the first and last plans is equal since all 10 problems

use the same sets of preferences. The result shows that as the number of services increases, the

time to solve the problem increases only slightly.

Finally, recall that our implementation is incremental, performing search in a series, each

one returning a better-quality plan. To see how effective this approach is, we calculated the

percent metric improvement (PMI), i.e., the percent difference between the metric of the first

and the last plan returned by our planner (relative to the first plan). The average PMI for the

problems used in our experiments is 23%.

5.6 Summary and Discussion

In this chapter, we address the problem of computing optimal compositions. The approaches

we describe differ with respect to the specification of the composition template, Golog or

HTNs, the specification of preferences, LPP , LPH, or PDDL3, the specification of hard

constraints, and the nature of their heuristics. Going back to Figure 5.1 we now summarize the

four systems discussed in this chapter.

We first explored the use of Golog to represent the composition template in our system

GOLOGPREF. In GOLOGPREF preferences were in LPP and we explored the use of admis-

sible heuristics in forward search. GOLOGPREF is proven to generate an optimal solution.

Unfortunately, the implementation of the system was not optimized and GOLOGPREF served

as a proof-of-concept system. We then explored the use of HTNs to represent the composition

template and to that end advanced state-of-the-art techniques in HTN planning with prefer-

ences. We implemented two systems HTNPLAN and HTNPLAN-P both of which are built

as extensions of a modified SHOP2 planner. HTNPLAN is a provably optimal planner that

takes as input the specification of preferences in LPH, and uses progression to evaluate the

satisfaction of the given preferences.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 116

We also implemented a system, HTNPLAN-P, that takes as input specification of pref-

erences in our PDDL3 extension and computes plans with increasing quality. HTNPLAN-P

also explores the use of our proposed heuristics and in particular, guides the search by our

inadmissible heuristics, designed specifically to guide the search quickly to a good decom-

position. The experimental evaluations of our planner shows that our HTN preference-based

planner, HTNPLAN-P, generates plans that, in all but a few cases, equal or exceed the best

preference-based planners in plan quality.

Finally, given our advancements to the state of the art in HTN planning with preferences,

we put everything together and go back to address the generation of customized composition

through planning. We build our WSC system, HTNWSC-P, on top of HTNPLAN-P. HT-

NWSC-P is able to handle service selection preferences and enforces hard constraints through

pruning. Through experimental evaluation, we show that our approach to WSC is viable and

promising. In particular, we show how our techniques can indeed provide a computational

basis for the development of effective, state-of-the-art techniques for generating customized

compositions of Web services.

Most of the related work has already been discussed in Chapter 2. Here, we review some

of the most relevant pieces.

Preference-based planning has been the subject of much interest, spurred on by three IPC-

2006 tracks on this subject. A number of planners were developed, all based on the com-

petition’s PDDL3 language [Gerevini and Long, 2005]. [Baier et al., 2007], [Hsu et al., 2006],

[Edelkamp, 2006] are but a few of the preference-based planning systems based on the compe-

tition’s PDDL3 language [Gerevini et al., 2009]. A few other planners, that explore the notion

of preferences, have emerged more recently (e.g., [Benton et al., 2009, Coles and Coles, 2011,

Benton et al., 2012]). The work described in this thesis is distinguished in that it employs

Golog/HTN domain control extending PDDL3 with HTN-inspired action-centric constructs.

With respect to advisable HTN planners, Myers was the first to advocate augmenting HTN

planning with hard constraints to capture advice on how to decompose HTNs, extending the

approach to conflicting advice in [Myers, 2000]. Their work is similar in vision and spirit to

our work, but different with respect to the realization. In their work, preferences are limited

to consistent combinations of HTN advice; they do not include the rich temporally extended

state-centric preferences found in PDDL3, nor do they support the weighted combination of

preferences into a metric function that defines plan quality. With respect to computing HTN

preference-based planning, Myers’ algorithm does not exploit lookahead heuristics or sound

pruning techniques.

CHAPTER 5. COMPUTING OPTIMIZED COMPOSITIONS 117

The most notable and closest work to ours that uses both HTNs and preferences developed

for IPC-2006 is [Lin et al., 2008]. Unfortunately, the SCUP prototype planner is not available

for experimental comparison. There are several differences among our works. In particular,

they translate user preferences into HTN constraints and preprocess the preferences to check

if additional tasks need to be added. They also have an interesting approach to the problem by

combining HTN planning with Description Logic (DL), and by using a DL reasoner. However,

their preferences are specified in PDDL3, while our preferences can be expressed in the PDDL3

extension that uses HTN-specific preference constructs. Moreover, they do not translate service

profiles; hence, they are unable to specify preferences over service selections. Additionally,

they do not consider handling regulations, a hallmark of our work. Further, their algorithm

cannot handle conflicting user preferences at run-time, and so conflicts need to be detected as

a pre-processing step.

Also related is the ASPEN planner [Rabideau et al., 2000], which performs a simple form

of preference-based planning, focused mainly on preferences over resources. It can plan with

HTN-like task decomposition, but its preference language is far less expressive than ours. In

contrast to our planners, ASPEN performs local search for a local optimum. It does not perform

well when preferences are interacting, nested, or not local to a specific activity.

It is important to note that the HTN planners SHOP2 [Nau et al., 2003] and EN-

QUIRER [Kuter et al., 2004] can be seen to handle some simple user preferences. In partic-

ular the order of methods and sorted preconditions in a domain description specifies a user

preference over which method is more preferred to decompose a task. Hence users may write

different versions of a domain description to specify simple preferences. However, unlike our

approach the user constraints are treated as hard constraints and (partial) plans that do not meet

these constraints will be pruned from the search space.

Finally, observe that we approached preference-based HTN planning by integrating

preference-based planning into HTN planning. An alternative approach would be to inte-

grate HTN into preference-based planning. [Kambhampati et al., 1998] hints at how this might

be done by integrating HTN into their plan repair planning paradigm. This might also be

done by compiling away the HTN through a reformulation of the planning problem (e.g.,

[Fritz et al., 2008]). For the integration of HTN into preference-based planning to be effec-

tive, heuristics would have to be developed that exploited the special compiled HTN structure.

Further, such a compilation would not so easily lend itself to mixed-initiative preference-based

planning, a topic for future investigation.

Chapter 6

WSC Problem with Customization:

Execution and Optimization

6.1 Introduction

In Chapter 5 we proposed an algorithm (Algorithm 5.6) based on planning with heuristic search

that employs a best-first, forward search strategy capable of computing an optimal composi-

tion. In this chapter, we consider how to exploit this algorithm in data-intensive settings where

the search space can be prohibitively large. Furthermore, in Chapters 3 and 5, we assumed for

the most part that relevant information is gathered offline, before composition is constructed.

In this chapter we focus on addressing the information-gathering problem with a view to pro-

ducing high-quality solutions.

Most of the previous work on WSC (and indeed much of the work on the WSC problem

with customization) has assumed that all the information required to generate the composition

is on hand at the outset, and as such, composition is done offline followed by subsequent

execution of the composition, perhaps in association with execution monitoring. However, this

is not realistic in many settings. Consider the task of travel planning or any other multi-step

purchasing process on the Web. A good part of the composition task for these domains involves

data gathering, followed by generation of an optimized composition with respect to that data

and other criteria.

Moreover, gathering all the information required for the composition prior to initiating

composition generation can result in a lot of unnecessary data access. Further, it results in

an enormous search space for a planner. Most state-of-the-art planners require actions to be

grounded. However, unlike typical planning applications, many WSC applications are data-

118

CHAPTER 6. EXECUTION AND OPTIMIZATION 119

intensive, which results in an enormous number of ground actions and a huge search space.

While this space may still be manageable for computing a composition, to compute an optimal

composition, and to guarantee optimality, the entire search space must be searched, at least

implicitly. This has the effect that most data-intensive WSC problems that involve optimiza-

tion of data (like picking preferred flights) will not scale using conventional preference-based

planning techniques.

Consider a flexible composition template that describes the Travel domain in terms of the

tasks of booking transportation and booking accommodations, with varying options for their

realization. We add to this the following preferences: If destination is more than 500 km away,

book a flight, otherwise I prefer to rent a car; I prefer to fly with a Star Alliance carrier; I prefer

to book cars with Avis, and if not Budget; I prefer to book a Hilton hotel, and if not a Sheraton.

A naive preference-based planning would access all the flight, car, hotel, etc. information prior

to composition and create grounded actions (e.g., book-car(Avis,Pria,Daily,$39,. . .)) for each

data instance, resulting in a huge set of actions. In order to guarantee optimality of a compo-

sition, one needs to guarantee that all compositions were considered, which would (naively)

involve considering all combinations of flight-hotel and/or car-hotel. However, there is clearly

a smarter way to do this. In particular, either flight information or car rental information (but

not both) need to be considered, depending on the distance to destination. Further, the choice

of airline is independent of the choice of hotel, so optimality can be guaranteed by optimizing

these choices independently. These simple, intuitive observations provide motivation for the

work presented in this chapter.

In this chapter, we investigate the class of WSC problems that endeavour to generate high-

quality compositions through optimization of service and data selection. We attempt to balance

the trade-off between offline composition and online information gathering with a view to

producing high-quality compositions. The need to actually execute services to gather data, as

well as the potential size and nature of the resultant optimization problem truly distinguishes

our WSC problem from previous work on preference-based planning. To this end we exploit

a notion of middle-ground execution with a view to producing high-quality compositions that

enables information gathering during generation of a WSC. Our objective is to minimize data

access and to make optimization as efficient as possible by exploiting the independence of

ground actions within the search space. Finally, we wish to ensure that our techniques will

maintain the guarantees a more naive approach would afford, including guarantees regarding

the soundness of our compositions and their optimality.

Our investigation is performed in the context of our existing preference-based HTN WSC

CHAPTER 6. EXECUTION AND OPTIMIZATION 120

system, HTNWSC-P (see Chapter 5). That is, we assume that the composition template is

specified in HTN and the preferences are specified in our modified version of PDDL3. Note,

in this chapter we assume that no hard constraints are given, or if given they are specified and

enforced as discussed in the previous chapters. Given the specification of preferences and the

composition template, in this chapter, we propose a means of analyzing a WSC problem in or-

der to identify places where optimization can be localized while preserving global optimality.

Further, building on previous work that addresses the problem of information gathering (e.g.,

[McIlraith and Son, 2002, Kuter et al., 2005]), we exploit a middle-ground execution system

with a view to producing high-quality compositions that executes information-gathering ser-

vices, as needed, while only simulating the execution of world-altering services. In doing so,

the HTN WSC system is able to benefit from the further knowledge afforded by information-

gathering while still supporting backtrack search, by not actually or not necessarily executing

world-altering services.

By exploiting the structure in the preference specification and domain we propose a notion

of what we call localized data optimization in which the optimization task can be decomposed

into smaller, local optimization problems, while preserving global optimality. This notion

comes from an observation that in many composition scenarios that involve preferences most

of the search time is spent on resolving the optimization that relates to the data (which flight,

which car, which hotel). We propose to further improve the search by performing optimization

of data choices locally, whenever possible, while still guaranteeing that the choice selected does

not eliminate the globally optimal solution. We also identify a condition where performing

localized data optimization is sound. We show that our approach to data optimization can

greatly improve both the quality of compositions and the speed with which they are generated.

6.1.1 Contributions

The following are the main contributions of this chapter.

• Identified a way to exploit structure in the preference specification and domain in order

to generate compositions more efficiently by performing what we call localized data

optimization

• Identified a condition where performing localized data optimization is sound

• Proposed a notion of middle-ground execution with a view to producing high-quality

compositions. To that end we developed an execution system for the WSC problem

CHAPTER 6. EXECUTION AND OPTIMIZATION 121

with customization that interleaves online information gathering with offline search as

deemed necessary

• Modified our HTNWSC-P to incorporate the proposed approach

• Identified a case where we could prove the optimality of resulting compositions

• Established the correctness of our approach

• Experimentally evaluated our approach

6.2 Decoupling Data Optimization From Search

Given the HTN domain description of a WSC problem, the initial task network, and speci-

fication of preferences expressed in our modified version of PDDL3 (see Chapter 4), we are

interested in generating a high-quality (ideally optimal) composition. Unfortunately, unlike the

task of generating a composition, its optimization requires considering all alternative composi-

tions, at least implicitly. And even in the case where the composition can be decomposed into

independent subproblems, the task of customization over the composition can introduce new

inter-dependencies.

In Chapter 5 we proposed an algorithm based on planning with heuristic search that em-

ploys a best-first, forward search strategy capable of computing an optimal composition. We

elaborate on the algorithm in Section 6.4. In this section, we consider how to exploit this

algorithm in data-intensive settings where the search space can be prohibitively large.

Data acquired via information gathering is typically encoded as parameters of the actions

that act on that data. E.g., the book-flight action would be parameterized by the data associ-

ated with a flight, such as airline, origin, destination, fare class, etc. State-of-the-art planning

algorithms require actions/operators to be grounded. As such, in data-intensive settings, there

can be an enormous number of ground actions and as a consequence an enormous search space

to explore. Consider a simplified version of the task of booking a flight, a hotel, a car, and

booking a tour for a vacation. Assume that these four tasks can be performed in any order

and are completely independent of each other. Given 20 possible flights, 10 hotels, 10 types

of car, 5 tours of the city, and 4! ways in which the booking of these items can be performed,

there are 20*10*10*5*4! different compositions that need to be explored (at least implicitly)

to determine an optimal composition. Using the algorithm proposed in the previous chapter

CHAPTER 6. EXECUTION AND OPTIMIZATION 122

(Algorithm 5.6), some of these combinations will be eliminated by our exploitation of state-

of-the-art heuristic search and sound pruning – a means of pruning partial plans that have no

prospect of producing a plan that is superior to the current best plan. Nevertheless, the algo-

rithm is still doing a lot of unnecessary search.

From our experience with WSC applications that involve preferences, we observe that most

of the search time is spent on resolving the optimization that relates to the data that we have

collected. We henceforth refer to this type of optimization as data optimization. We observe

that just as the subtasks afford a degree of independence in many WSC scenarios, so too do

the different data choices, and that this independence allows us to perform some optimization

locally, external to the composition process, or even arbitrarily (if they don’t matter) while still

guaranteeing that the choice does not eliminate the globally optimal solution. For example, in

our simplified scenario we can select the best car, best flight, best hotel, and best tour indepen-

dently of each other. And in doing so, we can reduce the search space to (20+10+10+5)*4!.

More generally, if we are able to identify that subset of the data that is relevant to the opti-

mization of the composition and attempt to localize its optimization then we can significantly

streamline our search.

In what follows, we elaborate on the exploitation of three scenarios: (1) a data choice

must be done in concert with the composition but choosing optimal data can be localized; (2)

a data choice can be optimized in isolation of the composition generation process (i.e., can

be done anytime); and (3) a data choice is irrelevant to the optimization of the composition

and can be made arbitrarily (i.e., any available data can be selected). We begin by defining

the notion of localized data optimization and identifying conditions under which it retains

the possibility of finding an optimal solution. Note, we assume that atomic processes are

either information gathering or world altering. Examples of information-gathering operators

are finding the available hotels or flights. These operators have only outputs. On the other hand

book-flight or book-hotel are world altering (have effects).

Definition 6.1 (Localized Data Optimization with respect to an Operator) LetP ′ be an in-

complete HTN planning problem with preferences (defined in Section 6.3). Let N be a search

node that represents a partial plan, and let O be the world-altering operator that is to be

applied next in our search – the operator that extends the partial plan currently under consid-

eration. Let N1...Nk be different nodes that result from different possible groundings of O from

node N . Localized data optimization for O selects node Ni, 1 ≤ i ≤ k if M(Ni) ≤ M(Nj),

∀1 ≤ j ≤ k, where M(N) is the PDDL3 metric value of search node N .

CHAPTER 6. EXECUTION AND OPTIMIZATION 123

Note, while in classical planning, the search generates different ground instances of actions

by looking at their preconditions, most HTN planning system (SHOP2 included) assume that

operators are already bound (i.e., grounded) before they are applied. Instead methods that

embody primitive tasks within their task networks, have parameters that get bound at run time

causing different grounding of an operator. Hence, nodes N1...Nk are nodes that result from

grounding the operator at the method level.

