
Peer-to-peer Query Answering with Inconsistent Knowledge

Arnold Binas and Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

{abinas,sheila}@cs.toronto.edu

Abstract

Decentralized reasoning is receiving increasing attention due
to the distributed nature of knowledge on the Web. We ad-
dress the problem of answering queries to distributed propo-
sitional reasoners which may be mutually inconsistent. This
paper provides a formal characterization of a prioritized peer-
to-peer query answering framework that exploits a priority
ordering over the peers, as well as a distributed entailment re-
lation as an extension to established work on argumentation
frameworks. We develop decentralized algorithms for com-
puting query answers according to distributed entailment and
prove their soundness and completeness. To improve the effi-
ciency of query answering, we propose an ordering heuristic
that exploits the peers’ priority ordering and empirically eval-
uate its effectiveness.

1 Introduction

With the advent of the Web has come a significant increase
in the availability of information from a variety of sources,
not all of which are mutually consistent or equally reliable.
These information sources are often databases, but many
foresee a future in which some of them will be deductive
databases, logic programs, or even full-fledged logical rea-
soners. Motivated by this general problem, this paper ad-
dresses the problem of peer-to-peer (P2P) query answering
over distributed propositional information sources that may
be mutually inconsistent. We assume the existence of a pri-
ority ordering over the peers to discriminate between peers
with conflicting information. This ordering may reflect an
individual’s level of trust in an information source or it may
be obtained from an objective third party rating. We pro-
vide a formal characterization of a prioritized P2P query
answering framework and a distributed entailment relation
related to argued entailment [5] and argumentation frame-
works [13]. To realize the specification of our problem,
we develop decentralized algorithms based on [1] for com-
puting answers to arbitrary CNF queries according to dis-
tributed entailment and prove their soundness and complete-
ness. To improve the efficiency of reasoning, we propose
heuristic and pruning techniques that exploit the priority or-
dering over peers and their knowledge and empirically illus-
trate their effectiveness.

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

There has been significant previous work on distributed
logical reasoning. For example, Amir and McIlraith first in-
troduced partition-based logical reasoning for propositional
and first-order logic (FOL) to reason with consistent dis-
tributed knowledge bases (KBs) or with large KBs that
they partitioned. Their message-passing approach to conse-
quence finding was limited to partitioned KBs that were con-
sistent and connected in a tree topology [3]. Adjiman et al.
introduced the first consequence-finding algorithm for dis-
tributed propositional theories connected by graphs of arbi-
trary topology, but limited such systems to be globally con-
sistent and not include priorities [1]. Chatalic et al. extended
this approach to allow for mutually inconsistent peers that
are connected by mapping clauses [12]. However, their ap-
proach allows for a formula and its negation to be derived
as consequences at the same time. We build on this work,
addressing a different general problem. We discuss other
related work in the final section.

2 P2P Query Answering Systems

In this section we formalize a P2P query answering frame-
work and provide a distributed entailment relation for such
systems. We illustrate concepts via a running example.

2.1 Framework

A P2P query answering system (PQAS) consists of multi-
ple peers, all of which are assigned priorities to reflect user-
specific preferences or trust. Priorities could be universal
or user specific—distributed to the peers when a user joins
the network. In this paper, priorities are drawn from a to-
tally ordered set of comparable elements (such as the set of
integers), and a priority is better than another priority if its
value is lower. The peers’ priorities define a total or partial
preference ordering over the peers. Knowledge from a peer
with better priority is preferred over that from a peer with
worse priority. Each peer hosts a consistent propositional
local KB and consequence relation, which may be classi-
cal entailment or any other consequence relation. Multiple
peers’ KBs may be mutually inconsistent. In the general
framework, local consequence relations may vary to allow
for systems of different desired behaviors (classical, locally
or globally non-monotonic, etc.). In Section 3, we develop
a query answering algorithm for the special but interesting

case in which each peer’s local consequence relation is clas-
sical entailment. Peers are connected by edges, which are
labeled by the sets of variables that determine the language
in which formulas can be passed between peers. This corre-
sponds to restrictions on the information that KBs will share
with each other.

Definition 1 (Peers). A peer Pi is a triple (KBi, Consi, Ii)
comprising a local propositional knowledge base KBi, its
local consequence relation Consi, and the peer’s priority
Ii. The notation Σ |=i φ is used to denote φ ∈ Consi(Σ),
where Σ is a set of formulas. Peer Pi is said to have better
priority than peer Pj iff Ii < Ij . A peer’s signature Li is the
set of propositional symbols in its knowledge base.

