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Abstract

In discrete dynamical systems change results from actions.
As such, given a set of observations, diagnoses often take the
form of posited events that result in the observed behaviour.
In this paper we revisit formal characterizations of diagno-
sis, and their relationship to planning. We do so from both
a theoretical and a computational perspective. In particular,
we extend the characterization of diagnosis to deal with the
case of incomplete information, and rich preferences. We
also explore the use of state-of-the-art planning technology
for the automated generation of diagnoses. Examining sev-
eral classes of diagnosis problems, we provide both proof of
concept and benchmark experiments, the latter showing supe-
rior performance to a leading diagnosis engine. Our findings
help support the hypothesis that planning technology holds
great promise for efficient generation of diagnoses.

Introduction

System diagnosis is critical to the operation of many en-
gineered systems. As the complexity of such systems in-
creases, diagnosis often eludes human reasoning requiring
the automation of diagnosis. A number of today’s engi-
neered systems are dynamical and are controlled by discrete
event controllers. It is the problem of diagnosing discrete
dynamical systems that is the subject of this work.

Given a theory of system behaviour and a set of obser-
vations, diagnosis is often cast as the task of identifying a
(minimal) set of components whose malfunctioning is con-
sistent with the observations (e.g., Reiter 1987; de Kleer et
al. 1992). In dynamical settings where actions cause change,
diagnosis can be cast in terms of the occurrence of actions
and events. Hence, in order to explain what happened to
the system it is often enough to find a sequence of actions
or events that have occurred and that can account for the ob-
served behaviour. While several researchers observed the re-
lationship between actions and diagnoses (e.g., Cordier and
Thiébaux 1994; McIlraith 1994), Sampath et al. (1995) were
the first to present comprehensive results diagnosing discrete
event systems by modeling them as finite state automata
and characterizing diagnosis as a reachability analysis prob-
lem. Thielscher (1997), McIlraith (1998), and subsequently
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Iwan (2001) and Baral et al. (2000) cast the diagnosis prob-
lems in terms of an Artificial Intelligence (AI) theory of ac-
tion and change. McIlraith and Iwan proposed generating
diagnoses using deductive plan synthesis, whereas Baral et
al. proposed the use of logic programming and later answer
set programming (ASP). Research on diagnosis of discrete
dynamical systems continued with the development of algo-
rithms for generating trajectories that account for observa-
tions (e.g., Lamperti and Zanella 2003; Pencolé and Cordier
2005). However, generating such diagnoses was computa-
tionally expensive.

The problem of diagnosing discrete dynamical systems
has been the topic of renewed interest with the work of
Grastien, Rintanen and colleagues (e.g., Grastien et al.
2007a, Rintanen and Grastien 2007) who also observed that
diagnosis is reducible to a path finding problem. How-
ever, more in keeping with Reiter’s original characteriza-
tion of diagnosis of static systems and to previous ASP
approaches, they characterized diagnosis as a satisfiability
problem (SAT), embedding the path finding aspect by ap-
pealing to an encoding of their dynamical domain in terms
of Kautz and Selman’s encoding (1999) for SAT-based plan-
ning. Building on their characterization, they implemented
an approach to generating diagnoses using SAT solvers.
Their experiments showed impressive performance relative
to the state of the art.

In this paper, we revisit the characterization of diagnosis
of discrete dynamical systems, and its relationship to plan-
ning from both a theoretical and a computational perspec-
tive. Our contributions are 3-fold: 1) We provide a formal
characterization of diagnosis of discrete dynamical systems
in terms of a theory of action and change. This characteri-
zation generalizes previous work, dealing both with incom-
plete information and with the important issue of incorpo-
rating commonsense and expert knowledge. 2) We establish
a formal correspondence between our characterization and
AI planning. 3) As a result of (2) we show how the genera-
tion of diagnoses can be realized by state-of-the-art planning
techniques. Examining several classes of diagnosis prob-
lems, we provide both proof of concept and benchmark ex-
periments, the latter showing superior performance to a lead-
ing dynamical diagnosis engine, based on SAT. Our findings
help support the hypothesis that planning technology holds
great promise for efficient generation of diagnoses.
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Figure 1: The automaton representation of one component

Preliminaries

A Running Example

Throughout this paper we consider a computer system di-
agnosis domain introduced and described more fully by
Grastien et al. (2007a). This domain is sufficiently complex
to be challenging to traditional approaches to dynamical di-
agnosis and serves as a source of comparison between the
performance of our work and that of Grastien et al. The
domain describes a system consisting of 20 identical com-
ponents/computers in a 5×4 grid. Each component has four
neighbours; corner and border components are neighbours
to components on their opposite sides.

Figure 1 provides an automaton representation of one
component. Each component starts initially in the state O.
When a component fails, its state changes from O to F and
sends a message reboot! to its neighbours. The neighbours
receive the message reboot? and change their state from O
to W, WW to W, R to R or FF to FF depending on their cur-
rent state. The events IReboot and IAmBack correspond to
a component sending an alarm that can be observed. Given
these observations the objective is to monitor this system and
determine what happened to the system.

Situation Calculus

We use the situation calculus and first-order logic to axioma-
tize our diagnosis domains. The situation calculus is a sorted
logical language for specifying and reasoning about dynam-
ical systems (Reiter 2001). The sorts of the language are
situation, action, fluent and a catch-all object sort. Situa-
tions are sequences of actions that represent a history of the
evolution of the world from an initial situation, which is de-
noted by S0. The distinguished function do(a, s) maps a situ-
ation and an action into a new situation, thus inducing a tree
of situations rooted in S0. Fluents are predicate or function
symbols used to describe the properties that hold true in a
particular situation. Thus, a fluent is a predicate or function
with a situation argument, e.g., F (x, s). Finally the atomic
expression Poss(a, s) is true if action a is possible in situa-
tion s.

Dynamical systems are modelled using a basic action the-
ory (BAT). Reiter’s BAT has the form

Σ = ΣF ∪ Σss ∪ Σap ∪ Σuna ∪ ΣS0
.

Below we elaborate on the form of each of these sets, as we
use them here. Note that we sometimes stipulate that a for-
mula be uniform in s. This designates that the only situation

term in the formula is s. Following standard notational con-
vention for the situations calculus, free variables in formu-
lae are assumed to be universally quantified from the outside
unless otherwise noted.

• ΣF is a set of foundational axioms. Foundational axioms
axiomatize situations and the situation predecessor rela-
tion, �. A situation s′ precedes a situation s, i.e., s′ � s,
if and only if s′ is a proper prefix of s.

• Σss is a set of successor state axioms (SSAs), one for each
fluent F , of the form:

F (x1, . . . , xn, do(a, s)) ≡ ΦF (a, x1, . . . , xn, s),

where ΦF (a, x1, . . . , xn, s) is a formula uniform in s and
whose free variables are among a, x1, . . . , xn, and s.