According to the above definition, the nodes with the least metric value (i.e., there could be

more than one node that have the least metric value) are selected when localized data optimiza-

tion for an operator is performed. The question is when is such a strategy sound, i.e., when

can we do such a local selection without eliminating the overall best solution? For example,

assume a best flight among all available flights is selected, but the selected flight arrives at night

preventing the planner from booking an activity for that day or the price of the selected flight is

too high and as a result there would not be enough money left in the budget to get the hotel that

the user really preferred. In such situations, even though the selected flight is the best flight

choice among all available flights in isolation (or locally), because of the interactions among

operators within and between tasks, this choice is not the best choice for the globally optimal

composition.

Definition 6.2 (Sound Localized Data Optimization with respect to an Operator) Let P ′,

N , O, N1...Nk be as in Definition 6.1, and let Ns be a set of nodes that are selected via

localized data optimization. Localized data optimization with respect to O is said to be sound

if there does not exist a plan extending any node Nj 6∈ Ns, 1 ≤ j ≤ k that would result in

a better metric value than any plan extending the node Ni ∈ Ns. Hence, if there exists an

optimal plan a from extending the partial plan in node N , a is not achievable from extending

any of the nodes Nj .

This definition has important implications. If localized data optimization is sound, then all

nodes Nj can be pruned from the search space because we know an optimal plan cannot be

reached by extending any of these nodes.

Now that we know the condition under which localized data optimization is sound, we need

to discuss how such an operator can be identified. Doing so involves analyzing the structure

of the planning problem to identify operators that are completely independent and have no

interactions with the rest of the planning problem including (1) the operators and methods in

the domain, (2) the preferences, and (3) the hard constraints, assuming for simplicity that there

are no indirect effects that we have to worry about. The following is a syntactic criterion that

CHAPTER 6. EXECUTION AND OPTIMIZATION 124

can be used to identify operators whose grounding choices will have no impact on the rest of

the decisions made during the generation of a composition.

Definition 6.3 (Non-interacting Operator with respect to the Domain)

An operator O is said to be non-interacting with respect to the domain if (1) no predicate in

the precondition of O or in the condition of the conditional effect statement of O appears in

the effect of any other operator in the domain, and (2) there is no predicate in the effect of O

that appears in the precondition (or in the condition of the conditional effect statement) of any

other operators or methods1 of the planning problem.

Intuitively this definition says that nothing affects the execution or outcome of this operator.

Returning to our example, if the flight booking operator changes anything that is a precondition

of another operator, then the flight booking operator interacts with that operator. E.g., if the

flight booking operator has the effect of depleting available monetary funds, precluding the

booking of a particular hotel, or if it results in arrival at a time that impacts the booking of a

tour, then it is considered to interact with other aspects of the planning problem.

The above condition can be easily checked as a preprocessing step by analyzing the domain

definition. However, syntactically identifying how preferences play a role in data interactions

is more difficult, particularly when trajectory preferences – preferences expressed in a subset of

LTL – are involved. One way to identify interacting operators with respect to the preferences,

is to determine whether the operator’s add effects – the positive effects of an operator – appear

in any preference formulae. More specifically to enforce non-interaction, we need to ensure

that the add effects of the operator never appear in the “b part” of preference formulae, where

the “b part” is as follows: (sometime-after b a) (always (imply b a)) or (sometime (imply b a)).

This is because the “b part” is the condition that if true requires the preference formula to be

true, and in particular, necessitates the “a part” holding. Thus, if the “b part” refers to an add

effect of a world-altering operator for which localized data optimization is performed, and the

“a part” is hard or impossible to achieve then the choice made in the data optimization interacts

with a choice that has to be made later.

To illustrate the problem, consider a user preference that prefers booking a flight with Air

Canada after a 4-star hotel is booked. So the “b part” is booking a 4-star hotel. Now assume

we miss this source of interaction and localized data optimization for the book-hotel operator

is performed and a 4-star hotel is selected. But then the user did not realize that their origin

1Precondition for a method can be specified as a before constraint

CHAPTER 6. EXECUTION AND OPTIMIZATION 125

or destination is not a Canadian city and Air Canada only flies between two cities if one is in

Canada. Hence, because a 4-star hotel is selected we need to satisfy the preference formula

which is now unsatisfiable.

Definition 6.4 (Criterion for Sound Localized Data Optimization) Given that the operator

O is non-interacting with respect to the planning domain, the non-interaction with respect

to preferences and hard constraints should be defined in such a way that ensures performing

sound localized data optimization on this operator as defined in Definition 6.2.

Determining if an operator is non-interacting with respect to the preferences or hard con-

straints is beyond the scope of this thesis and is left for future work.

To this point we have defined the notion of localized data optimization and identified some

syntactic criteria that will ensure its soundness. Before concluding, we informally discuss two

further cases. We observe that in some instances the optimization of data can be completely

separated or decoupled from the dynamics of the composition problem and an optimal data

choice can be determined as a separate process. For example, if a user’s sole preference is to

book the cheapest car, then the identification of what car to book can be performed in isolation

of the generation of the composition altogether. Further, some data choices have no effect at

all on the quality of the composition and as such can be made arbitrarily. For example, if the

user does not care what car they rent, then the choice of rental car can be made arbitrarily. In

both of these cases, the search space can exclude consideration of the different data values by

insertion of a single placeholder value. Execution of the information-gathering service can be

delayed until after composition, and the placeholder resolved at that time.

Consider a simple case where the user prefers to book their car from two different rental

companies possibly to collect more reward points or keep both their reward programs active.

We know that a car can be booked for two purposes: for local transportation and for city-to-city

transportation. So if booking a car operator is executed for the second time, it is more preferred

that the car be rented from some other rental car agencies. So in this case, data optimization

for booking a car operator depends on the current state of the planning problem. However, if

every time localized data optimization is performed for an operator, the same node is selected

regardless of the planning state (i.e., whether any of the preferences are satisfied or not), then

the data optimization for this operator can be completely decoupled from the composition

process. In addition, if no preference formula ever mentions the add effects of the operator, and

the operator is non-interacting with respect to the domain and preferences, then the selection of

the data grounding does not have any effect on the search for an optimal plan. Hence, execution

CHAPTER 6. EXECUTION AND OPTIMIZATION 126

of the information-gathering services that gathers the relevant information can be delayed to

an intermediate step before the execution of the world-altering actions such that the predefined

values selected earlier will get their real values by executing the information-gathering services

and performing the localized data optimization on them if necessary.

6.3 Middle-Ground Execution

For many WSC problems it is impractical, and often impossible to reduce the WSC problem to

a planning problem with complete initial state – i.e., for which all the information necessary to

generate a composition (and in our case to optimize it) is known prior to commencement of the

search for a composition. In the Travel domain this would necessitate collecting data relating

to all the different modes of transportation, means of accommodation, etc. The space of ground

actions would be enormous and the planning and optimization task unsolvable. However, one

can instead imagine gathering information as it becomes necessary to choice points in the

generation and optimization of the composition, and using this to inform the search for different

compositions. In this section, we investigate how to perform information gathering in this

manner.

The problem of gathering information during composition has been examined in several re-

search papers (e.g., [McIlraith and Son, 2002, Petrick and Bacchus, 2002, Sirin et al., 2005b,

Kuter et al., 2004]). McIlraith and Son in [McIlraith and Son, 2002] proposed a so-called

middle-ground interpreter that collects relevant information, but only simulates the effects of

world-altering actions. Their interpreter works under the Invocation and Reasonable Persis-

tence (IRP) Assumption that (1) assumes all information-gathering actions can be executed

by the middle-ground interpreter and (2) assumes that the gathered information persists for

a reasonable period of time, and none of the actions in the composition cause this assump-

tion to be violated. Even though these assumptions may not hold for time-sensitive data (e.g.,

stock quotes) or some context-dependent data (e.g., mobile services) these assumptions are

true for a large class of information available on the Web, in particular for the type of in-

formation that interests us here (e.g., flight schedules, available hotels, tours, etc). Kuter et

al. in [Kuter et al., 2004] take a similar approach, but their work focuses on dealing with ser-

vices that do not return a result (if any) immediately. They provide a Query Manager that

allows their planner ENQUIRER to continue search without waiting for all of the information-

gathering services to return data. They also assume that the information-gathering services are

executable (similar to condition 1 of IRP), but they allow the planner itself to change or update

CHAPTER 6. EXECUTION AND OPTIMIZATION 127

Translate-Atomic-Process-Output(Q)

Input: an OWL-S definition Q of an atomic process A with only outputs.

Output: HTN methods M1, M2, and M3, and HTN operators O1, O2, and O3

Procedure:

(1) let v = the list of input parameters defined for A as in Q

(2) let Pre = conjunct of all preconditions of A and assign(y, callService(A(v))),

where callService is an external procedure that will handle the call to Web services.

(3) let Eff1 = [y ∧ called(A(v)) ∧ cached(y,A(v))] // cache y for A(v)

(4) let Eff3 represent the place holder value for this call.

(5) let Pre1 = [¬ called(A(v)) ∧ canNotDelay(A(v))] // first time calling A(v)

(6) let Pre2 = [called(A(v)) ∧ canNotDelay(A(v))]

(7) let Pre3 = ¬ canNotDelay(A(v))

(8) let O1 = (A1(v), Pre, Eff1), and let M1 = (A1(v), A(v), n1, before(n1,Pre1)),

where A1 is a new unique name and n1 is the task node for A1(v) // Case 1

(9) let O2 = (A2(v), ∅, ∅), and let M2 = (A2(v), A(v), n2, before(n2,Pre2)),

where A2 is a new unique name and n2 is the task node for A2(v) // Case 2

(10) let O3 = (A3(v), ∅, Eff3), and let M3 = (A3(v), A(v), n3, before(n3,Pre3)),

where A3 is a new unique name and n3 is the task node for A3(v) // Case 3

(11) Return O1, O2, O3, and M1, M2, M3

Figure 6.1: Sketch of the translation of the information-gathering atomic process.

the gathered information during planning (a variant of condition 2 of IRP). More recently, Au

et al. [Au and Nau, 2007] proposed an approach to relaxing the IRP assumption, however their

approach does not seem amenable to generating optimized compositions.

Similar to McIlraith and Son [McIlraith and Son, 2002], we propose a middle-ground ex-

ecution system, where the relevant information is gathered online via calling information-

gathering services (e.g., through a call to external procedures within a HTN planner) while

only simulating the effects of world-altering services allowing the planner to backtrack. Our

middle-ground execution system is implemented by modifying the translation from OWL-S

Web service descriptions [Martin et al., 2007] to HTNs. Our translation builds on the work

by Sirin et al. [Sirin et al., 2005b] and our previous work (see Section 3.4.1). We encode

each OWL-S atomic process as an HTN operator and each OWL-S composite process as an

HTN method. Similarly, we assume that all atomic processes are either information gathering

or world altering and distinguish our set of planning operators accordingly. While it may be

CHAPTER 6. EXECUTION AND OPTIMIZATION 128

hard to separate the two in some cases, this assumption holds true for a large class of atomic

processes that interests us.

The fidelity of our translation relies on the IRP Assumption [McIlraith and Son, 2002],

i.e., none of the actions in the HTN or any exogenous action can violate the assumption. To

improve the efficiency of the system by avoiding multiple calls to the same service with the

same parameters, we implement a caching system similar to [Sirin et al., 2005b]. However in-

stead of using a monitoring system we modify the translation of information-gathering atomic

processes into HTN operators (this operator has preconditions that externally call information-

gathering services and add the return response) to explicitly encode the caching for the gathered

information. We consider the following 3 cases in our translation:

1. The execution system is calling the information-gathering service for the first time and

cannot delay this call.

=⇒ Call the information-gathering service and cache the gathered information.

2. The execution system have already called the information-gathering service once and

cannot delay this call.

=⇒ Use the cached information. No need to call the information-gathering service

again.

3. The execution system can delay the call to the information-gathering service.

=⇒ Use a placeholder data value.

Our translation relies on the use of a SHOP2-based HTN planner; it exploits SHOP2’s

features to perform run-time binding of variables and to make external procedure calls to invoke

services.

In Section 6.2, we discussed circumstances where data optimization can be performed in

isolation of the generation of the composition. This can occur when the data is irrelevant to the

optimization of the composition. i.e., it is not mentioned in any preferences, or when the data

choice does not interact with the dynamics of the composition. For example, consider the book-

hotel service and the information-gathering service that gathers information regarding available

hotels. If the user has no preference regarding the choice of hotel, then it is efficient to delay the

execution of this information-gathering service and the arbitrary selection of a hotel until after

the composition is generated. To implement this, we identify these data and associated services

a prior and through our modified translation replace occurrences of the data with placeholders.

CHAPTER 6. EXECUTION AND OPTIMIZATION 129

The information-gathering service is then executed following composition generation (in a

postprocessing step) and the placeholder is replaced with an appropriate choice.

Figure 6.1 shows the sketch of the translation of the information-gathering atomic pro-

cess. Note, we use the SHOP2 function assign in the precondition term which will bind a

variable at run time. Furthermore, we use SHOP2’s ability to call external procedures (de-

noted by callService) which invoke a call to a specific Web service. Also note, we modify the

domain with three new fluents: called(A), canNotDelay(A), and cached(A), where A is an

information-gathering service. The values for called(A) and cached(A) are set to be false at

the initial state, while the truth value for the fluent canNotDelay(A) is decided in the prepro-

cessing step by checking if sound localized data optimization for the operator that needs the

output of A can be performed in isolation of the generation of the composition.

The translation takes as input the information-gathering atomic process and outputs three

methods and three operators representing the three cases we considered. Note, the information-

gathering atomic processes call information-gathering services externally to collect informa-

tion. Case 1 is handled by method M1 and operator O1. M1’s precondition (expressed via

the before constraint) ensures that it is the first time the information-gathering service is called

and this call cannot be delayed (i.e., optimization cannot be done in isolation). Operator O1

will make the call to the information-gathering service and cache the results. Method M2 will

ensure that the call to the information-gathering service has already been made and hence the

already cached information can be used. Finally, M3 is called when we can delay the call to the

information-gathering service. Hence, this call is delayed while a place holder value is used

instead.

Similar to Kuter et al. [Kuter et al., 2004], let X be a set of information sources. Infor-

mation source is any external source that can provide information during planning. Then we

represent the amount of information that can be obtained from sources as δ(X). Note that we

operate under the IRP assumption, and more specifically, we assume that the results returned

from these sources will not change during planning even though we may not know δ(X) a

priori. Also we assume that we can define an information-gathering OWL-S atomic process

and in turn an OWL-S service from the specification of an information source.

Definition 6.5 Complete HTN planning problem with preferences PC is identical to an HTN

planning with preferences (Definition 3.6). That is PC = (s0, w0, D,�) where s0 is the com-

plete initial state, w0 is the initial task network, D is the HTN planning domain which consists

of a set of operators and methods, and� is a preorder between plans. A plan a is a solution to

CHAPTER 6. EXECUTION AND OPTIMIZATION 130

PC if and only if a is a plan for (s0, w0, D) and there does not exists a plan a′ for (s0, w0, D)

such that a′ ≺ a.

Definition 6.6 An incomplete HTN planning problem with preferences PI is a 5-tuple

(sI0, w0, D
I ,�, X) where sI0 is what is known of the initial state (i.e., it is incomplete), w0

and � are defined as in Definition 6.5, DI is the HTN planning domain which consists of a set

of operators and methods some of which can externally call sources, X is a set of available

information sources during planning. The total information available about the initial state is

defined by sI0 ∪ δ(X).

From Definitions 3.5 (Definition of a plan for HTN planning problem) and Definition 6.6, a

plan for the incomplete HTN Planning problem with preferences is a primitive decomposition

of the task network w0. To find such a decomposition, some information sources, as dictated

by the methods and operators of the domain, have to be called externally to collect the relevant

information needed to successfully decompose w0.

Definition 6.7 (Consistency) An incomplete HTN planning problem with preferences PI =

(sI0, w0, D
I ,�, X) is consistent with a complete HTN planning problem with preferences PC =

(s0, w0, D,�) if an only if sI0 ∪ δ(X) ⊆ s0.

Next, we define an incomplete OWL-S WSC problem with preferences.

Definition 6.8 Incomplete OWL-S WSC problem with preferences PIW is a 5-tuple

(sI0, C,K, φsoft, Y), where sI0 is what is known of the initial state (it may be incomplete), K is

a collection of OWL-S process models that includes both atomic processes that produce out-

put (or are information gathering) and atomic processes that produce effects (or are world

altering), C is a possibly composite OWL-S process defined in K, and φsoft is a set of user

preferences 2, and Y is a set of information-gathering services available during planning. A

composition π is a solution for PIW if and only if it is a solution for (sI0, C,K, Y) (i.e., se-

quence of atomic OWL-S processes such that, when executed at the initial state, achieve C)

and there does not exists a plan π′ for (sI0, C,K, Y) such that π′ is more preferred than π.