Definition 2 (P2P query answering system (PQAS)). A P2P
query answering system P is a tuple (P,G) where P =
{Pi}

n
i=1 is a set of n peers and G is a graph (V,E) describ-

ing the communication connections between those peers.
Sn

i=1
KBi is called the global theory of P. Each peer’s sig-

nature Li is a subset of the global signature L =
Sn

j=1
Lj of

P, which gives rise to the global language L. V is the set
{1, . . . , n} of vertices in G, with vertex i corresponding to
peer Pi. E is the set of labeled edges (i, j, Lij) in G, where
Lij is the edge label (link signature) between peers Pi and
Pj and Lij ⊆ Li ∩ Lj .

Figure 1 is a small example of a PQAS consisting of the
peers P = {Bookstore, V isa, CCOne,CCTwo,Customer}
corresponding to peers P1–P5, respectively. The priority Ii

of peer i is displayed on its upper right corner. The book-
store’s KB, KB1, contains the axioms ¬pmt rcvd ∧ ord →
¬del ontime and pmt rcvd ∧ ord→ del ontime, stating that
the book is delivered on time if payment is received and an
order placed and not delivered on time if no payment is re-
ceived. The Visa peer contains the KB KB2 = {paid →
pmt rcvd}, stating that payment is received if money is paid.
CCTwo (KB4) additionally requires confirmation (conf).
The unreliable CCOne has worse priority than the Visa peer
and contains the KBKB3 = {¬pmt rcvd, paid→ lost}, stat-
ing that payment will not be received. The edges are labeled
by the propositions which pairs of peers may use to com-
municate. An edge label between two peers only contains
propositions which are mentioned in both peers’ local KBs,
but not necessarily all such propositions (perhaps for reasons
of confidentiality). For example, the Visa and CCOne peers
both contain the propositions pmt rcvd and paid, but are not
connected by an edge labeled with them as they represent
confidential financial information.

2.2 Distributed Entailment

The distributed entailment we wish to achieve is best intro-
duced through our example in Figure 1. Consider the case
where Customer has asserted ord and paid and poses the
query del ontime. According to Bookstore, the book is de-
livered on time if an order has been placed and payment re-
ceived. If the book is ordered and payment not received, the
book will not be delivered on time (¬del ontime). Accord-
ing to Visa, payment is received (paid and pmt rcvd∨¬paid
imply pmt rcvd), and del ontime derived. However, ac-
cording to credit card peer CCOne, payment will not be

pmt rcvd ¬ord ¬del ontime
¬pmt rcvd ¬ord del ontime

BOOKSTORE 3

pmt rcvd ¬paid
VISA 5

¬pmt rcvd
¬paid lost
CCOne 10

{pmt rcvd}{pmt rcvd}

{paid} {paid, conf}

{pmt rcvd}

{ord}

paid
ord

CUSTOMER 3

{paid}

pmt rcvd ¬paid ¬conf
CCTwo 3

Figure 1: Bookstore example

received by the bookstore (¬pmt rcvd) and ¬del ontime is
derived. Clearly we have a contradiction (del ontime and
¬del ontime). But since Visa is preferred over CCOne due
to its better priority, we would like to receive the answer it
supports. Hence we need del ontime to be entailed by the
system according to distributed entailment.

In the following, we formally define this new notion of
entailment by appealing to argumentation frameworks [13]
and extending them to the distributed and prioritized case.
To this end, we employ the notion of reasons which was
used to define argued entailment for prioritized centralized
KBs in [5]. Benferhat et al. defined a formula to be entailed
by argued entailment if a better reason exists for it than for
its negation. A reason for a formula is a consistent subset
of the KB that entails the formula (since an inconsistent one
could derive any formula and would thus be meaningless).
In our distributed setting, we extend this definition to ac-
count for several, distributed KBs, possibly different local
consequence relations, and restricted sharing of information
between KBs. To this end, we define a support relation in-
tended to mention all formulas that can be derived from con-
sistent subsets of the global theory while obeying the link
languages between peers. All formulas that can be derived
by an individual peer from its local KB are mentioned in
the relation. Inductively, all formulas that can be derived
at an individual peer using its local KB as well as formu-
las already mentioned by the support relation which can be
communicated to the peer according to the link languages
shared with its neighbors are also in the support relation.

Definition 3 (Support of a formula by a reason). Let P =
(P,G) be a PQAS with P = {P1, . . . , Pn} and G = (V,E).
The support relation SUPPP ⊆ {1, . . . , n}×2KB1∪···∪KBn×
L is the smallest set such that:

• If Σ ⊆ KBi, Σ |=i ρ, and for no Σ∗ ⊂ Σ, Σ∗ |=i ρ,
(i,Σ, ρ) ∈ SUPPP .