• Σap is a set of action precondition axioms. For each ac-
tion function symbol A of the language, there is a precon-
dition axiom of the form:

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s),

where ΠA(x1, . . . , xn, s) is a formula uniform in s
and whose free variables are among x1, . . . , xn and
s. ΠA(x1, . . . , xn, s) expresses all the conditions under
which a can be performed in s.

• Σuna is a set of unique names axioms for actions.

• ΣS0
is a set of axioms describing the initial state of the

world. As such formulae are uniform in S0.

We henceforth refer to actions and events synonymously
as actions. We use the notation a to abbreviate [a1, ..., an],
and do(a, s) to abbreviate do(an, do(an−1, ..., do(a1, s))).
We also use notation s � s′ to abbreviate s � s′ ∨ s = s′,
and notation s � s′ � s′′ to abbreviate s � s′ ∧ s′ � s′′. A
situation s is executable if all actions in s have their precon-
ditions satisfied in the situation where they are performed:

executable(s)
def
= (∀a, s′).do(a, s′) � s ⊃ Poss(a, s′).

Dynamical Diagnosis

In this section, we characterize dynamical diagnosis in the
situation calculus. Our characterization is a generalization
of those proposed by McIlraith (1998) and Iwan (2001).
As both of those characterizations do, we encode the be-
haviour of the system to be diagnosed as a situation cal-
culus BAT, encode observations as situation calculus for-
mulae, and conjecture a sequence of actions to explain the
observations, i.e., what went wrong with the system. Our
characterization is differentiated in that our notion of diag-
nosis includes an assumption regarding the initial state, in
the spirit of assumption-based diagnosis (McIlraith 1998,
Def. 7). Further, in our definition, observations can be ex-
pressed as a conjunction of formulae relativized to multi-
ple situations within the trajectory of the diagnosis rather
than a formula that must hold in the final state. This gener-
alizes both McIlraith’s and Iwan’s account of observations,
and supports both the observation of the state of the system
at various stages and the occurrence of events or actions.
Baral et al. (2000) considered a more limited form of such
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temporally extended observations, representing them as nar-
rative to be explained. Finally, note that we do not exploit
an explicit representation of time, which we see as a feature,
though time can be represented in the situation calculus.

In addition to the definition of diagnosis, we formally de-
fine two classes of criteria that can be used to differentiate
diagnoses. The first class of criteria is domain-independent;
criteria are based on notions of minimality, in keeping with
previous work in diagnosis. The second class of criteria
supports the definition of domain-specific commonsensical
preferences over diagnoses.

Characterizing Diagnoses

We begin with a definition of the system to be diagnosed.

Definition 1 (System)
A system DS is a tuple (Σ,OBS [S0, s]) such that:

• Σ is the system description, encoded as a consistent BAT.

• The set of action terms A in the language of Σ is the union
of two disjoint sets Anormal and Afaulty . These sets dis-
tinguish normal and faulty actions of the system.

• OBS [S0, s], is a sentence of the situation calculus whose
only free variable is s and whose situation terms are re-
stricted to si such that S0 � si � s.

We use the square bracket suffix [S0, s] in OBS [S0, s],
in place of a single situation term, to denote a formula of
restricted syntactic form. In particular OBS refers only to
situations along the branch of the situation tree that starts in
S0 and ends in s. More precisely, the formula only mentions
situation terms si such that S0 � si � s.

Note that Definition 1 distinguishes a subset of the ac-
tions in our system description as faulty. This is exploited
in the definition of minimal diagnosis to reflect a preference
for diagnoses that minimize the occurrence of faulty actions.
Such a distinction is often compelling for engineered hard-
ware systems, but may not be compelling in general. As
such, nothing in our general definition of diagnosis requires
such a distinction – Afaulty may be the empty set. More
generally, we make few assumptions here about the axiom-
atization of the behaviour of the system. Designation of a
subset of components of interest (COMPS) and a subset of
AB-fluents (AB(c)) is common practice in diagnosis (e.g.,
Reiter 1987) and is supported by our formalism, leading to
other preference criteria over diagnoses.

Also observe that the sentence OBS [S0, s] describes ob-
servations on the state of the system and/or the occurrence of
actions in the history of situation s. It has the property that
it does not refer to situations other than those that occur in
the branch associated with s. The following example illus-
trates a possible observation formula. In the first example,
observations are totally ordered and include both an action
occurrence and observations about the state of the system.
The domain is a car diagnosis domain. Initially the car is
at home and the gas tank full. The car is driven to work, it
subsequently would not start and the radio is not working.

∃s1, s2, s3.

athome(S0) ∧ fulltank (S0) ∧ s2 = do(drive2work, s1) ∧

¬carstart(s3) ∧ ¬radioworks(s)∧

S0 � s1 � s2 ∧ s2 � s3 � s.

Partially ordered observations can be modelled in a simi-
lar way by only specifying the required ordering constraints.

Returning to our example computer domain, recall that
events IReboot and IAmBack send observable alarms. Here
we encode these alarms as fluents obsReboot and obsBack
respectively. The following is an observation formula that
specifies a set of totally ordered observations. Note that cij

refers to the component in grid location (i, j).

∃s1, s2, s3, s4, s5, s6.

obsReboot(c11, s1) ∧ obsReboot(c00, s2) ∧ obsReboot(c20, s3)∧

obsReboot(c11, s4) ∧ obsReboot(c13, s5) ∧ obsBack(c11, s6)∧

S0 � s1 � s2 ∧ s2 � s3 � s4 ∧ s4 � s5 � s6 ∧ s6 � s.

The following is an observation formula that specifies a
set of partially ordered observations for the computer do-
main.

∃s1, s2, s3, s4, s5, s6.

obsReboot(c22, s1) ∧ obsReboot(c12, s2) ∧ obsReboot(c32, s3)∧

obsReboot(c23, s4) ∧ obsReboot(c21, s5) ∧ obsBack(c32, s6)∧

S0 � s1 ∧ S0 � s2 � s ∧ S0 � s3 � s∧

S0 � s4 � s ∧ S0 � s5 � s ∧ s1 � s6 � s.