Note, the above definition of the OWL-S WSC problem is similar to the one given in

Chapter 3. However, in this chapter, we have incomplete initial state.

2In this chapter we consider preferences specified in PDDL3.

CHAPTER 6. EXECUTION AND OPTIMIZATION 131

Definition 6.9 (Equivalency) Assuming the IRP assumption holds, an incomplete OWL-S

WSC problem with preferences PIW = (sI0, C,K, φsoft, Y) is equivalent to an incomplete

HTN planning problem with preferences PI = (sI0, w0, D
I ,�, X), where

• w0 is generated by our modified OWL-S to HTN translation for the OWL-S process C,

•DI is the HTN domain description generated by running our modified OWL-S to HTN trans-

lation for the collection of OWL-S process models K,

• � is a preorder between plans as dictated by φsoft, and

•X is the set of information sources that produce the same information as the services Y , that

is δ(X) = δ(Y).

To further elaborate, we represent the body of information that can be obtained from the

information-gathering services Y as δ(Y). More specifically, δ(Y) represents all possible bind-

ings of the predicates that appear in the output or the postcondition of the OWL-S

descriptions of the atomic processes specified in K. In order for the two problems to be equiv-

alent, we ensure that we have δ(X) = δ(Y). That is both X and Y produce exactly the same

set of information.

The following theorem establishes correctness of our approach. Note, we assume that the

postprocessing step is performed on the generated plan. That is the call to those information-

gathering services that have been delayed are made and the placeholder is replaced with an

appropriate choice.

Theorem 6.1 Assuming the IRP assumption holds, let PIW = (sI0, C,K, φsoft, Y) be an in-

complete OWL-S WSC problem with preferences, and letPI = (sI0, w0, D
I ,�, X) be an incom-

plete HTN planning problem with preferences that is equivalent to PIW . A plan a = o1...ok is

a solution to PI if and only if π = p1...pk is a solution to (a composition for) PIW such that

oi, 1 ≤ i ≤ k are the primitive operators that correspond to the atomic process pi.

Proof: The proof is in Appendix A.

Note that the theorem establishes a relationship or a one-to-one mapping between the prim-

itive operators that are part of a plan, some of which could be information gathering, and

atomic processes that are part of the composition, some of which could be information gath-

ering. Given this theorem, we can generate a solution for PIW through HTN planning with

preferences as we will see in the next section.

CHAPTER 6. EXECUTION AND OPTIMIZATION 132

1: function HTNWSCLOCAL(sI0, w0, DI , METRICFN,HEURISTICFN)

2: frontier ← 〈s′0, w
′
0, ∅〉 ⊲ initialize frontier

3: bestMetric ← worst case upper bound

4: while frontier is not empty do

5: current ← Extract best element from frontier

6: 〈s, w, partialP 〉 ← current

7: lbound ← METRICBOUNDFN(s)
8: if lbound < bestMetric then ⊲ pruning by bounding

9: if w = ∅ and current’s metric < bestMetric then

10: Output plan partialP

11: bestMetric ← METRICFN(s)

12: succ← successors of current

13: if possible to perform sound localized data optimization then

14: succ← the best nodes among successors of current ⊲ pruning other nodes

15: frontier ← merge succ into frontier

Figure 6.2: A sketch of our HTN WSC algorithm with sound localized optimization.

6.4 Computing a Preferred Composition

We update the algorithm discussed in Section 5.4 in order to deal with incomplete information

and perform middle-ground execution and sound localized data optimization on some already

identified non-interacting operators. The updated algorithm takes as input an incomplete HTN

planning problem with preferences PI = (sI0, w0, D
I ,�, X) as defined in Definition 6.6. Our

algorithm just as before performs best-first, incremental search and uses state-of-the-art heuris-

tics proposed in the previous chapter [Sohrabi et al., 2009]. The updated algorithm is outlined

in Figure 6.2.

If computing a successor to current generates many different groundings of a primitive

task, causing different groundings of an operator whose localized data optimization is known

to be sound, then then data optimization on this node will select the best successors according

to METRICFN and replace succ with the selected nodes (line 13 and 14). The resulting succ

is then merged into the frontier . Note that succ will have only the nodes chosen based on the

localized data optimization, that is all other nodes will get pruned from the search space. The

search terminates when frontier is empty.

6.4.1 Properties of the Algorithm

The search space for computing the preferred composition is significantly reduced by the HTN

representation of the composition template, by pruning performed from incremental search,

CHAPTER 6. EXECUTION AND OPTIMIZATION 133

and by the localized data optimization (line 13 and 14). So, under sound pruning we can

guarantee that by exhausting the search space, an optimal plan can be found. We use the

OM function to estimate the lower bound. Baier et al. [Baier et al., 2009] show that the OM

function provides sound pruning under certain conditions (see Proposition 5.1).

Theorem 6.2 If the OM function used to calculate the lower bound provides sound pruning,

and any localized data optimization performed is sound, then the last plan returned, if any from

the algorithm, is optimal.

Proof: The proof is similar to the proof for HTNPLAN-P Theorem 5.4 using Definition 6.3

and Definition 6.4. We know each planning episode returns a better plan. We also know that the

algorithm stops only when the final planning episode has rejected all possible plans. Moreover,

because of sound pruning, the algorithm never prunes states incorrectly from the search space.

Therefore, no better plan than the last returned plan exists.

Corollary 6.1 Assuming the IRP assumption holds, let PIW = (sI0, C,K, φsoft, Y) be an in-

complete OWL-S WSC problem with preferences, and let PI = (sI0, w0, D
I ,�, X) be an in-

complete HTN planning problem with preferences that is equivalent to PIW . If a = o1...ok

is the last returned plan by the algorithm, then π = p1...pk is a solution to PIW such that oi,

1 ≤ i ≤ k are the primitive operators that correspond to the atomic process pi.

Proof: We know the input to the algorithm is the incomplete HTN planning problem with

preferences PI . Since a is the last plan, by Theorem 6.2 a is optimal, hence a = o1...ok is

a solution to PI . Then by Theorem 6.1 π = p1...pk is a solution to (a composition for) PIW

such that oi are the primitive operators that correspond to the atomic process pi.

6.5 Implementation and Evaluation

We implemented our WSC system with two modules: a preprocessor and a preference-based

HTN planner. The preprocessor reads PDDL3 problems and generates an HTN planning prob-

lem. Additionally, it finds non-interacting operators, making it possible to perform sound lo-

calized data optimization on this selection. Our implementation builds on HTNWSC-P (dis-

cussed in Chapter 5), itself a modification of the LISP version of SHOP2 [Nau et al., 2003],

that implements the algorithm and heuristics described above. We have three main objectives

CHAPTER 6. EXECUTION AND OPTIMIZATION 134

in our experimental evaluation: (1) to measure the search time gain as well as the quality im-

provement by performing localized data optimization, (2) to see if performing localized data

optimization helps in finding an optimal plan, (3) to investigate if the improvement (both time

and quality) depends on other dimensions of search such as the heuristics used or the difficulty

of the domain.

We use the Travel domain as our benchmark. Note that there are no standard benchmark

that we were aware of that could exercise the kinds of behaviour that we were looking for

in order to evaluate our approach (i.e., they are either not data-intensive or assume they have

complete information about the initial state). Therefore, we created our own 8 problem sets

each with 6 different instances (we have 48 instances in total). In half of the problem sets we

allowed interleaving of tasks and in the other half we did not. An example of interleaving is

one that allows booking an accommodation when a transportation is booked, but not paid for

(i.e., the transportation task is not done yet). Furthermore, the problem sets within the allowed

(or not allowed) interleaving group differ in the difficulty of their top-level task. In the easiest

case, the order of the execution of all tasks in arrange-travel (e.g., arrange-trans, arrange-acc,

and arrange-activity) was known, and in the hardest case, these tasks could be carried out in

any order. As explained earlier, if there are n tasks and they can be carried out in any order,

then in the worst case there are n! different combinations to evaluate in order to find an optimal

composition. Finally in each problem set we know the number of non-interacting operators, but

intentionally select the percentage of the one identified from this range [0, 20, 40, 60, 80, 100].

So in the 0% case none of the non-interacting operators are identified, hence, no localized data

optimization can be performed, on the other hand in the 100% case all of the non-interacting

operators are known, and localized data optimization is performed whenever possible. We used

a 60 minute time out and a limit of 1 GB per process.

We ran all of the instances in two modes, one that makes use of the LA heuristic and one

that does not. To compare the relative performance between the two modes, we averaged the

percent metric difference of the final plan (relative to the worst plan) for all our 48 instances.

This difference is 43% indicating that not surprisingly, using the LA heuristic greatly improves

the quality of search. In particular, without the use of the LA heuristic, an optimal plan was not

found in any of the instances. However, when the LA heuristic was used, many instances found

an optimal plan. In particular, in four of the problem sets (we named them cases 1-4 in Figure

7.3), an optimal plan was found even without any localized data optimization The result shows

(see Figure 7.3) that as the percentage of identified non-interacting operators increases (i.e.,

more localized data optimization is done), the time it took to find an optimal plan decreases.

CHAPTER 6. EXECUTION AND OPTIMIZATION 135

% of Identified Case 1 Case 2 Case 3 Case 4 Average Average

Non-Interactions Time(sec) Time(sec) Time(sec) Time(sec) STI PMI

0% 128 131 136 277 1.00 50.89%

20% 80 80 88 221 1.51 50.89%

40% 41 39 50 178 2.69 50.89%

60% 29 29 40 119 3.66 50.89%

80% 23 23 33 89 4.62 50.89%

100% 17 18 30 30 7.14 44.91%

Figure 6.3: Time comparison between the four cases that found an optimal plan even without

localized data optimization. STI is the search time improvement between each case and the no

data optimization case (i.e., 0% case). PMI is the percent metric improvement. i.e., the percent

difference between the metric of the first and the last plan returned relative to the first plan.

We averaged this improvement and show it in the STI column (search time improvement with

respect to the 0% case). This column shows that optimal plans are found for example, 2.69

times faster than the 0% case in the 40% case, and 7.14 times faster in the 100% case. Also

recall that our algorithm is incremental, performing search in a series, each one returning a

better-quality plan than the last. To see how effective this approach is, we calculated the percent

metric improvement (PMI), i.e., the percent difference between the metric of the first and the

last plan returned relative to the first plan. The result shows that the incremental approach

improves the quality of the plan almost by 50%.

Finally, we looked at the other four cases where without localized data optimization an

optimal plan was not found. Out of these, in two, an optimal plan was found in the 100%

case and this was found 3.5 times faster than the time it took to find a non-optimal plan in the

0% case. This suggests that doing localized data optimization for these harder problem sets

is helpful. In the remaining two cases, an optimal plan was not found even with optimization.

This is not surprising, since the search space in these sets is very large, and pruning even though

helpful, is not able to exhaust the search space; in these cases interleaving was allowed and the

top level tasks were unordered. However, we observed that with optimization, the quality of

the final plan was improved by 10%, and the time spent on finding this better quality plan was

5 times faster.

6.6 Summary and Discussion

A significant number of WSC problems involve both optimization of the composition and the

collection of information. Work on WSC problem with customization has begun to address this

CHAPTER 6. EXECUTION AND OPTIMIZATION 136

problem but much of the work has ignored the important information-gathering component, as-

suming that all information is given a priori. In this thesis, we are motivated by the observation

that even though some classes of WSC problems can be addressed without the need for any

execution during the composition phase, without explicit consideration of the data, and with-

out consideration of preferences that distinguish high-quality solutions, many interesting and

useful compositions must be done hand in hand with the data collection and optimization.

Specifically this is done following execution of some information-gathering services.

The main contributions of this chapter include: identification of a way to exploit structure

in the preference specification and domain in order to generate compositions more efficiently

by performing what we call localized data optimization, identification of a condition where

performing localized data optimization is sound, development of an execution system for the

WSC problem with customization that interleaves online information gathering with offline

search as deemed necessary, and identification of a case where we could prove the optimality

of resulting compositions. To assess the effectiveness of our approach to the WSC problem,

we performed experiments to evaluate the performance of our system. We showed that our

approach to data optimization has the potential to greatly improve the quality of compositions

and the speed with which they are generated. While the focus of this chapter was reasonably

narrow, the problem it presents and the advances it makes are important first steps in addressing

a broad and important problem.

While most of the related work has already been discussed, the works by Thakkar et.al.

and Knoblock [Thakkar et al., 2005, Knoblock, 1995] are of notable mention here with respect

to information gathering. In contrast, their focus is not on quality but rather on improving the

efficiency of the execution by reducing the number of information gathering calls. In particular,

they plan and optimize for information gathering by generating optimized query plans and use

a data integration technique called the tuple-level filtering to insert sensing operations in the

integration plan to optimize the execution of the compose Web services.

Also notable is the body of research on quality-driven WSC that was overviewed in Chapter

2 (e.g., [Lécué, 2009, Zeng et al., 2003, Alrifai and Risse, 2009]). Our work differs in many

ways. In particular, in our framework we are able to find a composition that is optimal with

respect to the user’s preferences some of which are over the entire composition, and we can

do so while interleaving execution and search. Further, we are concerned with optimizing the

selection of data within the services in addition to the selection of services themselves based

on their quality.

Chapter 7

Beyond Web Services

7.1 Introduction

In previous chapters, we discussed how to address the WSC problem with customization by

exploiting and advancing state-of-the-art techniques for planning with preferences. To that end,

we defined a correspondence between generating a customized composition of Web services

and non-classical planning. We then proposed algorithms and systems that computed high-

quality compositions. While the techniques we developed are motivated by the WSC problem,

in this chapter we explore the possibility of applying our techniques to analogous problems.

Hence, in this chapter, we discuss how we can use and adapt our framework to address two

applications: requirements engineering and stream processing.

We first discuss the requirements engineering application briefly. This is the result of our

collaboration with the software engineering group at the University of Toronto. Requirements

engineering (RE) is a field in software engineering that includes the investigation of the goal

modeling frameworks. While many of the stakeholders’ goals are mandatory, traditional frame-

works cannot address optional requirements, goals that are not mandatory but desirable. In

[Liaskos et al., 2010, Liaskos et al., 2011], we extend these traditional frameworks to support

the representation of optional goals (aka preferences). In addition, we also translated the goal

models and the preference specifications into an HTN planning problem with preferences,

where preferences were specified in PDDL3. This enabled the use of our preference-based

HTN planner, HTNPLAN-P (see Chapter 5) to search for alternative plans that best meet the

given preferences. The result showed that HTNPLAN-P can greatly benefit the proposed goal

modeling framework where there is a need for better understanding the impact of stakeholders

optional (or soft) goals as well as their hard goals.

137

CHAPTER 7. BEYOND WEB SERVICES 138

From this point on, in this chapter, we will focus on the research that was conducted in

collaboration with IBM T.J. Watson Research Center. In this work, we address the problem

of automated composition of flow-based components in the context of the stream processing

application.

A class of problems in automated software composition focuses on composition of informa-

tion flows from reusable software components. An information flow is obtained from sources,

processed by software components in order to transform the raw data into useful information,

and is finally visualized in different ways. This flow-based model of composition is applicable

in a number of application areas, including WSC and stream processing. In a stream process-

ing application, large volume of input data, from telecommunications, finance, health care, and

other industries, are integrated, aggregated, processed, and analyzed on the fly, or immedi-

ately as relevant information arrives from sources. There are a number of tools such as Yahoo

Pipes1 and IBM Mashup Center2 that support the modeling of the data flow across multiple

components. Although these visual tools are fairly popular, their use becomes increasingly dif-

ficult as the number of available components increases, even more so, when there are complex

dependencies between components, or other kinds of constraints in the composition.

While automated AI planning is a popular approach to automate the composition of com-

ponents, Riabov and Liu have shown that the PDDL-based planning approach may neither be

feasible nor scalable when it comes to addressing real large-scale stream processing systems

or other flow-based applications (e.g., [Riabov and Liu, 2006]). The primary reason is that

while the problem of composing flow-based applications can be expressed in PDDL, in prac-

tice the PDDL-based encoding of certain features poses significant limitations to the scalability

of planning [Riabov and Liu, 2005, Riabov and Liu, 2006].

Recent advances, including the work and techniques discussed in this thesis, have proven

that the automated composition problem can take advantage of expert knowledge restricting

the ways in which different reusable components can be composed. This knowledge can be

represented using an extensible composition template or a composition pattern and can be

further customized to meet the soft and hard constraints.