• If

– there exists a set of formulas ψ1, . . . , ψm s.t.
{ψ1, . . . , ψm} |=i ρ,

– for no Ψ ⊂ {ψ1, . . . , ψm}, Ψ |=i ρ,

– for each ψj , there exists a peer Pk and a set of formulas

Σj s.t. (k,Σj , ψj) ∈ SUPPP and (i, k, Lik) ∈ E with
Lik ⊇ sig(ψj), and

–
Sm

j=1
Σj 6|= ⊥,

then (i,
Sm

j=1
Σj , ρ) ∈ SUPPP .

The formula φ is supported in P by the reason Σ, denoted
P |=Σ φ, if for some i, (i,Σ, φ) ∈ SUPPP .

Thus a reason for a formula φ exists in a PQAS P if some
consistent subset of the peers’ local KBs derives φ given the
peers’ local consequence relations and given that whenever
two formulas of different peers need to interact, an edge be-
tween the peers exists and is labeled by all variables men-
tioned in the formula. Note a fine subtlety regarding the
formula sets in the definition. Formulas coming from a sin-
gle peer should be minimal, i.e. a reason should contain all
and only those formulas required to entail the given formula.
Eliminating extraneous formulas in the reason avoids the
generation of unnecessary inconsistencies with other formu-
las that will be added to the reason in later inductive ap-
plications of the definition. The minimality constraint does
not apply for merged sets of formulas from several peers be-
cause of the potentially limited connections between them.
In other words, two seemingly redundant formulas from two
different peers’ KBs may both be required to derive a de-
sired consequence because they cannot travel between the
two peers if the peers are not directly connected or the edge
connecting them is not labeled by all the symbols occurring
in the formula.

Since a reason may exist for both a formula φ and its nega-
tion ¬φ, we need to weigh the priorities of the formulas in
both reasons in order to decide whether to believe φ or ¬φ.
The priority of a formula is that of its host peer. A rea-
son along with its conclusion will be called an argument to
lay the basis for applying Dung’s argumentation theory [13].
The rank of an argument is the priority of the worst-priority
formula in its reason.

Definition 4 (Arguments (after [13])). An argument A is a
pair A = (Σ, φ) s.t. Σ is a reason for φ. φ is called the
conclusion of the argument.

Definition 5 (Rank of an argument). Let A = (Σ, φ) be an
argument. The rank of A, denoted R(A), is the priority of
the worst-priority formula in A’s reason Σ. I.e. R(A) =
maxσ∈Σ(σ.prio).

While arguments are, by definition, based on reasons that
are consistent in themselves, they may be contradicted, or
attacked, by other arguments of better rank. The set of ar-
guments along with this attack relation is referred to as the
argumentation framework induced by a PQAS.

Definition 6 (Attacking arguments (after [13])). Let A =
(ΣA, φA) and B = (ΣB , φB) be arguments. A is said to at-
tack B iff φA ∪ ΣB |= ⊥ and R(A) ≤ R(B).

Definition 7 (Argumentation frameworks (after [13])).
The argumentation framework induced by a PQAS P is
AF (P) = (AR, attacks), where AR is the set of arguments
in P and attacks their attack relation.

The following definitions from [13] then develop the no-
tion of a preferred extension of an argumentation frame-
work.

Definition 8 (Conflict-free argument sets [13]). A set S of
arguments is conflict-free if no argument in S is attacked by
another argument in S.

Definition 9 (Acceptable arguments and admissible argu-
ment sets [13]). Let AF (P) be a PQAS-induced argumen-
tation framework. An argument A ∈ AR is acceptable wrt.
an argument set S ⊆ AR iff for each argument B ∈ AR, if
B attacks A then B is attacked by some argument in S. A
conflict-free set of arguments S is admissible iff each argu-
ment in S is acceptable wrt. S.

Definition 10 (Preferred extensions [13]). A preferred ex-
tension of an argumentation framework AF is a maximal
admissible set of AF .

Given the notion of distributed arguments and the
priority-based attack relation between them developed
above, distributed entailment is then defined in terms of
Dung’s preferred extensions on the induced argumentation
framework. More specifically, we will believe formulas that
are conclusions of arguments that are in some preferred ex-
tension of the induced argumentation framework, i.e. those
supported and not successfully attacked by the most pre-
ferred peers of P.