Now we are ready to provide a formal definition of dy-
namical system diagnosis. Intuitively, a diagnosis is com-
posed of two elements: a set of consistent assumptions re-
garding the initial state, and an executable sequence of ac-
tions that entails the observation. The set of consistent as-
sumptions regarding the initial state is encoded in a formula
referred to as H(S0). In cases where we have complete in-
formation about the initial state, H(S0) is the empty set.
However, in cases where we have incomplete information
about the initial state, we may be forced to make certain as-
sumptions about the initial state, either because we need to
establish the preconditions for actions we want to conjecture
(e.g., we may wish to assume that our gas tank is low in order
to generate a diagnosis that includes the action that we ran
out of gas), or we may just need to establish conditions that
we did not observe but that affect our diagnoses. Consider
a medical diagnosis example where a patient presents with
difficulty breathing and a rash on the face. In the absence
of information about whether the patient has allergies, it is
sensible to generate two different diagnoses, one predicated
on the assumption (in H(S0)) that the patient has allergies,
and another predicated on the assumption of no allergies. Fi-
nally, in the case where we have a domain with components
that are deemed to be faulty or AB, it is often compelling to
assume ¬AB(ci, S0), for all components. I.e., all compo-
nents are operating normally in the initial situation.
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Definition 2 (Diagnosis)
Given a system DS = (Σ,OBS [S0, s]), a diagnosis is a
tuple (H(S0),a), where a = [a1, ..., ak] such that:

Σ∪H(S0) |= ∃s. s = do(a, S0)∧executable(s)∧OBS [S0, s],

where H(S0) contains sentences of the form [¬]F (c, S0), F
is a fluent symbol and c is a vector of constants. Further-
more, Σ ∪ H(S0) is consistent.

Our definition does not distinguish between diagnoses of
differing quality. In all cases, we likely prefer diagnoses
that avoid conjecturing extraneous actions or lengthy convo-
luted action sequences that are not germane to accounting
for system observations. Beyond this, there may be domain-
specific information that we would like to bring to bear in
determining preferred diagnoses. Definition 3 provides a
general definition of preferred diagnosis in terms of a reflex-
ive and transitive preference relation 
 between diagnoses.
If D1 and D2 are diagnoses for system DS and D1 
 D2

we say that D1 is at least as preferred as D2. D1 ≺ D2 is
an abbreviation for D1 
 D2 and D2 �
 D1.

Definition 3 (Preferred Diagnosis)
Given a system DS, D is a preferred diagnosis for DS if
and only if D is a diagnosis for DS and there does not exists
another diagnosis D′ for DS such that D′ ≺ D.

The ≺ relation can be realized in many ways. One such
measure is to minimize abnormality or faultiness. In the case
of static diagnosis, this translates into Reiter’s notion (1987)
of minimizing the number of components that a diagnosis
determines to be behaving abnormally. In a dynamical diag-
nosis setting, this translates into minimizing the number of
abnormal action occurrences (e.g., (Cordier and Thiébaux
1994)). In the next section we proposed different preference
criteria for diagnoses.

Characterizing Preferred Diagnoses

In this section we explore two classes of criteria for defining
preferred diagnoses: domain-independent notions based on
minimality, and domain-specific notions based on common-
sensical or expert knowledge about the domain.

Minimality Preferences over Diagnoses

In many situations, the most important criterion that dis-
tinguishes two diagnoses is the number of faulty actions
posited by the diagnoses. Below we define a preference re-
lation for diagnoses that accounts for this notion.

Definition 4 (Minimal Fault Diagnosis Criterion)
Given a system DS and diagnoses D = (H(S0),a) and
D′ = (H ′(S0),a

′) for DS, D is preferred to D′ with
respect to the minimal fault diagnosis criterion – stated
D ≺minfault D′ – iff |a � Afaulty | < |a′ � Afaulty |, where
a� B denotes the longest subsequence of a whose elements
are in set B.

Note that in the case of incomplete information about
the initial state and where additional assumptions are being
made about the initial state to account for the observations,

this criterion (and the other minimality criteria that follow)
can be misleading. At the extreme, consider the case where
H(S0) states that c1 and c2 are faulty in S0 and a contains no
faulty actions, compared to the case where H ′(S0) is empty
and a

′ posits the occurrence of two faulty actions resulting
in c1 and c2 becoming faulty. The minimal fault diagnosis
criterion would prefer the first diagnosis to the second, but it
is not clear that this is desirable. Further (domain-specific)
refinement of these criteria can address this issue.

Two other domain-independent notions of preference are
shorter and simpler: the former preferring diagnoses of
shorter length; the latter preferring diagnoses that contain a
subset of the actions of the other, both in name and in num-
ber. Both are best applied in conjunction with other prefer-
ence criteria as a tie-breaker.

Definition 5 (Shorter Diagnosis Criterion)
Given a system DS and diagnoses D = (H(S0),a) and
D′ = (H ′(S0),a

′) for DS, D is preferred to D′ with re-
spect to its length – stated D ≺short D′ – iff |a| < |a′|

Definition 6 (Simpler Diagnosis Criterion)
Given a system DS and diagnoses D = (H(S0),a) and
D′ = (H ′(S0),a

′) for DS, D is preferred to D′ with
respect to its simplicity – stated D ≺simple D′ – iff
{a | a in a} ⊆ {a | a in a

′} and |a| < |a′|

Domain-Specific Preferences over Diagnoses

In addition to the above domain-independentnotions of pref-
erence, it is often natural to make use of some domain-
specific preferences over diagnoses. In cases where we have
a probability distribution and can characterize a notion of
most likely diagnosis, this is a good quality measure and
provides for an effective characterization of preferred diag-
noses. Approximations of Dynamic Bayes Nets and sam-
pling techniques such as particle filtering have proven to be
useful paradigms for addressing this class of problems (e.g.,
Ng et al. 2002). Unfortunately, in many real-world systems
we do not have probability estimates and must rely on com-
monsense knowledge of what typically goes wrong with a
system under different circumstances. Instead we have com-
monsense or expert knowledge that may be in a form similar
to the following: 1) “If the car does not start, and it is cold,
I strongly suspect a battery malfunction.” 2) “When pho-
tocopier YY-2233 fails, I strongly suspect the lamp is burnt
out.” 3) “If the person is male and over 40 and presents uri-
nary problems, then I strongly suspect a prostate problem.”
4) “If I puncture my tire, it will eventually be flat.”

The notion of incorporating expert and commonsensical
knowledge in the form of fault models and default prefer-
ences over diagnoses is not new and has proven effective in
the diagnosis of static systems (e.g., Junker 1991). Indeed,
much of the success of expert systems for fault diagnosis
can be attributed to this form of knowledge. However, to
date, rich domain-specific preferences have not been incor-
porated into the diagnosis of dynamical systems. Here we
propose both a means of specifying rich preferences for dy-
namical systems, and later a means of computing them. To
do so we make use of preference languages proposed for
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planning to encode preferences over diagnoses. The qual-
itative preference language LPP (Bienvenu et al. 2010;
2006) and the preference language extension to the Planning
Domain Definition Language PDDL3 (Gerevini et al. 2009)
both present viable options. In particular, both support the
expression of temporally extended preferences which enable
preferred orderings on the occurrence of events. We use
LPP here since its semantics has been defined in the sit-
uation calculus.

Specifying Diagnostic Preferences LPP (Bienvenu et al.
2010; 2006), is a first-order language for specifying user
preferences. It enables the specification of preferences over
properties of state and action occurrences as well as tem-
porally extended preferences over multiple states. Unlike
many preference languages, LPP provides a total order on
preferences. It is qualitative in nature, facilitating elicitation.