As discussed in this thesis, there are a number of different ways a composition template can

be specified (e.g., HTNs or Golog (see Chapter 2)). Another way to represent a composition

template is to use a language called Cascade [Ranganathan et al., 2009]. HTNs and Cascade

resemble each other in many ways, and we study the relationship between the two in this chap-

1pipes.yahoo.com
2www-01.ibm.com/software/info/mashup-center

pipes.yahoo.com
www-01.ibm.com/software/info/mashup-center

CHAPTER 7. BEYOND WEB SERVICES 139

ter. The Cascade language is used in a specialized planner MARIO [Ranganathan et al., 2009],

to allow domain experts to explore the space of possible flows and help them construct and

deploy applications. For software engineers, who are usually responsible for encoding com-

position patterns, doing so in Cascade is easier and more intuitive than in PDDL or in other

planning specification languages. The MARIO planner achieves fast composition times due to

optimizations specific to Cascade, taking advantage of the structure of flow-based composition

problems, while limiting expressivity of domain descriptions.

In this chapter, we propose an HTN Planning approach to address the problem of auto-

mated composition of flow-based applications. To this end, we propose a novel technique for

creating an HTN-based planning problem with preferences from the Cascade representation of

the patterns, together with a set of user-specified Cascade goals. The resulting technique en-

ables us to explore the advantages of using domain-independent planning and HTN planning

including robustness and expressivity, and address optimization and customization of com-

position with respect to constraints. We use the preference-based HTN system HTNPLAN-

P [Sohrabi et al., 2009] (see Chapter 5) for implementation and evaluation of our approach.

Moreover, we develop a new lookahead heuristic by drawing inspiration from ideas proposed

by Marthi et al. in [Marthi et al., 2007]. We also propose an algorithm to derive indexes re-

quired by our proposed heuristic. Our proposed heuristic helps the modified version of our

HTN planner achieve fast planning response comparable to that of the specialized planner

MARIO. We have performed extensive experimentation in the context of the stream process-

ing application. Our evaluation showed the applicability of the proposed approach and great

promise for the proposed approach.

7.1.1 Contributions

The following are the main contributions of this chapter.

• Proposed the use of HTN planning with preferences to address modeling, computing,

and optimizing composition flows in the stream processing applications

• Developed a method to automatically translate Cascade flow patterns into HTN domain

description and Cascade goals into preferences, and to that end we addressed several

unique challenges that hinder planner performance in flow-based applications

• Developed an enhanced lookahead heuristic and showing that it improves the perfor-

mance of our HTN planner by 65% on average for the problems we used. We also

CHAPTER 7. BEYOND WEB SERVICES 140

developed an algorithm to derive indexes required by the proposed heuristic from HTN

planning domains, as well as Cascade problems

• Performed extensive experimentation with real-world patterns using IBM InfoSphere

Streams www-01.ibm.com/software/data/infosphere/streams.

7.2 Preliminaries

7.2.1 Specifying Patterns in Cascade

The Cascade language has been proposed by Ranganathan et al in 2009

[Ranganathan et al., 2009] for describing data flow patterns. A Cascade flow is as a di-

rected acyclic graph that describes the flow of information between components. That is,

it describes how the data is obtained from one or more sources, processed by one or more

components, and finally visualized in different ways. A Cascade flow pattern describes a set of

flows by specifying different possible structures of flow graphs, and possible components that

can be part of the graph. Components in Cascade can have zero or more input ports and one or

more output ports. A component can be either primitive or composite. A primitive component

embeds a code fragment from a flow-based language (e.g., SPADE [Gedik et al., 2008]).

These code fragments are used to convert a flow into a program/script that can be deployed

on a flow-based information processing platform. A composite component internally defines

a flow of other components. Cascade flows are defined by specifying connections between

components, which must connect each input port of each component to an output port of

another, or to an external input of the composite.

Figure 7.1 shows an example of a flow pattern of a stream processing application from

financial domain. This application helps financial experts decide whether a current price of a

stock is a bargain. The main composite is called StockBargainIndexComputation. Source data

can be obtained from either TAQTCP or TAQFile. This data can be filtered by either a set of

tickers, by an industry, or neither as the filter components is optional (indicated by the “?”).

The Volume-Weighted Average Price (VWAP) and the Bargain Index (BI) calculations can

be performed by a variety of concrete components (which inherit from abstract components

CalculateVWAP and CalculateBargainIndex respectively). The final results can be visualized

using a table, a time- or a stream-plot. Note, the composite includes a sub-composite BICom-

putationCore.

www-01.ibm.com/software/data/infosphere/streams

CHAPTER 7. BEYOND WEB SERVICES 141

A single flow pattern defines a number of actual flows. As an example, let us assume there

are 5 different descendants for each of the abstract components. Then, the number of possible

flows defined by StockBargainIndexComputation is 2× 3× 5× 5× 3, or 450 flows.

A flow pattern in Cascade is a tuple F = (G(V , E),M), where G is a directed acyclic graph

and M is called the main composite. Each vertex, v ∈ V , can be the invocation of one or

more of the following: (1) a primitive component, (2) a composite component, (3) a choice

of components, (4) an abstract component with descendants, or (5) a component, optionally.

Each directed edge, e ∈ E in the graph represents the transfer of data from an output port of

one component to the input port of another component. Throughout this chapter, we refer to

edges as streams, outgoing edges as output streams, and ingoing edges as input streams.

The main composite, M , defines the set of allowable flows. For example, if StockBargainIn-

dexComputation is the main composite in Figure 7.1, then any of the 450 flows that it defines

can potentially be deployed on the underlying platform.

A concrete component is an atomic element of the pattern graph, and is usually associated

with a code fragment, which is used in code generation during flow graph deployment. The

declaration of a concrete component includes zero or more named input ports, and zero or

more named output ports. Port names can be referenced in the code fragment to assist the code

generator to establish connections between fragments. In Figure 7.1, the ExtractTradeInfo

component is an example of a concrete component.

Abstract components are defined similarly to concrete components, including declaration

of inputs and outputs, but without code fragment. Unlike with concrete components, the ab-

stract component declaration does not include a code fragment. Instead, separately defined

concrete components or composites can be declared to implement an abstract component. For

example, in Figure 7.1 the CalculateBargainIndex component is an abstract component. In-

cluding an abstract component within a graph pattern (i.e., a composite) defines a point of

variability of the graph, allowing any implementation of the abstract to be used in place of the

abstract.

Cascade includes two more constructs for describing graph variability. The choice compo-

nent can be used to enumerate several alternatives to be used within the same location in the

graph. For example, the pattern in Figure 7.1 defines a choice between “TAQ TCP Source” and

“TAQ File Source”. The alternatives must have the same number of inputs and the same num-

ber of outputs. Any component contained within the optional component becomes optional.

This requires the contained component to have the same number of inputs and outputs. For

example, in Figure 7.1 the choice between filter trade “ByTickers” and “ByIndustry” is made

CHAPTER 7. BEYOND WEB SERVICES 142

Figure 7.1: Example of a Cascade flow pattern.

optional, allowing graphs that include no filters at all to be valid instantiations of this pattern.

In Cascade, output ports of components (output streams) can be annotated with user-defined

tags to describe the properties of the produced data. Tags can be any keywords related to

terms of the business domain. Tags are used by the end-user to specify the composition goals;

we refer to as the Cascade goals. For each graph composed according to the pattern, tags

associated with output streams are propagated downstream, recursively associating the union

of all input tags with outputs for each component. Cascade goals specified by end users are then

matched to the description of graph output. Graphs that include all goal tags become candidate

flows (or satisfying flows) for the goal. For example, if we annotate the output port of the

FilterTradeByIndustry component with the tag ByIndusty, there would be 2× 5× 5× 3 = 150

satisfying flows for the Cascade goal ByIndustry. Planning is used to find “best” satisfying

flows efficiently from the millions of possible flows, present in a typical domain.

As shown by Ranganathan et al. [Ranganathan et al., 2009], Cascade planning problems

can be encoded in the SPPL planning domain description language [Riabov and Liu, 2005].

For this, a Cascade to SPPL compiler was implemented as part of MARIO. The specialized

SPPL planner has been shown to exhibit exponentially better performance on flow composition

domains compared to PDDL planners. The main difficulty in representing these problems in

PDDL comes from the fact that the same component can be used in different places within

the same graph, and therefore unique names must be given to new output streams produced

when the component is included in the graph. In this chapter, we will show that HTN allows

an elegant solution to this problem.

CHAPTER 7. BEYOND WEB SERVICES 143

7.2.2 Specifying Preferences

To specify preferences for the automated composition of flow-based applications, we use the

PDDL3 [Gerevini et al., 2009] preference specification language (see Section 4.5.1). Currently

we exploit the use of simple preferences. Recall that simple preferences, or final-state pref-

erences are atemporal formulae that express a preference for certain conditions to hold in the

final state of the plan. For example, preferring that a particular tag appears in the final stream is

a simple preference. This is the preference form we exploit in the following section to encode

the user-specified Cascade goals.

Since PDDL3 allows specification of temporally extended preference, we could also con-

sider specification of temporally extended preference. However, as shown by Baier et at.

[Baier et al., 2007], temporal extended preferences can be compiled away so that the planning

problem is left with only simple preferences.

Recall that in PDDL3 the quality of the plan is defined using a metric function. The PDDL3

function (is-violated name) is used to assign appropriate weights to different preference

formula. Note, inconsistent preferences are automatically handled by the metric function.

7.3 From Cascade Patterns to HTN Planning

In this section, we describe an approach to create an HTN planning problem with preferences

from any Cascade flow pattern together with a set of given Cascade goals. In particular, we

show how to: (1) create an HTN planning domain (specified in SHOP2, the base planner for

HTNPLAN-P) from the definition of Cascade components, and (2) represent the Cascade goals

as preferences (specified in PDDL3 simple preferences). We employ SHOP2’s specification

language written in Lisp when describing the planning elements or when giving examples.

We consider ordered and unordered task networks specified by keywords “:ordered” and “:un-

ordered”, distinguish operators by the symbol “!” before their names, and variables by the

symbol “?” before their names.

7.3.1 Creating the HTN Planning Domain

In this section, we describe an approach to translate the different elements and unique features

of Cascade flow patterns to operators or methods, in an HTN planning domain.

CHAPTER 7. BEYOND WEB SERVICES 144

Creating New Streams

One of the features of the flow-based composition domains is that components produce one

or more new data streams from several existing ones. Further, the precondition of each input

port is only evaluated based on the properties of connected streams; hence, instead of a sin-

gle global state, the state of the world is partitioned into several mutually independent ones.

Although it is possible to encode parts of these features in PDDL, the experimental results

in [Riabov and Liu, 2005, Riabov and Liu, 2006] show poor performance of planners they ran

(in an attempt to formulate the problem in PDDL). They conjectured that the main difficulty

in the PDDL representation is the ability to address creating new objects that have not been

previously initialized to represent the generation of new streams. In PDDL, this can result in a

symmetry in the choice for the object that represents the new uninitialized stream, significantly

slowing down the planner.

To address the creation of new uninitialized streams we propose to use the assignment

expression, available in the SHOP2 input language, in the precondition of the operator that

creates the new stream. We will discuss how to model Cascade components as operators and

methods next. We use numbers to represent the stream variables using a special predicate

called sNum. We then increase this number by manipulating the add and delete effects of the

operators that are creating new streams. This sNum predicate acts as a counter to keep track of

the current value that we can assign for the new output streams.

The assignment expression takes the form “(assign v t)” where v is a variable, and t is a

term. Here is an example of how we implement this approach for the “bargainIndex” stream,

the outgoing edge of the abstract component CalculateBargainIndex in Figure 7.1. The fol-

lowing precondition, add and delete list belong to the corresponding operators of any concrete

component of this abstract component.

Pre: ((sNum ?current)

(assign ?bargainIndex ?current)

(assign ?newNum (call + 1 ?current)))

Delele List: ((sNum ?current))

Add List: ((sNum ?newNum))

Now for any invocation of the abstract component CalculateBargainIndex, new numbers,

hence, new streams are used to represent the “bargainIndex” stream.

CHAPTER 7. BEYOND WEB SERVICES 145

Tagging Model for Components

In Cascade output ports of components are annotated with tags to describe the properties of the

produced data. Some tags are called sticky tags, meaning that these properties propagate to all

downstream components unless they are negated or removed explicitly. The set of tags on each

stream depends on all components that appear before them or on all upstream output ports.

To represent the association of a tag to a stream, we use a predicate “(Tag Stream)”, where

Tag is a variable or a string representing a tag, for example, bargainIndex, and Stream is the

variable representing a stream. Note that Tag should be grounded before any evaluation of

state with respect to this predicate. To address propagation of tags, we use a forall expression,

ensuring that all tags that appear in the input streams propagate to the output streams unless

they are negated by the component.

A forall expression in SHOP2 is of the form “(forall X Y Z)”, where X is a list of variables

in Y , Y is a logical expression, Z is a list of logical atoms. Here is an example going back

to Figure 7.1. ?tradeQuote and ?filteredTradeQuote are the input and output stream variables

respectively for the FilterTradeQuoteByIndustry component. Note, we know all tags ahead of

time and they are represented by the predicate “(tags ?tag)”. Also we use a special predicate

different to ensure the negated tag AllCompanies does not propagate downstream.

(forall (?tag)(and (tags ?tag) (?tag ?QuoteInfo)

(different ?tag AllCompanies))

((?tag ?filteredTradeQuote)))

Tag Hierarchy

Tags used in Cascade belong to tag hierarchies (or tag taxonomies). This notion is useful in

inferring additional tags. In the example in Figure 7.1, we know that the TableView tag is a

sub-tag of the tag Visualizable, meaning that any stream annotated with the tag TableView is

also implicitly annotated by the tag Visualizable. To address the tag hierarchy we use SHOP2

axioms. SHOP2 axioms are generalized versions of Horn clauses, written in this form :- head

tail. The tail can be anything that appears in the precondition of an operator or a method. The

following are axioms that express the hierarchy of views.

:- (Visualizable ?stream)((TableView ?stream))

:- (Visualizable ?stream)((StreamPlot ?stream))

CHAPTER 7. BEYOND WEB SERVICES 146

Component Definition in the Flow Pattern

Next, we put together the different pieces described so far in order to create the HTN planning

domain. In particular, we represent the abstract components by nonprimitive tasks, enabling

the use of methods to represent concrete components. For each concrete component, we create

new methods that can decompose this nonprimitive task (i.e., the abstract component). If no

method is written for handling a task, this is an indication that the abstract component had no

children or descendants.

Components can inherit from other components (usually only from abstract components).

The net (or expanded) description of an inherited component includes not only the tags that

annotate its output ports, but also the tags defined by its parent. We represent this inheritance

model directly on each method that represents the inherited component using helper operators

that add to the output stream, the tags that belong to the parent component.

We encode each primitive component as an HTN operator. The parameters of the HTN

operator correspond to the input and output stream variables of the primitive component. The

preconditions of the operator include the “assign expressions” as mentioned earlier to create

new output streams. The add list also includes the tags of the output streams if any. The

following is an HTN operator that corresponds to the TableView primitive component.

Operator: (!TableView ?bargainIndex ?output)

Pre: ((sNum ?current) (assign ?output ?current)

(assign ?newNum (call + 1 ?current)))

Delete List: ((sNum ?current))

Add List:((sNum ?newNum)(TableView ?bargainIndex)

(forall (?tag) (and (tags ?tag)

(?tag ?bargainIndex))((?tag ?output))

We encode each composite component as HTN methods with task networks that are either

ordered or unordered. Each composite component specifies a graph clause within its body.

The corresponding method addresses the graph clause using task networks that comply with

the ordering of the components. For example, the graph clause within the BIComputationCore

composite component in Figure 7.1 can be encoded as the following task. Note, the parame-

ters are omitted. Note also, we used ordered task networks for representing the sequence of

components, and an unordered task network for representing the split in the data flow.

(:ordered (:unordered (!ExtractQuoteInfo)

(:ordered (!ExtractTradeInfo) (CalculateVWAP)))

(CalculateBargainIndex))

CHAPTER 7. BEYOND WEB SERVICES 147

Structural Variations of Flows

There are three types of structural variation in Cascade: enumeration, optional components,

and the use of high-level components. Structural variations create patterns that capture multi-

ple flows. Enumerations (choices) are specified by listing the different possible components.