User preferences in LPP are specified via a so-called
General Preference Formula (GPF), Φ. This formula is a
composition of individual preference statements combined
together using conditionals, conjunction, and disjunction. In
order to construct a GPF, we begin with the basic build-
ing block, a Trajectory Property Formula (TPF) (formerly
called a BDF) which describes properties of situations (i.e.,
trajectories from S0). The definitions that follow are taken
from Bienvenu et al.’s paper (2010).

Definition 7 (Trajectory Property Formula (TPF))
A trajectory property formula is a sentence drawn from the
smallest set B where:

• F ⊂ B, where F is a set of fluent predicates

• R ⊂ B, where R is a set of non-fluent predicates

• If f ∈ F , then final(f) ∈ B

• If a ∈ A, then occ(a) ∈ B

• If ϕ1 and ϕ2 are in B, then so too are ¬ϕ1, ϕ1 ∧ϕ2, ϕ1 ∨
ϕ2, ∃xϕ1, ∀xϕ1, next(ϕ1), always(ϕ1), eventually(ϕ1),
and until(ϕ1, ϕ2)

Following convention, fluents are represented in situation-
suppressed form in LPP (e.g., the fluent noisy(c, s) is rep-
resented as noisy(c)). final(f ) states that fluent f holds
in the final situation, occ(a) states that action a occurs in
the present situation, and next(ϕ1), always(ϕ1), eventu-
ally(ϕ1), and until(ϕ1, ϕ2) are basic linear temporal logic
(LTL) constructs. TPFs establish properties of situations. By
combining TPFs using boolean and temporal connectives,
we are able to express a wide variety of properties. Given
a particular situation (diagnosis), a TPF is either satisfied or
not satisfied by the situation relative to a BAT.

The following are examples of TPFs from an augmenta-
tion of the computer diagnosis domain introduced in Section
2. Recall that these are hard properties of situations that will
be used softly to express preferences.

(∀c).always(¬occ(fault(c)) (P1)

(∀c).always(occ(dskFail(c)) ⊃ eventually(scanSlow(c))) (P2)

(∀c).always(occ(dskFail(c)) ⊃ noisy(c)) (P3)

(∀c).always(occ(CPUFail(c)) ⊃ noisy(c)) (P4)

(∀c).always(newSoft(c) ⊃ occ(softFail(c))) (P5)

P1 states that faulty actions never occur. P2 states that if
component c has a hard disk failure, scanning of the compo-
nent will eventually be slow. Similarly, P3 (resp. P4) states
that if the component has a hard disk (resp. CPU) failure
then it is noisy. Both of these statements can be used to es-
tablish corroborative evidence for a conjectured failure, and
as such, they can be used as building blocks in establishing
preferred diagnoses. However, since they will be applied
as preferences, the absence of the evidence (noisy(c)) does
not cause a diagnosis to be completely eliminated from con-
sideration. Finally, P5 states that if the software is newly
installed, then a software fault will occur.

To define preference orderings over alternative properties
of situations, we define Atomic Preference Formulae. Each
alternative being ordered comprises two components: the
property of the situation, specified by a TPF, and a value
term which stipulates the relative strength of the preference.

Definition 8 (Atomic Preference Formula (APF))
Let V be a totally ordered, finite set with minimal element
vmin and maximal element vmax. An atomic preference for-
mula is a formula ϕ0[v0] � ... � ϕn[vn], where each ϕi is
a TPF, each vi ∈ V , vi < vj for i < j, and v0 = vmin.
When n = 0, atomic preference formulae correspond to
TPFs.

V can be any ordered set of descriptors, e.g., excellent,
good, ok, poor, horrible or alternatively it can be numeric,
with vmin most desirable. For ease of explication, let V =
[0, 1] and consider the APF

P3[0] � P4[0.7] (P6)

which states that we strongly prefer a diagnosis in which a
hard disk fault results in a noisy component over a diagno-
sis in which a CPU fault results in a noisy component. The
strong preference is reflected in the different values associ-
ated with each of the two TPFs.

To allow the user to aggregate preferences, General Pref-
erence Formulae extend LPP to conditional, conjunctive,
and disjunctive preferences.

Definition 9 (General Preference Formula (GPF))
A formula Φ is a general preference formula if one of the
following holds:

• Φ is an atomic preference formula
• Φ is γ : Ψ, where γ is a TPF and Ψ is a general preference

formula [Conditional]
• Φ is one of

– Ψ0 & Ψ1 & ... & Ψn [General Conjunction]

– Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a general preference formula.

For example, the following GPF presents one way to com-
bine preferences for the computer domain:

P1 & P5 & P6 (P7)

Note that in both (P6) and (P7) we used equation numbers
within formulae. This was a shorthand to facilitate readabil-
ity and understanding and is not part of the syntax of the lan-
guage. Preference formulae must be specified in full within
APFs and GPFs.
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Semantics The semantics of LPP is defined in the situ-
ation calculus, as fully described in (Bienvenu et al. 2010).
Here we give an intuitive overview. TPFs are interpreted as
situation calculus formulae and are evaluated as either true
or false with respect to a BAT and situation. To define the
semantics of our preference formulae, we associate a quali-
tative value or weight with a situation term. The weight of
GPF Φ with respect to situation s is written as ws(Φ). This
weight is a composition of its constituents. For TPFs, a situ-
ation s is assigned the value vmin if the TPF is satisfied in s,
vmax otherwise. Recall that in our example above vmin = 0
and vmax = 1, though they could equally well have been
qualitative measures such as [excellent,...,horrible]. Sim-
ilarly, given an APF, and a situation s, s is assigned the
weight of the best TPF that it satisfies within the defined
APF. Finally GPF semantics follow the natural semantics of
boolean connectives. As such conjunction yields the maxi-
mum of its constituent GPF weights and disjunction yields
the minimum of its constituent GPF weights. For a full ex-
planation of the situation calculus semantics, please see (Bi-
envenu et al. 2010).

The following definition shows us how to compare two
situations with respect to a GPF.

Definition 10 (Preferred Situations)
A situation s1 is preferred to situation s2 with respect to a
GPF Φ, written spref (s1, s2, Φ), iff ws1

(Φ) < ws2
(Φ).

Now we are ready to define the notion of preferred di-
agnosis in the presence of LPP preferences. Returning to
our definition of Preferred Diagnosis (Definition 3), the ≺
relation can be realized as follows.

Definition 11 (Domain-Specific Preference Criterion)
Given a system DS, diagnoses D = (H(S0),a) and
D′ = (H ′(S0),a

′) for DS, and a GPF Φ, D is preferred
to D′ with respect to the preference criterion Φ – stated
D ≺pref (Φ) D′ – iff spref (do(a, S0), do(a′, S0), Φ).

Diagnosis as Planning

In this section we establish a correspondence between our
characterization of diagnosis of dynamical systems and
planning. Our ultimate objective is to enable the exploita-
tion of state-of-the-art planning techniques for the purpose
of generating diagnoses. Note that the majority of these
planners operate over propositional domains. As such, we
restrict our attention to diagnosis problems whose system
descriptions conform to certain syntactic restrictions.

The Planning Domain Definition Language (PDDL) (Mc-
Dermott 1998) is the de facto standard language for de-
scribing planning domains for input to most state-of-the-art
planners. PDDL has a state-transitional semantics (Fox and
Long 2003) and a situation-calculus semantics (Claßen et al.
2007). We use it as the description language for our planning
domains. The theorems that follow in this section establish
correspondences between variants of diagnosis described in
Section and different types of planning problems.

In order to establish a correspondence between diagnosis
and planning, we must define the relationship between a di-
agnosis system DS and its corresponding planning problem,

P . The first step is to transform the system description, Σ,
itself a situation calculus BAT, into a PDDL planning do-
main description, T . To do so, we appeal to the work by
Röger et al. (2008), which provides a maximally expressive
transformation from a situation calculus BAT to the ADL
subset of PDDL. We henceforth refer to this transformation
as the Röger et al. transformation. The transformation ne-
cessitates imposing restrictions on the form of the BAT, Σ.
The restrictions we appeal to are as follows.

1. We restrict to finite domains of named objects, and thus
assume that Σ now includes a singleton set of axioms
Σfin with the axiom:

x = O1 ∨ x = O2 ∨ . . . ∨ x = On,

where O1, . . . , On are all the 0-ary function symbols of
the sort object in Σ. Further, we assume that Σuna con-
tains unique axioms of the form ¬Oi = Oj for every
i, j ∈ {1, . . . , n}, when i �= j.

2. The arity of functional terms is restricted to zero, exclud-
ing the distinguished function do(a, s).

3. The initial database is complete, i.e., for all fluent terms
there is either an axiom of the form

¬F (x1, . . . , xn, S0), (1)

or

F (x1, . . . , xn, S0) ≡ (x1 = c1
1 ∧ . . . ∧ xn = c1

n) ∨ . . .

∨ (x1 = cm
1 ∧ . . . ∧ xn = cm

n ). (2)

where ci
j are 0-ary function symbols.

4. An analogous restriction for situation-independent predi-
cates.

Many dynamical systems have finite domains, and thus in
the rest of this section we assume that the dynamical system
modelled by Σ conforms to this restriction. However, the
restriction on the completeness of the initial state – neces-
sary for translation to PDDL and for use by most planners –
is significant. Indeed, many diagnosis systems have incom-
plete information about the initial state. Intuitively, in the
presence of an incomplete initial state, we would like our
planners to find a completion of the initial state supporting
the diagnosis (plan) generated. This differs from conformant
planning in which the plan must hold for all consistent com-
pletions.

With this intuition in mind, we define the completion of
an initial state as follows.

Definition 12 (Completion of an Initial State)
Let Σ be a finite-domain BAT. A completion Σ+

S0
of ΣS0

is a
set that:

1. Contains, for each fluent F in Σ, an axiom of the form of
Eq. (1) or Eq. (2) and contains no other axioms.

2. Only mentions 0-ary functions in Σfin, and

3. Is such that Σ+
S0

∪ Σuna ∪ Σfin |= ΣS0
.
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A completion of a finite-domain BAT Σ is constructed by
replacing ΣS0

with one of its completions. It is easy to see
that if ΣS0

is consistent, then it has a positive, bounded num-
ber of completions. Thus a BAT Σ induces a family of com-
pletions Σ1, . . . ,Σk (of the BAT) that comply with the re-
strictions described by Röger et al. We apply the Röger et
al. transformation to this family of system descriptions in
order to create a family of planning problems, each corre-
sponding to an assumed consistent completion of the initial
state of the original diagnosis system description.

Definition 13 (Corresponding Planning Problems)
Given a diagnosis system, DS = (Σ,OBS [S0, s]), where Σ
is finite domain and whose domain functions are restricted
to 0-ary functions, we define a family of completed system
descriptions, Σ1, . . . ,Σk to be the set of completions of Σ.
A family of corresponding planning problems, is a set, CPP,
each of whose elements is of the form P = 〈T, F, A, I, G〉
such that for each completed system description, Σi:

• T is the domain description extracted from the Röger et
al. transformation of Σi.

• F are the planning predicates corresponding to the pred-
icates in Σi.

• A are the actions as in Σi.

• I is the initial state extracted from the Röger et al. trans-
formation of Σi.

• G is the temporally extended goal, corresponding to
OBS [S0, s] in DS.

In the case where S0 is complete, there is a single unique
corresponding planning problem for DS. Furthermore,
given a planning problem P , generated by this procedure,
we denote the completion of the BAT system description that
generates it by Th(P).

Note that the observations, OBS [S0, s] play the role of
temporally extended goal, G, in the context of planning.

Definition 14 (Plan)
Given a diagnosis system DS and a corresponding planning
problem P = 〈T, F, A, I, G〉 drawn from CPP, a sequence
of actions π = a1, a2, . . . , an, for ai ∈ A, is a plan for P
if and only if G holds appropriately from the execution of π,
starting in I .

Theorem 1 (Diagnosis as Planning)
Given a diagnosis system DS = (Σ,OBS [S0, s]) and fam-
ily of corresponding planning problems CPP, if (H(S0),a)
is a diagnosis of DS then for all P ∈ CPP such that H(S0)
is entailed by the (complete) initial database of Th(P), a

is a plan for P . On the other hand, if there is a plan
a for P ∈ CPP, then there exists an H(S0), which can
be constructed straightforwardly from P and a, such that
(H(S0),a) is a diagnosis of DS.

Proof sketch. (⇒) The proof is based on two intermediate re-
sults. First, for each model M such that M |= Σ ∪ H(S0),
there is a completion Σ+ of Σ such that M |= Σ+. Sec-
ond, all models of a complete BAT are isomorphic. From
these two observations it is simple to prove that for any

model M |= Σ ∪ H(S0), there is some Σ+ such that
Σ+ |= ∃s. s = do(a, S0) ∧ executable(s) ∧ OBS [S0, s].
From here we use Röger et al.’s result to prove that such an
a is obtained by planning in one of the problems P ∈ CPP.
Finally, we prove that a is a plan in all completions of Σ
that entail H(S0). To do this we use a contradiction argu-
ment and assume that there is some completion Σ+ such that
Σ+ �|= ∃s. s = do(a, S0) ∧ executable(s) ∧ OBS [S0, s].
However, since Σ+ |= H(S0) all models of Σ+ are also
models of Σ ∪ H(S0) (this follows from the definition of
completion), which leads to a contradiction under the as-
sumption that (H(S0),a) is a diagnosis.
(⇐) Using Röger et al.’s result if a is a plan for some P ∈
CPP, then it is also a plan in the BAT whose (complete)
initial state is described by P . Then, we define H(S0) to
contain R(c, S0) if and only if R(c) is in I , and ¬R(c, S0)
if and only if R(c) is in F \ I . It follows straightforwardly
that (H(S0),a) is a diagnosis for DS. �

Corollary 1 Given DS = (Σ,OBS [S0, s]) with complete
information about the initial state, and its unique corre-
sponding planning problems P , ({},a) is a diagnosis of DS
if and only if a is a plan for P .