To capture this we use multiple methods applicable to the same task. For example, in order

to address choices of source, we use two methods, one for TAQTCP and one for TAQFile. A

component can be specified as optional, meaning that it may or may not appear as part of the

flow. We capture optional components using methods that simulate the “no-op” task. Abstract

components are used in flow patterns to capture high-level components. These components can

be replaced by their concrete components (children). In HTN, this is already captured by the

use of nonprimitive tasks for abstract components and methods for each concrete component.

For example, the task network of BIComputationCore includes the nonprimitive task Calcu-

lateBargainIndex and different methods written for this task handle the concrete components.

7.3.2 Specifying Cascade Goals as Preferences

While Cascade flow patterns specify a set of flows, users can be interested in only a subset of

these. Thus, users are able to specify the Cascade goals by providing a set of tags that they

would like to appear in the final stream. We propose to specify the user-specified Cascade

goals as PDDL3 [Gerevini et al., 2009] simple preferences. The advantage of encoding the

Cascade goals as preferences is that the users can specify them outside the domain description

as an additional input to the problem. Also, by encoding the Cascade goals as preferences,

if the goals are not achievable, a solution can still be found, but with an associated quality

measure. In addition, our preference-based planner, HTNPLAN-P, can potentially guide the

planner towards achieving these preferences; can do branch and bound with sound pruning

using admissible heuristics, whenever possible, to guide the search toward a high-quality plan.

The following are example preferences that encode Cascade goals ByIndustry, TableView,

and LinearIndex. These PDDL3 simple preferences are over the predicate “(Tag Stream)”.

Note that we need to define a metric function for the generated preferences. If the Cascade

goals, now encoded as preferences are mutually inconsistent, we can assign a higher weight to

the “preferred” goal. Otherwise, we can use uniform weights when defining a metric function.

(preference g1 (at end (ByIndustry ?finalStream)))

(preference g2 (at end (TableView ?finalStream)))

(preference g3 (at end (LinearIndex ?finalStream)))

CHAPTER 7. BEYOND WEB SERVICES 148

7.3.3 Flow-based HTN Planning Problem with Preferences

In this section, we characterize a flow-based HTN planning problem with preferences and

discuss the relationship between satisfying flows and optimal plans.

A Cascade flow pattern problem is a 2-tuple P F = (F,G), where F = (G(V , E),M) is a

Cascade flow pattern (where G is a directed acyclic graph, and M is the main composite), and

G is the set of Cascade goals. α is a satisfying flow for P F if and only if α is a flow that meets

the main composite M . A set of Cascade goals, G, is realizable if and only if there exists at

least one satisfying flow for it.

Given the Cascade flow pattern problem P F , we define the corresponding flow-based HTN

planning problem with preferences as a 4-tuple P = (s0, w0, D,�), where: s0 is the initial state

consisting of a list of all tags and our special predicates; w0 is the initial task network encoding

of the main component M ; D is the HTN planning domain, consisting of a set of operators

and methods derived from the Cascade components v ∈ V; and � is a preorder between plans

dictated by the set of Cascade goals G.

Proposition 7.1 Let P F = (F,G) be a Cascade flow pattern problem where G is realizable.

Let P = (s0, w0, D,�) be the corresponding flow-based HTN planning problem with pref-

erences. If α is an optimal plan for P , then we can construct a flow (based on α) that is a

satisfying flow for the problem P F .

Consider the Cascade flow pattern problem P F = (F,G) with F shown in Figure 7.1 and

G the TableView tag. Let P be the corresponding flow-based HTN problem with preferences.

Then consider the following optimal plan for P : [TAQFileSource(1), ExtradeTradeInfo(1,2),

VWAPByTime(2,3), ExtractQuoteInfo(1,4), BISimple(3,4,5), TableView(5,6)]. We can con-

struct a flow in which the components mentioned in the plan are the vertices and the edges are

determined by the numbered parameters corresponding to the generated output streams. The

resulting graph is not only a flow, but a satisfying flow for the problem P F .

7.4 Computation

In the previous section, we described a method that translates Cascade flow patterns and Cas-

cade goals into an HTN planning problem with preferences. We also showed the relationship

between optimal plans and satisfying flows. Now with a specification of preference-based

HTN planning in hand we select HTNPLAN-P, our preference-based HTN planning system

CHAPTER 7. BEYOND WEB SERVICES 149

(see Chapter 5), to compute these optimal plans that later get translated to satisfying flows

for the original Cascade flow patterns. In this section, we focus on our proposed heuristic

for this task, and describe how the required indexes for this heuristic can be generated in the

preprocessing step.

7.4.1 Enhanced Lookahead Heuristic (ELA)

The enhanced lookahead function estimates the metric value achievable from a search node

N . To estimate this metric value, we compute a set of reachable tags for each task within the

initial task network. A set of tags are reachable by a task if they are reachable by any plan

that extends from decomposing this task. Note, we assume that every nonprimitive task can

eventually have a primitive decomposition.

The ELA function is an underestimate of the actual metric value because we ignore deleted

tags, preconditions that may prevent achieving a certain tag, and we compute the set of all

reachable tags, which in many cases is an overestimate. Nevertheless, this does not necessarily

mean that the ELA function is a lower bound on the metric value of any plan extending node

N . However, if it is a lower bound, then it will provide sound pruning (following Baier et al.

[Baier et al., 2009]) if used within the HTNPLAN-P search algorithm and provably optimal

plans can get generated (see Proposition 5.4). A pruning strategy is sound if no state is incor-

rectly pruned from the search space. That is whenever a node is pruned from the search space,

we can prove that the metric value of any plan extending this node will exceed the current

bound best metric. To ensure that the ELA is monotone, for each node we take the intersec-

tion of the reachable tags computed for this node’s task and the set of reachable tags for its

immediate predecessor.

Proposition 7.2 The ELA function provides sound pruning if the preferences are all PDDL3

simple preferences over a set of predefined tags and the metric function is non-decreasing in

the number of violated preferences and in the plan length.

Proof: The ELA function is calculated by looking at a reachable set of tags for each task.

Hence, it will regard as violated, preferences that have tags that do not appear in the set of

reachable tags. This means that these tags are not reachable from node N . Given that we

used the above trick to ensure the ELA function does not decrease and all our preferences

are PDDL3 simple preferences over a set of predefined tags, the is-violated function for the

hypothetical node NE , that ELA is evaluating the metric for, is less than or equal to any node

CHAPTER 7. BEYOND WEB SERVICES 150

N ′ reachable from node N (for each preference formula). Moreover, since we assume that

the metric function is non-decreasing in the number of violated preferences and in plan length

(NDVPL) [Baier et al., 2009], the metric function of the hypothetical node NE will be less

than or equal to the metric function of every successor node N ′ reachable from node N . This

shows that the ELA evaluated at node N returns a lower bound on the metric value of any plan

extending N . Therefore, the ELA function provides sound pruning.

Our notion of reachable tags is similar to the notion of “complete reachability set” in Marthi

et al. ([Marthi et al., 2007]). While they find a superset of all reachable states by a “high-level”

action a, we find a superset of all reachable tags by a task t; this can be helpful in proving a

certain task cannot reach a goal. However, they assume that for each task a sound and complete

description of it is given in advance, whereas we do not assume that. In addition, we are using

this notion of reachability to estimate a heuristic which we implement in HTNPLAN-P. They

use this notion for pruning plans and not necessarily in guiding the search toward a preferred

plan. Marthi et al. in their follow up paper [Marthi et al., 2008] address the problem of finding

an optimal plan with respect to action costs. This paper uses a notion of optimistic and pes-

simistic description, a generalization of their previous terms. This paper uses some notion of

heuristic search in addition to limited hierarchical lookahead by exploiting an abstract look-

ahead tree. However, they again made an assumption that both the optimistic and pessimistic

descriptions are given for each task in advance. Finding these descriptions, especially when

the task network has loops both direct or indirect, is not trivial.

Next, we briefly overview our proposed solution of generating the set of all achievable tags.

We will describe how we can generate this set from the description of the Cascade flow patterns

as well as their corresponding HTN planning problem. Note, we assume that the set of tags

that belong to the given Cascade pattern is known.

7.4.2 Generation from Cascade

To compute the ELA function from Cascade, we must compute an estimate of the tags “reach-

able” after any concrete or composite component in the pattern. We do this incrementally, by

associating each component with an empty set of tags initially and then adding tags to these

sets as we perform a traversal of the Cascade pattern.

We traverse the Cascade pattern in topological sort order – since Cascade patterns are

acyclic graphs, we are guaranteed to find a topological sort not only for the entire pattern,

CHAPTER 7. BEYOND WEB SERVICES 151

but also for any subgraph contained within a composite component. When we encounter a

composite component during our traversal (e.g., BIComputationCore in Figure 7.1), we ex-

pand the composite and traverse its subgraph in topological sort order. For every component

reached we propagate the complete set of predecessors, both concrete and composite, on the

streams of the flow pattern. As an example, when reaching ExtractTradeInfo in Figure 7.1, the

set of predecessors includes FilterTradeByTickers, FilterTradeByIndustry, TAQTCPSource and

TAQFileSource. We add ExtractTradeInfo to this set and propagate it on the outgoing stream

towards CalculateVWAP.

For every component we reach, we take the set of “positive” (i.e., non-negated) tags on

all output ports and add it to the ELA entry for every predecessor, as well as for the current

component itself. In essence, this “informs” predecessors that tags asserted on current output

ports are reachable after them in the flow. Since in order to calculate the ELA function, we

overestimate of the set of reachable tags, it is safe to ignore tags negated on the output. For

example, if ExtracTradeInfo is tagged with Trade, this tag is be added to the ELA entry for all

its four predecessors. Two adjustments to this general approach are needed to ensure correct

computation of the ELA function.

First, when we compute the set of output tags for a component C, we must also include

all tags for components that inherit from C, since a component can be replaced (or will be

replaced if C is abstract) by one of its inheritance descendants in some possible plans. We can

precompute sets of output tags for components that take inheritance into account before we

start the traversal in time proportional to the number of components in the pattern.

Second, we must account for parallel branches of the flow pattern. For example, in Figure

7.1 the branches containing ExtractTradeInfo and ExtractQuoteInfo denote parallel computa-

tion, which means that a tag appearing in one branch is “reachable” after components on the

other branch. Therefore, whenever we have multiple streams “joining” (e.g., multiple input

ports into CalculateVWAP), we make additions to the entries of the ELA map to account for

parallelism. For any two distinct branches B1 and B2, it is enough to take the current entry

in the ELA map for the first component of B1 and add it to the ELA entries for all compo-

nents in B2. In Figure 7.1, if ExtractTradeInfo is tagged with Trade, ExtractQuoteInfo with

Quote and CalculateVWAP with VWAP (ignoring inheritance), the adjustment is made when

we reach CalculateBargainIndex. The ELA for ExtractTradeInfo contains Trade and VWAP;

we add these tags to the ELA entry for ExtractQuoteInfo. We also add Quote to the ELA entry

for both ExtractTradeInfo and CalculateVWAP. This makes the total computational complexity

at most cubic in the size of the pattern (the size of the planning domain).

CHAPTER 7. BEYOND WEB SERVICES 152

7.4.3 Generation from HTN

Algorithm 7.2 shows pseudocode of our offline procedure that creates a set of tags for each

task. It takes as input the planning domain D, a set of tasks (or a single task) w, a set of tags to

carry over C, and a stack of parent tasks S. The algorithm should be called initially with the

initial task network w0, and C = S = ∅. The reason for why we keep track of the sets of tags

to carry over is because we want to make sure we calculate not only a set of tags produced by a

decomposition of a task network (or a task), but also we want to find a set of reachable tags for

all possible plan extensions from this point on. The reason for why we keep a stack of parent

tags D is to be able to detect a possible loop.

The call to GetReachableTags will produce a set of tags reachable by the set of tags w

(produced by w and C). To track the produced tags for each task we use a map R (line 2).

In order to keep track of the produced tags for each task we use a map R (line 2). If w is a

task network then we consider three cases. If the task network is empty, we just return C. If

we have an ordered task network then for each task (or a task network) within it, we call the

algorithm starting with the right most task tn, and updating the tag to carry c to take into account

the tags produced later on. If the task network is unordered, then we call GetReachableTags

twice, first to find out what each task produces, and then again with the updated set of carry

tags. This ensures that we overestimate the reachable tags regardless of the execution order.

Note that the first call to the algorithm (line 11) is with an empty C, because we have to call

GetReachableTags again (line 15), this time with the updated set of tags to carry.

If w is a task then we are able to update its returned value R[w]. Hence we start off with

initializing this value to an empty set (line 17). We then check to see if this task was ever called

before to find out if a possible loop has occurred (line 18). If so we do not record anything for

this task (because we are sure we will get to this task sometime later). We then return the carry

together with a special tag x. This tag is special because it is not among one of our known tags,

AllTags, and that it can take a parameter. If the task is primitive, we will find a set of tags it

produces by looking at its add-list. If it is nonprimitive then we have to first find all methods

that can be applied to decompose this task and their associated task networks. We then take a

union of all tags produced by a call to GetReachableTags for each of these task networks.

In the presence of loops, there may be extra tags x(w), where w is recursive, for stored tags

of some tasks. In order to update the values for each task t that has the tag x(w) (there could be

multiple ones), we go over each stored tag for t (i.e., R[t]) and replace each x(w) with the tags

that are stored for w (i.e., R[w]). We may need to do this multiple times to reach a fix point,

CHAPTER 7. BEYOND WEB SERVICES 153

1: function GETREACHABLETAGS(D, w, C, S)

2: initialize global Map R

3: T ← ∅
4: x← choose a name not in AllTags

5: if w is a task network then

6: if w = ∅ then return C

7: else if w = (:ordered t1 ... tn) then

8: for i=n to 1 do C ← GetReachableTags(D, ti, C, S)

9: else if w = (:unordered t1 ... tn) then

10: for i=1 to n do

11: Tti ← GetReachableTags(D, ti, ∅, S)
12: T ← Tti ∪ T

13: for i=1 to n do

14: Cti ←
⋃n

j=1,j 6=i Tj ∪ C

15: GetReachableTags(D, ti, Cti , S)

16: else if w is a task then

17: if R[w] is not defined thenR[w]← ∅

18: if t ∈ S then return C ∪ {x(w)} ⊲ loop detected

19: else if t is a primitive task then

20: a← operator whose name match with t

21: T ← add-list of a ∩ AllTags

22: else if t is a nonprimitive task then

23: M ′← {m1, ...,mk} such that task(mi) match with t

24: U ′← {U1, ..., Uk} such that Ui = subtask(mi)
25: for all Ui ∈ U ′ do

26: T ← GetReachableTags(D,Ui, C, S ∪ {t}) ∪ T

27: R[w]← R[w] ∪ T ∪ C

28: return T ∪ C

Figure 7.2: A sketch of the GetReachableTags (D, w, C, S) algorithm.

that is adding R[w] does not change the set of tags for t. Once a fixed point is reached for each

task, we remove occurrences of x(w) for all w.

7.5 Experimental Evaluation

We had two main objectives in our experimental analysis: (1) evaluate the applicability of our

approach when dealing with large real-world applications or composition patterns, (2) evaluate

the computational time gain that may result from the use of the proposed heuristic. To address

our first objective, we took a suite of diverse Cascade flow pattern problems from patterns

described by customers for IBM InfoSphere Streams and applied our techniques to create the

CHAPTER 7. BEYOND WEB SERVICES 154

corresponding HTN planning problems with preferences. We then examined the performance

of our preference-based HTN planner HTNPLAN-P (see Chapter 5) on the created planning

problems. To address our second objective, we implemented the preprocessing algorithm dis-

cussed earlier and modified HTNPLAN-P to incorporate the new heuristic within its search

strategy and then examined its performance. All our domains and problems are created from

real patterns described for IBM InfoSphere Streams.

We had 7 domains and more than 50 HTN planning problems in our experiments. The

HTN problems were constructed from patterns of varying sizes and therefore vary in hardness.

For example, a problem can be harder if the pattern had many optional components or many

choices, hence influencing the branching factor. Also a problem can be harder if the tags that

are part of the Cascade goal appear in the harder to reach branches depending on the planner’s

search strategy. For HTNPLAN-P, it is harder if the goal tags appear in the very right side

of the search space since it explores the search space from left to right if the heuristic is not

informing enough. All problems were run for 10 minutes, and with a limit of 1GB per process.

“OM” stands for “out of memory”, and “OT” stands for “out of time”.

We show a subset of our results in Figure 7.3. Columns 5 and 6 show the time in seconds

to find an optimal plan. We ran HTNPLAN-P in its existing two modes: LA and No-LA. LA

means that the search makes use of the LA (lookahead) heuristic (No-LA means it does not).

Note, HTNPLAN-P’s other heuristics are used to break ties in both modes.We measure plan

length for each solved problem as a way to show the number of generated output streams. We

show the number of possible optimal plans (# of Plans) for each problem as an indication of the

size of the search space. This number is a lower bound in many cases on the actual size of the

search space. Note, we only find one optimal plan for each problem through the incremental

search performed by HTNPLAN-P.

The results in Figure 7.3 illustrate the applicability and feasibility of our approach as we

increase the difficulty of the problem. All problems were solved within 36 seconds by at least

one of the two modes used. The results also indicate that, not surprisingly, the LA heuristic

performs better at least in the harder cases (indicated in bold) partly because the LA heuristic

forms a sampling of the search space. In some cases, due to the possible overhead in calculation

of the LA heuristic, we did not see an improvement. Note that in some problems (e.g., 3rd

domain Problems 3-5), an optimal plan was only found when the LA heuristic was used.

So far, the experiments we ran showed that an optimal solution was found within a reason-

able time using the LA mode of the planner. Next, we identify cases where the planner will

have difficulty finding an optimal solution. To show this we chose the third and fourth domain

CHAPTER 7. BEYOND WEB SERVICES 155

Plan # of No-LA LA

Domain Problem Length Plans Time (sec) Time (sec)

1

1 10 243 0.00 0.00

2 11 162 0.01 0.07

3 11 81 0.04 0.05

4 11 162 0.10 0.01

5 11 81 0.18 0.04

2

1 10 243 0.00 0.00

2 11 81 0.04 0.04

3 11 162 0.04 0.05

4 11 162 0.13 0.01

5 11 81 0.25 0.04

3

1 38 226 0.08 0.08

2 38 213 276.11 0.09

3 38 226 OM 0.13

4 38 226 OM 0.14

5 20 213 OM 0.14

4

1 22 4608 0.01 0.01

2 23 4608 0.02 0.02

3 44 46082 0.08 0.08

4 44 46082 0.09 0.11

5 88 46084 0.59 0.59

6 92 46084 0.64 0.61

7 176 46088 4.50 4.50

8 184 46088 4.80 4.50

9 264 460812 14.88 14.88

10 276 460812 16.00 15.00

11 352 460816 35.65 35.65

12 368 460816 43.00 35.00

Figure 7.3: Evaluating the applicability of our approach by running HTNPLAN-P (two modes)

as we increase problem hardness.

and we tested with goals that appear deep in the right branch of the HTN search tree (or the

search space). The result is shown in the right two most columns of Figure 7.4.

The results show that there are some hard problems for the LA heuristic. See Problem 10-

12 for Domain 3 and Problems 17 and 18 for Domain 4. These problems are difficult because

achieving the goal tags are difficult for the planner. There are a number of reasons (most are

planner specific) for why these problems are hard. For example, in Problem 10, the way the

domain is written indicates to the planner that the optional components need to be explored first,

but the goal is only achievable with the non-optional choices; hence, exploring the particular

branch that needs to get explored gets delayed. Some of these problems are easier because

CHAPTER 7. BEYOND WEB SERVICES 156

the goal is to achieve easier to reach tags. It is also the case that the LA heuristic’s sampling

technique evaluates the right branch of the search space first; hence, it can provide the right

level of guidance to the planner. However, from the result shown in Figure 7.4 we can conclude

that while the LA heuristic greatly improves the time to compute an optimal plan, it may have

difficulty when dealing with the hard to reach goal tags.

We had two sub-objectives in evaluating our proposed heuristic (the ELA heuristic): (1) to

find out if it improves the time to find an optimal plan (2) to see if it can be combined with

the planner’s previous heuristics, namely the LA heuristic. LA then ELA (resp. ELA then LA)

column indicates that we use a strategy in which we compare two nodes first based on their LA

(resp. ELA) values, then break ties using their ELA (resp. ELA) values. In the Just ELA and

Just LA columns we used either just LA or ELA. Finally in the No-LA column we did not use

either heuristics.

The results (subset shown), also in Figure 7.4, show that the ordering of the heuristics does

not seem to make any significant change in the time it took to find an optimal plan. That is,

using the ELA heuristic combined with the LA heuristic at least for the problems considered

does not seem to improve the performance of the planner compared to just using the ELA

heuristic. The results also show that using the ELA heuristic alone performs best compared

to the other search strategies. In particular, there are cases in which the planner fails to find

an optimal plan when using LA or No-LA, but an optimal plan is found within the tenth of a

second when using the ELA heuristic. To measure the gain in computation time from the ELA

heuristic technique, we computed the percentage difference between the LA heuristic and the

ELA heuristic times, relative to the worst time. We assigned a time of 600 to those that exceeded

the time or memory limit. The results show that on average we gained 65% improvement

when using the ELA heuristic for all the problems we used; we gained 90% improvement on

the problems shown in Figure 7.4. This shows that the ELA heuristic seems to significantly

improve the time it takes to find an optimal plan.

7.6 Summary and Discussion

There is a large body of work that explores the use of AI planning for the task of automated

WSC as overviewed in Chapter 2. Following this line of research, there is also a line of work

that explores the use of AI planning for the task of composing information flows, an analogous

problem to WSC (e.g., [Riabov and Liu, 2006, Ranganathan et al., 2009]). In this chapter, we

explored the possibility of applying our techniques to stream processing applications, applica-

CHAPTER 7. BEYOND WEB SERVICES 157

LA then ELA ELA then LA Just ELA Just LA No-LA

Domain Problem Time (s) Time (s) Time (s) Time (s) Time (s)

3

6 0.16 0.16 0.06 0.13 OM

7 1.70 0.17 0.07 0.13 OM

8 1.70 1.70 0.07 1.50 OM

9 1.80 1.80 0.07 1.60 OM

10 1.70 1.70 0.07 OM OM

11 1.40 1.40 0.07 OM OM

12 1.40 1.30 0.07 OM OM

4

13 0.58 0.45 0.02 0.56 0.12

14 2.28 2.24 0.07 3.01 0.38

15 14.40 14.28 0.44 19.71 1.44

16 104.70 102.83 3.15 147 8.00

17 349.80 341.20 10.61 486.53 18.95

18 OT OT 24.45 OT 40.20

Figure 7.4: Evaluation of the ELA heuristic.

tions that involve composing information flows. In particular, we examined the correspondence

between HTN planning and automated composition of flow-based applications. We proposed

the use of HTN planning and to that end proposed a technique for creating an HTN planning

problem with user preferences from Cascade representation of flow patterns and user-specified

Cascade goals. This opens the door to increased expressive power in flow pattern languages

such as Cascade, for instance the use of recursive structures (e.g., loops), user preferences, and

additional composition constraints.

We also exploited the use of a lookahead heuristic and showed that it improves the perfor-

mance of HTNPLAN-P for the domains we used, making it comparable with domain-specific

planners (e.g., MARIO). The proposed heuristic is general enough that it can be used within

other HTN planners. We have performed extensive experimentation that showed the appli-

cability and promise of the proposed approach for the problem of automated composition of

flow-based applications.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we established the correspondence between generating a customized composition

of Web services and non-classical AI planning where the objective of the planning problem is

specified as a form of control knowledge, such as a workflow or template, together with a set of

constraints to be optimized or enforced. This enabled us to bring to bear many of the theoret-

ical and computational advances in reasoning about actions to the task of WSC. In particular,

we exploited and advanced techniques in preference-based planning to generate customized

compositions of Web services. Moreover, we established that techniques in (preference-based)

planning can indeed provide a computational basis for the development of effective, state-of-

the-art techniques for generating customized compositions of Web services. While our re-

search has been motivated by Web services, the theory and techniques we have developed are

amenable to many analogous problems such as business process modeling, component soft-

ware composition, requirements engineering, Big Data and stream processing, some of which

were discussed in Chapter 7.

To evaluate our thesis, in Chapter 3 we first characterized the WSC problem with cus-

tomization, establishing that there is a correspondence between generating a customized com-

position of Web services and a non-classical planning problem where the objective of the plan-

ning problem can be specified as a composition template together with a set of constraints.

While a composition template can be represented in a variety of different ways, in this thesis,

we consider two representations: Golog and HTNs. In Chapter 4, we developed specification

languages that met our set of desirable criteria for soft and hard constraints specification. Given

the characterization of the WSC problem with customization, the specification of composition

158

CHAPTER 8. CONCLUSION AND FUTURE WORK 159

templates, and the specification of constraints, we developed algorithms and techniques, based

on heuristic search, to compute customized compositions. Furthermore, in Chapter 5 we dis-

cussed our four systems, each of which differ with respect to the specification of the composi-

tion template, Golog or HTNs, the specification of preferences, LPP , LPH, or PDDL3, the

specification of hard constraints, and the nature of the heuristics they use. In Chapter 6, we

addressed the information-gathering problem when generating customized compositions and

discussed how localized optimization can increase the performance of the search. Finally, in

Chapter 7 we discussed some of the applications of our proposed languages and techniques.

In the rest of this chapter, we repeat the problems we addressed and our major contributions.

Finally, we discuss potential future work.

8.2 Problems and Contributions

The general problem we face in this thesis is to investigate principled techniques for composing

Web services, that support user customization. This manifests itself in a number of specific

research challenges that we identify and address in this thesis.

Characterize the WSC Problem with Customization We characterized the WSC problem

with customization, where the objective of the planning problem is represented in some form

of composition template (either in Golog or HTNs) together with a set of constraints that need

to be optimized or enforced. This characterization enables us to generate customized compo-

sitions of Web services through non-classical planning.

Specify the Soft and Hard Constraints We designed a set of desirable criteria, evaluated the

existing specification languages with respect to this set, and extended the existing languages

to meet our set of desirable criteria. In particular, we proposed a language called LPH and

extended PDDL3 with HTN-specific preference constructs. Moreover, we proposed a means of

specifying and optimizing preferences over service and data selection using our extension. We

provide a semantics for our preference languages through the situation calculus [Reiter, 2001].

Compute Optimized Compositions We proposed algorithms that integrate preference-

based reasoning, advanced state-of-the-art planning with preferences, proved properties of

these algorithms, implemented and evaluated systems to show the applicability of our pro-

posed approach. In particular, we have developed four systems: GOLOGPREF, HTNPLAN,

CHAPTER 8. CONCLUSION AND FUTURE WORK 160

HTNPLAN-P, and HTNWSC-P. Each of these systems uses heuristic search but differ with

respect to the forms of the composition templates, Golog or HTNs, the specification of soft

constraints, LPP , LPH, or PDDL3, and the specification of the hard constraints, and the

nature of the heuristics they use.

Execute and Optimize We proposed a notion of middle-ground execution system for the

WSC problem with customization that interleaves online information gathering with offline

search as deemed necessary. We proposed to further improve the search by performing opti-

mization of data choices locally, whenever possible, while still guaranteeing that the choice

selected does not eliminate the globally optimal solution. We showed that our approach to data

optimization can greatly improve both the quality of compositions and the speed with which

they are generated.

Explore Applicability Beyond WSC We investigated how to use and adapt our framework

to address two applications: requirements engineering and stream processing. We proposed

different uses of HTN planning with preferences and adapted our techniques accordingly. For

example, we proposed a heuristic tailored to stream processing applications in order to improve

the performance of search in generating an optimal solution.

8.3 Future Work

There are a number of future directions for the work presented in this thesis. Next, we list a

subset of these.

Incorporate Diagnosis and WSC In our recent work [Sohrabi et al., 2011], we addressed

the problem of generating explanations for observed behaviour with respect to a model of the

behaviour of a dynamical system with a focus of generating preferred explanations. In partic-

ular, we addressed the problem of how to specify the preference criteria, and how to compute

preferred explanations using planning technology. This problem arises in a diversity of applica-

tions including diagnosis of dynamical systems. In particular, our work in [Sohrabi et al., 2010]

focuses on establishing the relationship between diagnosis and planning, and generating (high-

quality) diagnoses using planning technology. It remains to show how this line of research

can help with diagnosing faulty services and how it can fit within our framework of the WSC

problem with customization.

CHAPTER 8. CONCLUSION AND FUTURE WORK 161

Identify Non-Interacting Operators In Chapter 6 we gave a condition under which per-

forming localized data optimization is sound and discussed how this relates to identifying non-

interacting operators. We also gave some syntactic criteria in order to identify non-interacting

operators with respect to the domain. It remains to determine conditions for when an opera-

tor is non-interacting with respect to the preferences or hard constraints. Further, given these

conditions, identifying non-interacting operators automatically is also left for future work.

Mixed Initiate Planning Another interesting future direction would be to address dynamic

and changing preferences and constraints. An ideal solution to address this problem needs

to be mixed-initiate. To that end, we need to design a user-friendly interface that possibly

not only takes the user’s preferences, objectives, policies, but also interacts with the user in a

mixed-initiative manner during the composition construction time. Hence, instead of soliciting

preferences from the user a priori, the system solicits user preferences as they become relevant

during the planning process.

Explore Other Applications We claim that the techniques and languages developed in this

thesis are general enough that they can be applied to other applications including multi-agent

systems, business process modeling, and social and computational behaviour modeling and

verification. We partially supported this claim in Chapter 7 by applying our techniques in two

applications, requirements engineering and stream processing. It remains to show how our

techniques are applicable to other applications such as business process modeling.

Appendix A

Proof of Theorem 6.1

The proof1 of Theorem 6.1 relies on the following lemma.

Definition A.1 (Search trace) Search trace is a sequence of methods and operator instances

that have been applied to decompose a task network.

Recall DI includes HTN operators and methods that externally call the set of information

sources X during planning. In the following Lemma we assume these operators and methods

can be identified. Also, in order to address the case where we may delay a call to an information

source, we assume s0 (the complete initial state) includes the information about our placeholder

values.

Lemma 1 Assuming the IRP assumption holds, let PI = (sI0, w0, D
I ,�, X) be an incomplete

HTN planning problem with preferences, and let PC = (s0, w0, D,�) be a complete HTN

planning problem with preferences that is consistent with PI . Let st be a search trace of the

search tree for PI , and st′ be a search trace obtained from st by removing the operators and

methods that externally call the set of information sources X during planning. Then st is a

search trace of the search tree for PC .

Proof: The proof is by induction of the length d of a search trace, assuming the IRP assumption

holds.

Let d = 0, then since both problems PI and PC have the same initial task network w0, the

root of their search tree is identical. This proves the base case.

1The steps of this proof is similar to the correctness proof of ENQUIRER [Kuter et al., 2005]

162

APPENDIX A. PROOF OF THEOREM 6.1 163

Now assume that every search trace of the search tree with length d for PI once stripped

from the operators and methods that correspond to X is also a search trace of the search tree

for PC . Let n = 〈s, w, partialP 〉 be the leaf node of the search trace with length d, where s is

a plan state, w is a task network, and partialP is a partial plan. If w = ∅ then, n is a leaf node

in the search tree for both problems and by the inductive hypothesis the proof holds. If w is not

∅, let t be the task selected next from the task network w. Then, we consider the following two

cases: (1) t correspond to gathering information, hence the search tree for PI once stripped

from the operators and methods that correspond to X (descenders of t) is also a search trace of

the search tree for PC (2) t does not correspond to gathering information. Then we consider the

following two sub cases (1) t is a primitive task. Then we know that the operator that can be

applied is a world-altering operator and is in D and DI . Then both problems result in the same

search node that is obtained by removing t from w and updating the partial plan partialP , (2)

t is nonprimitive. Then we know that the methods application to t are all in D (as they do not

correspond to X). Also from the definition of consistency Definition 6.7 we know sI0 ∪ δ(X)

⊆ s0, hence the set of methods applicable to t (the children of node n) for problem PI is a

subset of the children of nodes n for the problem PI for depth d + 1. Note again that we

assumed that the place holder values are in s0. Hence, the set of search traces going out of the

leaf node n for problem PI is a subset of those going out of the leaf node n for the problem

PC .

Note, the above Lemma is in one direction because sI0∪ δ(X)⊆ s0. That is we showed that

the search trace for an incomplete problem corresponds to a search tree for a complete version

of the problem if we ignore the operators and methods that correspond to gathering information

from sources X .

Now back to the proof of Theorem 6.1. Note again that we assume that the postprocessing

step is performed on the generated plan. That is the call to those information-gathering services

that have been delayed are made and the placeholder is replaced with an appropriate choice.

Here we repeat the statement of the Theorem 6.1.