Theorem 2 establishes a correspondence between the
computation of minimal diagnoses and cost optimal plan-
ning.

Theorem 2 (Min. Diagnosis as Cost Optimal Planning)
Let DS = (Σ,OBS [S0, s]) be diagnosis system and let S
be the number of possible states described by Σ. Further-
more, let CPP be a family of corresponding planning prob-
lems, where we assign a uniform cost c ≥ 1 to each action
a ∈ Afaulty , and a cost of ε < 1/S to all other actions. If
(H(S0),a) is a minimal fault diagnosis of DS then a is a
plan for some P ∈ CPP such that the initial database of
Th(P) entails H(S0), and for any a

′ that is a plan for a
P ′ ∈ CPP, the cost of a is not greater than the cost of a

′.
On the other hand, if a is the minimum cost plan for any
P ∈ CPP, then there exists H(S0) such that (H(S0),a) is
a minimal fault diagnosis of DS.

Proof sketch. Follows from the fact that no optimal plan for
any planning problem in CPP can have more than S actions.
The rest of the proof is analogous to that of Theorem 1. �

An analogous corollary to Corollary 1 exists for Theorem
2. Another way of computing minimal diagnoses is to ex-
press a preference against the occurrence of faulty actions
and to generate a preferred plan that is optimal. As noted
previously, preferences are an excellent way of characteriz-
ing nonprobabilistic causal fault models and commonsense
or expert knowledge concerning the diagnosis of a dynami-
cal system. We can compute these preferred diagnoses by
appealing to preference-based planning (e.g., Baier et al.
2009).

Definition 15 (Preference-Based Planning (PBP))
Given a preference formula φ, an associated binary
preference relation ≺, and a planning problem, P =
〈T, F, A, I, G〉, let π1 and π2 be plans for P . Plan π1 is
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preferred to plan π2 if and only if π1 ≺ π2. A plan π1 is
optimal for P if no plan π2 is such that π2 ≺ π1.

Theorem 3 (Preferred Diagnosis as PBP)
Given a diagnosis system DS = (Σ,OBS [S0, s]), a prefer-
ence formula φ, and family of corresponding planning prob-
lems CPP, if (H(S0),a) is an optimal diagnosis of DS
with respect to the preference criterion (Def. 11) then for
some P ∈ CPP such that H(S0) is entailed by the initial
database of Th(P), a is a plan for P and a is optimal rel-
ative to every other plan for any P ′ ∈ CPP. On the other
hand, if a is the optimal plan relative to other plans for any
P ∈ CPP, then there is an H(S0) such that (H(S0),a) is
the optimal diagnosis of DS with respect to the preference
criterion.

Proof sketch. Analogous to that of Theorem 1. �

From Theory to Practice

In the previous section we established a correspondence be-
tween the generation of diagnoses and the generation of
plans. More precisely, we showed that the generation of a
diagnosis for a discrete dynamical system could be achieved
by generating a plan for a corresponding planning problem
that had complete information about the initial state and a
temporally extended goal representing the observations. In
this section we examine this relationship from a computa-
tional perspective. In particular, we examine the hypothesis
that state-of-the-art planners are an effective means of gen-
erating dynamical diagnoses.

Planning technology has advanced tremendously in the
last few years. In particular, the community has produced
very efficient classical planners that assume complete infor-
mation about the initial state and a final state goal. We have
also seen great advances in cost-optimizing planners and in
planners that plan with temporally extended goals (TEGs)
and preferences (TEPs). These latter planners also assume
complete information about the initial state, but the tech-
nology is less mature and they do not yet achieve the same
quality of performance as classical planners. Here we ex-
plore the use of these different planners with respect to the
generation of diagnoses. Exploiting such planners to gener-
ate diagnoses presents at least three challenges.

Challenge 1: Observations In Section we proposed that
diagnostic observations can be represented as TEGs. How-
ever, classical planners generally have no way to directly ex-
press TEGs or partially ordered observations. We explored
two ways of processing observations in our experiments.
Following Grastien et al. (2007b), we compiled observa-
tions away by exploiting an action called “advance”, which,
through its effects, forces observation to be processed in the
correct order. Essentially, it makes an observation possible
only after all the observations that precede it have been ob-
served. Using this technique, we could investigate the use of
arbitrary classical planners. We also investigated encoding
observations as both TEGs and TEPs exploiting advances in
heuristic search planning designed precisely for these spe-

cialized goals and preferences (e.g., Baier and McIlraith
2006).

Challenge 2: Preferred Diagnoses In Section we explic-
itly examined the generation of two forms of preferred diag-
nosis: minimal diagnosis, and preferred diagnosis based on
domain-specific preferences. Not surprisingly, the encoding
required to generate such preferred diagnoses via planning
is planner specific. Following Theorems 2 and 3, we ex-
plore the use of cost-optimizing planners to compute min-
imal fault diagnoses and we explore the use of preference-
based planners to compute domain-specific preferred diag-
noses. In some cases, it is possible to encode action costs as
preferences or to encode preferences into a planning prob-
lem with action costs alone (Keyder and Geffner 2009).

Challenge 3: Incomplete Initial State As noted earlier,
generating diagnoses from an incomplete initial state does
not correspond to conformant planning but rather to plan-
ning in some complete-initial-state problem drawn from a
family of such problems. This task is not one that has been
addressed by the planning community. Here, we reduce this
task to planning in a single planning problem. Our solu-
tion is as follows. Given the family of planning problems
CPP of Theorem 1, we define a single planning problem
Pall in the following way. Pall has the same predicates, ac-
tions, and goal as any of the problems in CPP. (Note they
all share these elements.) Its initial state only contains the
ground predicates that are known to be true in S0 (i.e., that
entailed by ΣS0

) plus an extra predicate called init. We
conjoin ¬init to the precondition of each action in Pall. For
each P ∈ CPP, we define an action in Pall that takes init
as a precondition, and whose effect leads to the initial state
of P . Each action has ¬init as an effect, and each of the
original effects in CPP.

In the rest of this section we describe our efforts to investi-
gate the feasibility of using planning technology to generate
diagnoses. We had two objectives. The first was to compare
planning technology to results obtained by Grastien et al.’s
SAT-solving approach (2007b), a leading diagnosis engine.
The second objective was to illustrate the performance of
different planners with respect to challenging aspects of the
diagnosis task including incomplete information about the
initial state, the generation of minimal fault diagnoses, the
explicit encoding of observations as TEGs, and computing
diagnoses in the presence of rich preferences. The results
presented here provide a small but reasonably representative
subset of the experiments we ran.