Theorem A.1 Assuming the IRP assumption holds, let PIW = (sI0, C,K, φsoft, Y) be an in-

complete OWL-S WSC problem with preferences, and letPI = (sI0, w0, D
I ,�, X) be an incom-

plete HTN planning problem with preferences that is equivalent to PIW . A plan a = o1...ok is

a solution to PI if and only if π = p1...pk is a solution to (a composition for) PIW such that

oi, 1 ≤ i ≤ k are the primitive operators that correspond to the atomic process pi.

APPENDIX A. PROOF OF THEOREM 6.1 164

Assuming the IRP assumption holds, let PIW = (sI0, C,K, φsoft, Y) be an incomplete

OWL-S WSC problem with preferences, and let PI = (sI0, w0, D
I ,�, X) be an incomplete

HTN planning problem with preferences that is equivalent to PIW . By the definition of equiv-

alency Definition 6.9 we know that w0 is generated by our modified OWL-S to HTN translation

for the OWL-S process C, DI is the HTN domain description generated by running our modi-

fied OWL-S to HTN translation for the collection of OWL-S process modelsK,� is a preorder

between plans as dictated by φsoft, and X is the set of information sources that produce the

same information as the services Y , that is δ(X) = δ(Y).

The proof is done by showing that there is a bijection between the set of plans for PI and

the set of compositions for PIW . The proof relies on looking at the complete version of the

two problems.

Let PCW = (s0, C,K
c, φsoft) be a complete version of the OWL-S WSC problem with

preferences PIW such that s0 = sI0 ∪ δ(Y) and Kc includes only atomic processes with effects

(they are world altering). Since both PCW andPIW have the same goal processC and the same

set of information is available for both problems (one has all the information in the initial state,

the other gathers information during planning), then the set of compositions for PIW once the

atomic process with outputs are removed from them is the same as the set of compositions for

PCW .

Let PC = (s0, w0, D,�) be a complete HTN planning problem with preferences that corre-

sponds to (simpler version of equivalence where we have complete information) PCW . Given

the correctness of the translation [Sirin et al., 2005b] and given that our modification to the

translator did not change the correctness of the translation, we know from [Sirin et al., 2005b]

that there is a bijection between the set of plans for PC and the set of compositions PCW .

Then by Lemma 1 and knowing that (1) s0 = sI0 ∪ δ(X) since s = sI0 ∪ δ(Y) and (2)

postprocessing step replaced the values of the place holders with their real values, we know

that the set of plans for PC is the same as the set of plans for PI once the atomic process with

outputs are removed from them.

Hence, it follows that there is a bijection between between the set of plans for PI and the

set of compositions for PIW .

Bibliography

[Alrifai and Risse, 2009] Alrifai, M. and Risse, T. (2009). Combining global optimization

with local selection for efficient QoS-aware service composition. In Proceedings of the 18th

International World Wide Web Conference (WWW), pages 881–890.

[Andrews and et al, 2002] Andrews, T. and et al (2002). 1.1 online:

http://www.ibm.com/developerworks/library/specification/ws-bpel/.

[Au and Nau, 2007] Au, T.-C. and Nau, D. S. (2007). Reactive query policies: A formalism

for planning with volatile external information. In Proceedings of the IEEE Symposium on

Computational Intelligence and Data Mining (CIDM), pages 243–250.

[Bacchus and Kabanza, 1998] Bacchus, F. and Kabanza, F. (1998). Planning for temporally

extended goals. Annals of Mathematics and Artificial Intelligence, 22(1-2):5–27.

[Bacchus and Kabanza, 2000] Bacchus, F. and Kabanza, F. (2000). Using temporal logics to

express search control knowledge for planning. AI Magazine, 16:123–191.

[Baier et al., 2009] Baier, J., Bacchus, F., and McIlraith, S. (2009). A heuristic search ap-

proach to planning with temporally extended preferences. Artificial Intelligence, 173(5-

6):593–618.

[Baier et al., 2007] Baier, J. A., Bacchus, F., and McIlraith, S. A. (2007). A heuristic search

approach to planning with temporally extended preferences. In Proceedings of the 20th

International Joint Conference on Artificial Intelligence (IJCAI), pages 1808–1815.

[Battle et al., 2005] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R.,

Kifer, M., Martin, D., McIlraith, S., McGuinness, D., Su, J., and Tabet, S. (2005). Seman-

tic Web service ontology (SWSO) first-order logic ontology for Web services (FLOWS).

www.daml.org/services/swsl/report/.

165

BIBLIOGRAPHY 166

[Benton et al., 2012] Benton, J., Coles, A. J., and Coles, A. (2012). Temporal planning with

preferences and time-dependent continuous costs. In Proceedings of the 22nd International

Conference on Automated Planning and Scheduling (ICAPS).

[Benton et al., 2009] Benton, J., Do, M. B., and Kambhampati, S. (2009). Anytime heuristic

search for partial satisfaction planning. Artificial Intelligence, 173(5-6):562–592.

[Berardi et al., 2005] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., and Mecella,

M. (2005). Automatic service composition based on behavioral descriptions. International

Journal of Cooperative Information Systems, 14(4):333–376.

[Bertoli et al., 2010] Bertoli, P., Pistore, M., and Traverso, P. (2010). Automated composi-

tion of web services via planning in asynchronous domains. Artificial Intelligence, 174(3-

4):316–361.

[Bienvenu et al., 2006] Bienvenu, M., Fritz, C., and McIlraith, S. (2006). Planning with quali-

tative temporal preferences. In Proceedings of the 10th International Conference on Knowl-

edge Representation and Reasoning (KR), pages 134–144.

[Bienvenu et al., 2011] Bienvenu, M., Fritz, C., and McIlraith, S. A. (2011). Specifying and

computing preferred plans. Artificial Intelligence, 175(7–8):1308–1345.

[Bonet and Geffner, 2001] Bonet, B. and Geffner, H. (2001). Planning as heuristic search.

Artificial Intelligence, 129(1-2):5–33.

[Box and et al, 2003] Box, D. and et al (2003). 1.1. Online:www.w3.org/TR/SOAP/.

[Bruijn et al., 2006] Bruijn, J. D., Lausen, H., Polleres, A., and Fensel, D. (2006). The Web

service modeling language WSML: An overview. Technical report, DERI.

[Burch et al., 1992] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J.

(1992). Symbolic model checking: 1020 states and beyond. Information and Computation,

98(2):142–170.

[Calvanese et al., 2008] Calvanese, D., Giacomo, G. D., Lenzerini, M., Mecella, M., and Pa-

trizi, F. (2008). Automatic service composition and synthesis: the Roman Model. IEEE

Data Engineering Bulletin, 31(3):18–22.

BIBLIOGRAPHY 167

[Casati et al., 2000] Casati, F., Ilnicki, S., Jin, L.-j., Krishnamoorthy, V., and Shan, M.-C.

(2000). Adaptive and dynamic service composition in eFlow. In Proceedings of the 12th

International Conference on Advanced Information Systems Engineering (CAiSE), pages

13–31.

[Cheung and Gil, 2007] Cheung, W. K.-W. and Gil, Y. (2007). Privacy enforcement through

workflow systems in e-science and beyond. In Proceedings of the ISWC’07 Workshop on

Privacy Enforcement and Accountability with Semantics (PEAS).

[Chinnici and et al, 2001] Chinnici, R. and et al (2001). 1.2. Online: www.w3.org/TR/wsdl/.

[Chun et al., 2004] Chun, S. A., Atluri, V., and Adam, N. R. (2004). Policy-based Web service

composition. In Proceedings of the 14th International Workshop on Research Issues on Data

Engineering: Web Services for E-Commerce and E-Government Applications (RIDE), pages

85–92. IEEE Computer Society.

[Chun et al., 2005] Chun, S. A., Atluri, V., and Adam, N. R. (2005). Using semantics for

policy-based Web service composition. Distributed and Parallel Databases, 18(1):37–64.

[Cimatti et al., 1997] Cimatti, A., Giunchiglia, F., Giunchiglia, E., and Traverso, P. (1997).

Planning via model checking: A decision procedure for AR. In Proceedings of the 4th

European Conference on Planning (ECP), pages 130–142.

[Coles and Coles, 2011] Coles, A. J. and Coles, A. (2011). Lprpg-p: Relaxed plan heuris-

tics for planning with preferences. In Proceedings of the 21st International Conference on

Automated Planning and Scheduling (ICAPS).

[Currie and Tate, 1991] Currie, K. and Tate, A. (1991). O-plan: The open planning architec-

ture. Artificial Intelligence, 52(1):49–86.

[De Giacomo et al., 2000] De Giacomo, G., Lespérance, Y., and Levesque, H. (2000). Con-

Golog, a concurrent programming language based on the situation calculus. Artificial Intel-

ligence, 121(1-2):109–169.

[Edelkamp, 2006] Edelkamp, S. (2006). Optimal symbolic PDDL3 planning with MIPS-

BDD. In 5th International Planning Competition Booklet (IPC-2006), pages 31–33, Lake

District, England.

BIBLIOGRAPHY 168

[Emerson, 1990] Emerson, E. A. (1990). Temporal and modal logic. Handbook of theoretical

computer science: formal models and semantics, B:995–1072.

[Erol et al., 1994] Erol, K., Hendler, J. A., and Nau, D. S. (1994). UMCP: A sound and com-

plete procedure for hierarchical task-network planning. In Artificial Intelligence Planning

Systems, pages 249–254.

[Fox and Long, 2002] Fox, M. and Long, D. (2002). Domains of the 3rd international planning

competition. In Proceedings of the 6th International Conference on Artificial Intelligence

Planning and Scheduling (AIPS).

[Fritz et al., 2008] Fritz, C., Baier, J. A., and McIlraith, S. A. (2008). Congolog, sin trans:

Compiling congolog into basic action theories for planning and beyond. In Proceedings

of the 11th International Conference on Knowledge Representation and Reasoning (KR),

pages 600–610.

[Gabaldon, 2002] Gabaldon, A. (2002). Programming hierarchical task networks in the situa-

tion calculus. In AIPS’02 Workshop on On-line Planning and Scheduling.

[Gabaldon, 2004] Gabaldon, A. (2004). Precondition control and the progression algorithm.

In Proceedings of the 9th International Conference on Knowledge Representation and Rea-

soning (KR), pages 634–643. AAAI Press.

[Gedik et al., 2008] Gedik, B., Andrade, H., lung Wu, K., Yu, P. S., and Doo, M. (2008).

SPADE: the system s declarative stream processing engine. In ACM SIGMOD International

Conference on Management of Data (SIGMOD), pages 1123–1134.

[Gerevini et al., 2009] Gerevini, A., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y.

(2009). Deterministic planning in the fifth international planning competition: PDDL3 and

experimental evaluation of the planners. Artificial Intelligence, 173(5-6):619–668.

[Gerevini and Long, 2005] Gerevini, A. and Long, D. (2005). Plan constraints and preferences

for PDDL3. Technical Report 2005-08-07, Department of Electronics for Automation, Uni-

versity of Brescia, Brescia, Italy.

[Gerevini et al., 2003] Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through

stochastic local search and temporal action graphs in lpg. Journal of Artificial Intelligence

Research, 20:239–290.

BIBLIOGRAPHY 169

[Gerth et al., 1995] Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. (1995). Simple on-the-

fly automatic verification of linear temporal logic. In Proceedings of the 15th International

Symposium on Protocol Specification, Testing and Verification (PSTV), pages 3–18.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Hierarchical Task Net-

work Planning. Automated Planning: Theory and Practice. Morgan Kaufmann.

[Gil et al., 2004] Gil, Y., Deelman, E., Blythe, J., Kesselman, C., and Tangmunarunkit, H.

(2004). Artificial intelligence and grids: Workflow planning and beyond. IEEE Intelligent

Systems, 19(1):26–33.

[Green, 1969] Green, C. (1969). Application of theorem proving to problem solving. In Pro-

ceedings of the 1st International Joint Conference on Artificial Intelligence (IJCAI), pages

219–240.

[Hamadi and Benatallah, 2003] Hamadi, R. and Benatallah, B. (2003). A Petri net-based

model for Web service composition. In Proceedings of the 14th Australasian database

conference (ADC), pages 191–200. Australian Computer Society, Inc.

[Helmert, 2006] Helmert, M. (2006). The Fast Downward planning system. Journal of Artifi-

cial Intelligence Research, 26:191–246.

[Hoffmann, 2001] Hoffmann, J. (2001). FF: The fast-forward planning system. AI Magazine,

22(3):57–62.

[Hoffmann et al., 2009a] Hoffmann, J., Bertoli, P., Helmert, M., and Pistore, M. (2009a).

Message-based Web service composition, integrity constraints, and planning under uncer-

tainty: A new connection. Journal of Artificial Intelligence Research, 35:49–117.

[Hoffmann et al., 2007] Hoffmann, J., Bertoli, P., and Pistore, M. (2007). Web service com-

position as planning, revisited: In between background theories and initial state uncertainty.

In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI), pages

1013–1018.

[Hoffmann and Nebel, 2001] Hoffmann, J. and Nebel, B. (2001). The FF planning system:

Fast plan generation through heuristic search. Journal of Artificial Intelligence Research,

14:253–302.

BIBLIOGRAPHY 170

[Hoffmann et al., 2009b] Hoffmann, J., Weber, I., and Governatori, G. (2009b). On compli-

ance checking for clausal constraints in annotated process models. Journal Information

Systems Frontiers.

[Hoffmann et al., 2008] Hoffmann, J., Weber, I., Scicluna, J., Kaczmarek, T., and Ankolekar,

A. (2008). Combining scalability and expressivity in the automatic composition of semantic

Web services. In Proceedings of the 8th International Conference on Web Engineering

(ICWE), pages 98–107.

[Horrocks et al., 2003] Horrocks, I., Patel-Schneider, P., and van Harmelen, F. (2003). From

SHIQ and RDF to OWL: The making of a Web ontology language. Journal of Web Se-

mantics, 1(1):7–26.

[Hsu et al., 2006] Hsu, C.-W., Wah, B., Huang, R., and Chen, Y. (2006). Handling soft con-

straints and goals preferences in SGPlan. In 5th International Planning Competition Booklet

(IPC-2006), pages 39–41, Lake District, England.

[Hsu et al., 2007] Hsu, C.-W., Wah, B., Huang, R., and Chen, Y. (2007). Constraint parti-

tioning for solving planning problems with trajectory constraints and goal preferences. In

Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI),

pages 1924–1929, Hyderabad, India.

[Hull, 2005] Hull, R. (2005). Web services composition: A story of models, automata, and

logics. In Proceedings of the IEEE International Conference on Web Services (ICWS-05).

[Hull and Su, 2005] Hull, R. and Su, J. (2005). Tools for composite web services: a short

overview. SIGMOD Record, 34:86–95.

[Kambhampati, 2007] Kambhampati, S. (2007). Model-lite planning for the web age masses:

The challenges of planning with incomplete and evolving domain models. In Proceedings

of the 22nd National Conference on Artificial Intelligence (AAAI), pages 1601–1604.

[Kambhampati et al., 1998] Kambhampati, S., Mali, A. D., and Srivastava, B. (1998). Hybrid

planning for partially hierarchical domains. In Proceedings of the 15th National Conference

on Artificial Intelligence (AAAI), pages 882–888.

[Klusch et al., 2005] Klusch, M., Gerber, A., and Schmidt, M. (2005). Semantic Web service

composition planning with OWLS-Xplan. In AAAI-05 Fall Symposium.

BIBLIOGRAPHY 171

[Knoblock, 1995] Knoblock, C. A. (1995). Planning executing sensing and replanning for in-

formation gathering. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence (IJCAI), pages 1686–1693.

[Kolovski et al., 2005] Kolovski, V., Parsia, B., Katz, Y., and Hendler, J. A. (2005). Repre-

senting Web service policies in OWL-DL. In Proceedings of the 4th International Semantic

Web Conference (ISWC), pages 461–475.

[Kuter and Nau, 2004] Kuter, U. and Nau, D. S. (2004). Forward-chaining planning in non-

deterministic domains. In Proceedings of the 19th National Conference on Artificial Intelli-

gence (AAAI), pages 513–518.

[Kuter et al., 2009] Kuter, U., Nau, D. S., Pistore, M., and Traverso, P. (2009). Task decompo-

sition on abstract states, for planning under nondeterminism. Artificial Intelligence, 173(5-

6):669–695.

[Kuter et al., 2004] Kuter, U., Sirin, E., Nau, D. S., Parsia, B., and Hendler, J. A. (2004).

Information gathering during planning for Web service composition. In Proceedings of the

3rd International Semantic Web Conference (ISWC), pages 335–349.