Experiments

Comparison to SAT approach We compared the perfor-
mance of several classical planners to results achieved by
Grastien et al. (2007b) using their MINISAT system. Our
comparison was restricted to Grastien et al.’s computer do-
main with complete information about initial state and ob-
servations encoded using advance. Grastien et al. (2007b)’s
work investigated the effectiveness of MINISAT to find a di-
agnosis with a predetermined number of faults, i, under the
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Total-Order Partial-Order

# MINISAT FF LAMA SatPlan MINISAT FF LAMA SatPlan

1 0.03 0.00 0.00 0.30 0.04 0.00 0.01 0.10

3 0.26 0.02 0.05 2.14 0.14 0.03 0.07 0.89

5 1.90 0.03 0.14 6.38 9.70 0.08 0.36 2.27

7 9.10 0.16 0.40 12.56 350.00 24.98 12.93 4.10

9 61.00 0.10 0.85 - 63.00 37.73 >600 11.68

11 3.90 0.25 1.22 - >600 586.76 >600 25.23

13 8.70 0.20 1.67 - >600 32.22 >600 35.96

15 18.70 0.17 4.99 - >600 16.76 - 36.71

17 30.00 0.22 4.95 - >600 128.36 - 96.15

19 66.00 0.22 8.10 - >600 169.34 - 99.12

Figure 2: Runtime comparison (in seconds) between MINISAT,
FF, LAMA, SatPlan, on total- and partial-order observations. The
MINISAT results are taken directly from (Grastien et al. 2007b).
Dash entries indicate out of memory.

assumption of complete information about the initial state.
To do so, they proposed to generate a SAT theory of bounded
length k and solve it using MINISAT. If a satisfaction was
not achieved, they would increment k and iterate until satis-
faction was achieved. This procedure is guaranteed to find a
minimal diagnosis. However, in the experiments reported in
(Grastien et al. 2007b), which we use here for comparison,
no incremental computation was used. Instead, MINISAT

was given the number of faults, i, a priori and MINISAT

solved a satisfiable formula with bound i without the need
for iteration. As such, the results don’t reflect the iteration
required to determine a minimal fault diagnosis.

Based on a PDDL encoding provided by Grastien, we
constructed our own lifted encoding of the computer do-
main in PDDL. We constructed two sets of 20 problems so
that problem i has a minimal diagnosis with i faulty actions.
The first set considers only totally ordered observations, and
the second, only partially ordered. We evaluated our ap-
proach using state-of-the-art planners FF (Hoffmann and
Nebel 2001), LAMA (Richter et al. 2008), and SatPlan’06
(Kautz et al. 2006). We report the results for odd-numbered
problems in Figure 2. This table also includes the results re-
ported in (Grastien et al. 2007b) using the SAT solver, MIN-
ISAT. We did not run MINISAT ourselves on their encoding.
As such, different machines were used and the comparison
is not ideal. Nevertheless, our results show that for all prob-
lems, at least one of the planners outperforms (Grastien et
al. 2007b)’s MINISAT results, sometimes by an order of
magnitude on total-order problems. In the case of partially
ordered observations, two of our three planners were able to
solve problems that MINISAT could not solve (i.e., problems
11-19).

It is important to note that the planners we used were not
configured to find minimal fault diagnosis (only LAMA can
run in such a mode). Nevertheless, in all total-order prob-
lems planners found minimal fault diagnoses. In the partial-
order problems, FF and SatPlan found a solution with one
extra fault on two of the problems (i.e., in problem 10, FF
found a solution with 11 faults). The results demonstrate
that state-of-the-art classical planners provide an effective
means of computing dynamical diagnoses and underline the
promise of our approach.

Total-Order Partial-Order

# LAMA SGPlan6 Baseline HPLAN-P LAMA Baseline HPLAN-P

1 0.01 0.08 0.01 0.29 0.02 0.04 0.8

3 0.07 0.14 1.93 25.25 0.11 47.09 2.14

5 0.21 0.25 24.39 107.21 0.97 >600 579.85∗

7 0.64 7.64 54.53 449.53 17.95 >600 30.37

9 1.62 6.1 73.1 >600 334.01 - 286.16∗

11 2.88 8.97 48.88 >600 >600 - >600

13 3.82 7.97 80.74 >600 - - >600

15 16.28 12.49 66.89 >600 - - >600

17 20.17 10.54 101.15 >600 - - >600

19 29.54 10.87 139.98 >600 - - >600

Figure 3: Computing minimal fault diagnosis with action costs
and preferences. ∗ indicates the plan found has one extra fault
action over the minimum admitted by the problem. Dash entries
indicate out of memory.

Total-Order Partial-Order

# TEGs TEPs TEGs TEPs

1 0.33 0.22 0.19 0.2

2 2.26 1.49 0.74 0.71

3 164.76 137.26 10.82 7.37

4 292.74 218.99 99.31 69.67

5 405.66 328.13 >600 >600

6 >600 >600 >600 >600

7 >600 >600 >600 >600

Figure 4: Running HPLAN-P (modified to prune non-perfect par-
tial plans) on problems in which observations are encoded as tem-
porally extended goals (TEGs) and as temporally extended prefer-
ences (TEPs).

Minimal Fault Diagnoses In many situations, it is im-
portant to generate diagnoses that minimize the number of
faults. Theorem 2 establishes a way to do this using cost
optimal planning. As such, we experimented with the fol-
lowing planners that support action costs: LAMA, SGPlan6

(Hsu and Wah 2008), and Baseline. (Baseline was the best-
performing planner in the 2008 International Planning Com-
petition, sequential optimization track. It performs uniform-
cost search (A*, h = 0) using LAMA’s search engine.) Note
that planners are not generally guaranteed to find the short-
est plan; however, in many cases, they are designed to find a
short plan.

We also encoded the action costs as preferences using
PDDL3 (for each component, there is a preference that in-
dicates absence of faults), and used HPLAN-P (Baier et al.
2009) to plan with these PDDL3 preferences. Figure 3
shows a subset of the results we obtained. Note that with
the exception of Baseline, the planners are not guaranteed to
find a minimal plan, but in all problems we ran they found
the minimal plan (diagnosis) with the exception of HPLAN-
P on problem 5 and 9-partial which ran out of time and could
not improve the quality of the generated plan. The results for
SGPlan6 on the partial-ordered cases are not shown since ex-
cept for problem 1 (0.07) the rest ran out of time.