[Kuter et al., 2005] Kuter, U., Sirin, E., Parsia, B., Nau, D. S., and Hendler, J. A. (2005). Infor-

mation gathering during planning for Web service composition. Journal of Web Semantics,

3(2-3):183–205.

[Kvarnström and Doherty, 2000] Kvarnström, J. and Doherty, P. (2000). Talplanner: A tem-

poral logic based forward chaining planner. Annals of Mathematics Artificial Intelligence,

30(1-4):119–169.

[Lago et al., 2002] Lago, U. D., Pistore, M., and Traverso, P. (2002). Planning with a language

for extended goals. In Proceedings of the 18th National Conference on Artificial Intelligence

(AAAI), pages 447–454.

[Lécué, 2009] Lécué, F. (2009). Optimizing QoS-aware semantic Web service composition.

In Proceedings of the 8th International Semantic Web Conference (ISWC), pages 375–391.

[Lécué et al., 2008] Lécué, F., Léger, A., and Delteil, A. (2008). DL reasoning and AI planning

for Web service composition. In Web Intelligence, pages 445–453.

BIBLIOGRAPHY 172

[Liaskos et al., 2010] Liaskos, S., McIlraith, S. A., Sohrabi, S., and Mylopoulos, J. (2010).

Integrating preferences into goal models for requirements engineering. In Proceedings of

the 10th International Requirements Engineering Conference (RE), pages 135–144.

[Liaskos et al., 2011] Liaskos, S., McIlraith, S. A., Sohrabi, S., and Mylopoulos, J. (2011).

Representing and reasoning about preferences in requirements engineering. Requirements

Engineering, 16:227–249. 10.1007/s00766-011-0129-9.

[Lin et al., 2008] Lin, N., Kuter, U., and Sirin, E. (2008). Web service composition with user

preferences. In Proceedings of the 5th European Semantic Web Conference (ESWC-08),

pages 629–643.

[Manna and Waldinger, 1980] Manna, Z. and Waldinger, R. J. (1980). A deductive approach to

program synthesis. ACM Transactions on Programming Languages and Systems, 2(1):90–

121.

[Marthi et al., 2007] Marthi, B., Russell, S. J., and Wolfe, J. (2007). Angelic semantics for

high-level actions. In Proceedings of the 17th International Conference on Automated Plan-

ning and Scheduling (ICAPS), pages 232–239.

[Marthi et al., 2008] Marthi, B., Russell, S. J., and Wolfe, J. (2008). Angelic hierarchical plan-

ning: Optimal and online algorithms. In Proceedings of the 18th International Conference

on Automated Planning and Scheduling (ICAPS), pages 222–231.

[Martin et al., 2007] Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M.,

Sycara, K., McGuinness, D., Sirin, E., and Srinivasan, N. (2007). Bringing semantics to

Web services with OWL-S. World Wide Web Journal, 10(3):243–277.

[McDermott, 1998] McDermott, D. V. (1998). PDDL — The Planning Domain Definition

Language. Technical Report TR-98-003/DCS TR-1165, Yale Center for Computational

Vision and Control.

[McDermott, 2002] McDermott, D. V. (2002). Estimated-regression planning for interactions

with Web services. In Proceedings of the 6th International Conference on Artificial Intelli-

gence Planning and Scheduling (AIPS), pages 204–211.

[McIlraith and Fadel, 2002] McIlraith, S. and Fadel, R. (2002). Planning with complex ac-

tions. In Proceedings of the 9th International Workshop on Non-Monotonic Reasoning

(NMR-02), pages 356–364.

BIBLIOGRAPHY 173

[McIlraith and Son, 2002] McIlraith, S. and Son, T. (2002). Adapting Golog for composition

of semantic Web services. In Proceedings of the 8th International Conference on Knowledge

Representation and Reasoning (KR), pages 482–493.

[McIlraith et al., 2001] McIlraith, S., Son, T., and Zeng, H. (2001). Semantic Web services.

IEEE Intelligent Systems. Special Issue on the Semantic Web, 16(2):46–53.

[Murata, 1989] Murata, T. (1989). Properties, analysis and applications. IEEE, 77(4):541–

580.

[Myers, 2000] Myers, K. L. (2000). Planning with conflicting advice. In Proceedings of the

5th International Conference on Artificial Intelligence Planning and Scheduling (AIPS),

pages 355–362.

[Narayanan and McIlraith, 2002] Narayanan, S. and McIlraith, S. (2002). Simulation, verifi-

cation and automated composition of Web services. In Proceedings of the 11th International

World Wide Web Conference (WWW).

[Nau et al., 2001] Nau, D., Muñoz-Avila, H., Cao, Y., Lotem, A., and Mitchell, S. (2001).

Total-order planning with partially ordered subtasks. In Proceedings of the 17th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 425–430.

[Nau et al., 2003] Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and

Yaman, F. (2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence

Research, 20:379–404.

[Palacios and Geffner, 2007] Palacios, H. and Geffner, H. (2007). From conformant into clas-

sical planning: Efficient translations that may be complete too. In Proceedings of the 17th

International Conference on Automated Planning and Scheduling (ICAPS), pages 264–271.

[Peltz, 2003] Peltz, C. (2003). Web services orchestration and choreography. Computer,

36(10):46–52.

[Petrick and Bacchus, 2002] Petrick, R. P. A. and Bacchus, F. (2002). A knowledge-based

approach to planning with incomplete information and sensing. In Proceedings of the 6th

International Conference on Artificial Intelligence Planning and Scheduling (AIPS), pages

212–222.

BIBLIOGRAPHY 174

[Petrick and Bacchus, 2004] Petrick, R. P. A. and Bacchus, F. (2004). Extending the

knowledge-based approach to planning with incomplete information and sensing. In Pro-

ceedings of the 14th International Conference on Automated Planning and Scheduling

(ICAPS), pages 2–11.

[Pistore et al., 2004] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., and Traverso, P. (2004).

Planning and monitoring Web service composition. In Proceedings of the 11th Interna-

tional Conference on Artificial Intelligence: Methodology, Systems, Applications(AIMSA),

pages 106–115.

[Pistore and Traverso, 2001] Pistore, M. and Traverso, P. (2001). Planning as model checking

for extended goals in non-deterministic domains. In Proceedings of the 17th International

Joint Conference on Artificial Intelligence (IJCAI), pages 479–484.

[Pistore et al., 2005] Pistore, M., Traverso, P., and Bertoli, P. (2005). Automated composi-

tion of Web services by planning in asynchronous domains. In Proceedings of the 15th

International Conference on Automated Planning and Scheduling (ICAPS), pages 2–11.

[Ponnekanti and Fox, 2002] Ponnekanti, S. R. and Fox, A. (2002). Sword: A developer toolkit

for Web service composition. In Proceedings of the 11th International World Wide Web

Conference (WWW).

[Rabideau et al., 2000] Rabideau, G., Engelhardt, B., and Chien, S. A. (2000). Using generic

preferences to incrementally improve plan quality. In Proceedings of the 5th International

Conference on Artificial Intelligence Planning and Scheduling (AIPS), pages 236–245.

[Ranganathan et al., 2009] Ranganathan, A., Riabov, A., and Udrea, O. (2009). Mashup-based

information retrieval for domain experts. In Proceedings of the 18th ACM Conference on

Information and Knowledge Management (CIKM), pages 711–720.

[Rao et al., 2004] Rao, J., Küngas, P., and Matskin, M. (2004). Logic-based Web services

composition: From service description to process model. In Proceedings of the IEEE

International Conference on Web Services (ICWS), page 446. IEEE Computer Society.

[Reiter, 2001] Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying

and Implementing Dynamical Systems. MIT Press.

BIBLIOGRAPHY 175

[Riabov and Liu, 2005] Riabov, A. and Liu, Z. (2005). Planning for stream processing sys-

tems. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI),

pages 1205–1210.

[Riabov and Liu, 2006] Riabov, A. and Liu, Z. (2006). Scalable planning for distributed

stream processing systems. In Proceedings of the 16th International Conference on Au-

tomated Planning and Scheduling (ICAPS), pages 31–41.

[Richter et al., 2008] Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks revisited.

In Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI), pages

975–982.

[RuleML, 2008] RuleML (2008). Rule markup language (RuleML). ruleml.org/.

[Schuster et al., 2000] Schuster, H., Georgakopoulos, D., Cichocki, A., and Baker, D. (2000).

Modeling and composing service-based and reference process-based multi-enterprise pro-

cesses. In Proceedings of the 12th International Conference on Advanced Information

Systems Engineering (CAiSE), pages 247–263.

[Shaparau et al., 2006] Shaparau, D., Pistore, M., and Traverso, P. (2006). Contingent plan-

ning with goal preferences. In Proceedings of the 21st National Conference on Artificial

Intelligence (AAAI).

[Sirin and Parsia, 2004] Sirin, E. and Parsia, B. (2004). Planning for semantic Web services.

In Semantic Web Services Workshop at the 3rd International Semantic Web Conference.

[Sirin et al., 2005a] Sirin, E., Parsia, B., and Hendler, J. (2005a). Template-based composition

of semantic Web services. In AAAI-05 Fall Symposium on Agents and the Semantic Web.

[Sirin et al., 2005b] Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D. (2005b). HTN

planning for Web service composition using SHOP2. Journal of Web Semantics, 1(4):377–

396.

[Sohrabi et al., 2010] Sohrabi, S., Baier, J., and McIlraith, S. (2010). Diagnosis as planning re-

visited. In Proceedings of the 12th International Conference on the Principles of Knowledge

Representation and Reasoning (KR), pages 26–36.

BIBLIOGRAPHY 176

[Sohrabi et al., 2009] Sohrabi, S., Baier, J. A., and McIlraith, S. A. (2009). HTN planning

with preferences. In Proceedings of the 21st International Joint Conference on Artificial

Intelligence (IJCAI), pages 1790–1797.

[Sohrabi et al., 2011] Sohrabi, S., Baier, J. A., and McIlraith, S. A. (2011). Preferred explana-

tions: Theory and generation via planning. In Proceedings of the 25th National Conference

on Artificial Intelligence (AAAI), pages 261–267. Accepted as both oral and poster presen-

tation.

[Sohrabi and McIlraith, 2008] Sohrabi, S. and McIlraith, S. A. (2008). On planning with pref-

erences in HTN. In Proceedings of the 12th International Workshop on Non-Monotonic

Reasoning (NMR), pages 241–248.

[Sohrabi and McIlraith, 2009] Sohrabi, S. and McIlraith, S. A. (2009). Optimizing Web ser-

vice composition while enforcing regulations. In Proceedings of the 8th International Se-

mantic Web Conference (ISWC), pages 601–617.

[Sohrabi and McIlraith, 2010] Sohrabi, S. and McIlraith, S. A. (2010). Preference-based Web

service composition: A middle ground between execution and search. In Proceedings of the

9th International Semantic Web Conference (ISWC), pages 713, 729.

[Sohrabi et al., 2006] Sohrabi, S., Prokoshyna, N., and McIlraith, S. A. (2006). Web service

composition via generic procedures and customizing user preferences. In Proceedings of

the 5th International Semantic Web Conference (ISWC), pages 597–611.

[Sohrabi et al., 2012] Sohrabi, S., Udrea, O., Ranganathan, A., and Riabov, A. (2012). Com-

position of flow-based applications with HTN planning. In International Scheduling and

Planning Applications woRKshop (SPARK), pages 1–7. This paper also appears in the

AAAI-12 Workshop on Problem Solving using Classical Planners (CP4PS).

[Son and Pontelli, 2006] Son, T. C. and Pontelli, E. (2006). Planning with preferences using

logic programming. Theory and Practice of Logic Programming, 6(5):559–607.

[Srivastava and Koehler, 2003] Srivastava, B. and Koehler, J. (2003). Web service composition

- current solutions and open problems. In ICAPS 2003 Workshop on Planning for Web

Services, pages 28–35.

[Tate, 1977] Tate, A. (1977). Generating project networks. In Proceedings of the 5th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 888–893.

BIBLIOGRAPHY 177

[Thakkar et al., 2005] Thakkar, S., Ambite, J. L., and Knoblock, C. A. (2005). Composing, op-

timizing, and executing plans for bioinformatics Web services. VLDB Journal, 14(3):330–

353.

[Tonti et al., 2003] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., and Uszok,

A. (2003). Semantic Web languages for policy representation and reasoning: A comparison

of KAoS, Rei, and Ponder. In Proceedings of the 2rd International Semantic Web Confer-

ence (ISWC), pages 419–437.

[Traverso and Pistore, 2004] Traverso, P. and Pistore, M. (2004). Automatic composition of

semantic Web services into executable processes. In Proceedings of the 3rd International

Semantic Web Conference (ISWC).

[Valero et al., 2009] Valero, V., Cambronero, M. E., Dı́az, G., and Macià, H. (2009). A Petri

net approach for the design and analysis of web services choreographies. Journal of Logic

and Algebraic Programming, 78(5):359 – 380.

[Waldinger, 2001] Waldinger, R. J. (2001). Web agents cooperating deductively. In Proceed-

ings of the 1st International Workshop on Formal Approaches to Agent-Based Systems-

Revised Papers (FAABS), pages 250–262.

[Wilkins, 1988] Wilkins, D. E. (1988). Practical planning: extending the classical AI planning

paradigm. Morgan Kaufmann, San Francisco, CA.

[WS-Policy, 2006] WS-Policy (2006). Web service policy framework (WS-policy).

www.w3.org/Submission/WS-Policy/.

[Zeng et al., 2003] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and Sheng, Q. Z.

(2003). Quality driven web services composition. In Proceedings of the 12th International

World Wide Web Conference (WWW), pages 411–421.

[Zhovtobryukh, 2007] Zhovtobryukh, D. (2007). A Petri net-based approach for automated

goal-driven web service composition. Simulation, 83(1):33–63.

	Introduction
	Motivation
	Thesis Statement
	Approach
	Challenges and Contributions
	Organization of this Thesis

	Background
	Introduction
	Web Service Composition Framework
	Planning Approaches to the WSC Problem
	Classical Planning
	Planning with Procedural Domain Control Knowledge
	BPEL and Planning
	Other Approaches

	Non-planning Approaches to the WSC Problem
	Workflows
	QoS-Aware
	The Petri Nets
	The Roman Model

	Summary

	Characterizing Web Service Composition
	Introduction
	Contributions

	OWL-S: From Services to Actions
	The Customization of the WSC Problem via Golog
	Preliminaries
	Customized Composition of Web services via Golog

	The Customization of the WSC Problem via HTNs
	Preliminaries
	Customized Composition of Web services via HTNs

	Situation Calculus Specification of HTN Planning
	Summary and Discussion

	Specifying Soft and Hard Constraints
	Introduction
	Contributions

	Set of Desirable Criteria for Constraint Specification
	Specifying Preferences in LPP
	The Semantics of LPP
	Integrated Optimal Web Service Selection

	Specifying Preferences in LPH
	The Semantics of LPH

	Specifying Preferences in our PDDL3 Extension
	Overview of PDDL3
	PDDL3 Extension for HTN Planning
	The Semantics
	Service Selection Preferences

	Specifying Hard Constraints
	Summary and Discussion

	Computing Optimized Compositions
	Introduction
	Contributions

	gologpref: Computing Optimal Compositions
	Algorithm and its Properties
	Implementation and Evaluation

	HTNPlan: Computing Optimal Plans
	Progression
	Admissible Evaluation Function
	Implementation and Evaluation

	HTNPlan-P: Computing High-Quality Plans
	Preprocessing HTN problems
	Algorithm
	Heuristics
	Optimality and Pruning
	Implementation and Evaluation

	HTNWSC-P: Computing High-Quality Compositions
	Algorithm
	Implementation and Evaluation

	Summary and Discussion

	Execution and Optimization
	Introduction
	Contributions

	Decoupling Data Optimization From Search
	Middle-Ground Execution
	Computing a Preferred Composition
	Properties of the Algorithm

	Implementation and Evaluation
	Summary and Discussion

	Beyond Web Services
	Introduction
	Contributions

	Preliminaries
	Specifying Patterns in Cascade
	Specifying Preferences

	From Cascade Patterns to HTN Planning
	Creating the HTN Planning Domain
	Specifying Cascade Goals as Preferences
	Flow-based HTN Planning Problem with Preferences

	Computation
	Enhanced Lookahead Heuristic (ELA)
	Generation from Cascade
	Generation from HTN

	Experimental Evaluation
	Summary and Discussion

	Conclusion and Future Work
	Conclusion
	Problems and Contributions
	Future Work

	Proof of Theorem 6.1
	Bibliography