Observations as TEGs and TEPs In the results reported
to this point, observations were compiled away using ad-
vance. Here we explore encoding them as TEGs and as
TEPs in PDDL3, exploiting advances in heuristic search
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planning (e.g., Baier and McIlraith 2006) to compute plans
(diagnoses). In the case where observations were encoded as
TEPs, we modified HPLAN-P so that as soon as a partial plan
violated a preference it was pruned. This ensured that all ob-
servations were enforced. The result of running HPLAN-P
for the first 7 problems is shown in Figure 4. HPLAN-P did
not show the same high-quality performance as the classical
planners with observations compiled away using advance,
and indeed encoding observations as TEPs was slightly more
effective than encoding them as TEGs. We attribute this per-
formance to the lack of maturity of TEG and TEP planning
and in particular to an idiosyncrasy with HPLAN-P’s heuris-
tics. We still fundamentally believe this to be a promising
way of encoding observations that will be borne out as TEG
planning technology matures.

Diagnoses under Incomplete Information To compute
diagnoses with incomplete information we appealed to the
procedure described at the outset of this section that exploits
special actions to complete the incomplete initial state. We
tested two variants of our procedure one that completed the
state in one action, and another that completed the state in
multiple sequential actions. We tested our approach on the
computer domain, modified to make the initial state incom-
plete with respect to the state of the components.

Recall that a component can be in one of 6 different states.
Let x be the number of components whose state is unknown
in the initial state. The first approach added 6x new actions
to the domain, each such action simultaneously establishes
the initial state of all x components. The second approach
adds 6 ∗ x new actions, where each action only establishes
the initial state of a single component, instead requiring x
of these actions to occur in sequence to complete the initial
state. In Figure 5 we illustrate the scalability of the sec-
ond approach as the number of unknown components, x, in-
creases. We do not report results on the first approach since
the size of the planning problem does not scale well with x.

Preferred Diagnoses To evaluate the use of preference-
based planners to generate diagnoses with domain-specific
preferences, we again extended our computer domain, this
time so that components could be faulty as a result of power,
hardware, software, or hard-disk failure. Our preferences
look similar to the examples in Section , but were expressed
in PDDL3. PDDL3 aggregates preferences via a metric
function. For these problems we were interested in minimiz-
ing the PDDL3 metric function to achieve an optimal plan
(diagnosis). We assigned a penalty of one to every prefer-
ence formula not satisfied, so a metric value of n indicates
that n preferences were violated.

We ran the PDDL3 planner HPLAN-P on this modified
domain. Since HPLAN-P is incremental (finds better and
better plans until timeout is reached), the reported result is
on the last plan returned within the timeout of 600 seconds.
Results in Figure 6 show that as we increase the number of
preferences, in almost all problems either more time is spent
or a worse-quality plan is found.

# Type x = 2 x = 4 x = 6 x = 8 x = 10 x = 12
1 1-total 0.00 0.00 0.00 0.00 0.30 8.15

2 1-partial 0.00 0.00 0.00 0.00 0.01 0.01

3 3-total 0.01 0.02 0.01 0.01 0.01 0.02

4 3-partial 0.04 0.06 0.27 1.31 7.93 174.08

5 5-total 0.11 0.17 0.80 7.53 79.55 338.69

6 5-partial 0.10 0.15 0.14 0.36 2.93 5.61

7 7-total 0.17 0.17 0.20 2.39 6.71 14.78

8 7-partial 26.66 28.23 46.23 122.01 >600 >600

9 9-total 0.14 0.23 0.83 1.92 4.55 17.79

10 9-partial 56.96 55.21 126.00 391.95 554.98 >600

11 11-total 0.25 0.36 0.95 1.58 3.97 17.32

12 11-partial >600 >600 >600 >600 >600 >600

13 13-total 0.22 0.33 1.18 4.51 4.36 10.53

14 13-partial 56.85 98.16 100.69 >600 >600 >600

15 15-total 0.26 0.37 0.89 4.98 13.48 39.91

16 15-partial 17.85 17.76 17.89 287.02 >600 >600

17 17-total 0.23 0.25 0.27 0.31 0.37 0.35

18 17-partial 222.30 373.73 393.48 >600 >600 >600

19 19-total 0.25 1.10 1.58 1.80 4.49 18.46

20 19-partial 183.94 196.44 400.52 >600 >600 >600

Figure 5: Testing the performance of FF on problems in which we
have incomplete information about the initial state. The unknown
in question is the initial state of a component. We increase the
complexity of the problem by increasing the number of unknowns.

40-preferences 80-preferences 120-preferences

# Type Time Metric Time Metric Time Metric

1 1-total 1.03 0.00 3.17 0.00 1.39 0.00

2 1-partial 0.73∗ 0.00 7.31 0.00 6.51 0.00

3 2-total 8.9∗ 0.00 36.79 0.00 38.74 0.00

4 2-partial 9.60 0.00 52.39 0.00 9.83 0.00

5 3-total 81.04∗ 0.00 194.17 0.00 273.47 0.00

6 3-partial 18.00 0.00 45.88 0.00 82.00 0.00

7 4-total 164.42 0.00 565.33 1.00 537.77 0.00

8 4-partial 46.00∗ 0.00 91.09∗ 0.00 105.23∗ 0.00

9 5-total 352.35∗ 2.00 404.15∗ 2.00 382.94∗ 3.00

10 5-partial >600 N/A >600 N/A >600 N/A

11 6-total 594.19∗ 2.00 331.71∗ 3.00 343.18∗ 3.00

12 6-partial 257.52 0.00 471.31 1.00 280.16 0.00

Figure 6: Running HPLAN-P on problems that deal with finding a
preferred diagnosis. ∗ indicates the plan found has one extra fault
action over the minimum admitted by the problem.

Summary

In this paper, we revisit the characterization of diagnosis of
discrete dynamical systems, and its relationship to planning
from both a theoretical and a computational perspective.
Acknowledging that many diagnosis problems suffer from
incomplete information, our characterization of diagnosis
specifies a diagnosis as a tuple: a sequence of actions that
account for the observations, potentially predicated on some
assumptions about the (incomplete) initial state. The incor-
poration of expert and commonsensical knowledge about the
(faulty) behaviour of systems has been key to the diagnosis
of static systems. This paper is the first to explore this issue
for dynamical diagnosis. To this end, we propose a charac-
terization of preferred diagnosis in terms of rich, temporally
extended domain-specific preferences.

Automated planning is an active area of research and one
where we are seeing rapid advances with respect to both the
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efficiency of solvers and the classes of planning problems
they can solve. A key contribution of this work is the es-
tablishment of a correspondence between dynamical diag-
nosis and planning. With this correspondence in hand, re-
searchers can exploit advances in planning technology for
the purposes of diagnosis generation. Our investigations
show that current planning technology is competitive with,
and in some cases outperforms by an order of magnitude,
a leading diagnosis engine. We also confirm the feasibil-
ity of planning technology in computing minimal diagnoses,
domain-specific preference-based diagnoses, and diagnoses
in the face of incomplete information.
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