Definition 11 (Distributed Entailment). A formula φ is en-
tailed by the PQAS P by distributed entailment, denoted
P |=D φ, iff φ is the conclusion of an argument in some
preferred extension of AF (P).

Note that this argumentation-based definition of dis-
tributed entailment means that both a formula and its nega-
tion can be entailed by distributed entailment at the same
time. This may occur in cases where arguments for and
against the query have the same rank. To illustrate this, con-
sider the simple example of a PQAS-induced argumentation
framework containing only the arguments A = ({p}, p) sup-
porting the formula p and B = ({¬p},¬p) supporting the
formula ¬p. If both A and B have the same rank, A attacks
B and B attacks A. Thus there are two preferred extensions:
one containing only A and one containing only B. Such
cases are easily detected and can be reported by a query
answering algorithm, as will be done by the algorithm we
present in the next section.

While in the general case, a PQAS’s peers may be mu-
tually inconsistent, an inconsistency may not always be de-
rived. This could be because all peers are mutually con-
sistent or because the inconsistency is not derivable with
the restricted communication imposed by peer connectiv-
ity. To distinguish between PQASs that can derive contra-
dictions and those that cannot, we introduce the concept of
P-consistency.

Definition 12 (P-consistency). A PQAS P is said to be P-
inconsistent if there exists a formula φ s.t. there exists both a
reason for φ and a reason for ¬φ in P. Otherwise P is said
to be P-consistent.

Since in a P-consistent system no contradictions (attacks)
can be derived, the existence of a reason for a formula φ

guarantees that the corresponding argument is in the pre-
ferred extension formed by the entire argument set and thus
that φ is entailed by distributed entailment in P.

The following theorem shows that for fully connected sys-
tems with classical local entailment, P -consistency is equiv-
alent to the satisfiability of the global theory.

Theorem 1. Let P = (P,G) be a PQAS such that if for
any two peers Pi and Pj , Lij = Li ∩ Lj is non-empty,
(i, j, Lij) ∈ E and for all peers Pi, Consi is the classical
entailment relation |=. Then P is P-consistent iff

Sn

i=1
KBi

is satisfiable. Otherwise it is P-inconsistent.

Proof sketch. Since P is fully connected, every formula in
the system can interact with any other formula in the sys-
tems as if they were part of a single theory. Hence, there is
an argument for each formula that can be derived from the
global theory.

⇒: If P is P-consistent, there exists no formula φ s.t. there
is a reason for both φ and ¬φ (Definition 12). Hence since
the system is fully connected, for no formula φ, both φ and
¬φ can be derived from the global theory (Definition 3).
Thus the empty clause cannot be derived from the global
theory, which is hence satisfiable.

⇐: If the global theory is satisfiable, there does not exist a
formula φ s.t. both φ and ¬φ can be derived from the global
theory. Thus since the system is fully connected, there ex-
ists no formula φ s.t. there exists a reason for both φ and
¬φ (Definition 3) and therefore P is P-consistent (Defini-
tion 12). �

The following theorem further establishes that in a P-
consistent system with full peer connectivity and classical
local entailment, distributed entailment as defined through
preferred extensions in the induced argumentation frame-
work is equivalent to classical entailment from the global
theory.

Theorem 2. Let P = (P,G) be a P-consistent PQAS such
that if for any two peers Pi and Pj , Lij = Li ∩ Lj is non-
empty, (i, j, Lij) ∈ E and for all peers Pi, Consi is the clas-
sical entailment relation |=. Then P |=D φ iff

S

i KBi |= φ.

Proof sketch. Since P is fully connected, every formula in
the system can interact with any other formula in the sys-
tems as if they were part of a single theory. Hence, there
is an argument for each formula that can be derived from
the global theory. Since P is also P-consistent, no argument
attacks any other argument and the argument set containing
at least one argument for each formula in the classical de-
ductive closure of

S

i KBi is the lone preferred extension of
AF (P); i.e. each formula that is in the deductive closure of
S

i KBi is also entailed in P by distributed entailment and
vice versa. �

3 Query Answering in a PQAS

Given the PQAS framework, we want to pose a formula as a
query and have the system determine the status of the query
according to our definition of distributed entailment by using
individual peers’ local knowledge and reasoning capabili-
ties. The goal of this section is to develop a message-passing
algorithm that solves this problem for arbitrary CNF queries
in the special case of a possibly P-inconsistent PQAS in

which all peers use classical entailment as their local con-
sequence relation.

A consequence-finding algorithm for systems of mutually
consistent peers already exists [1]. Adjiman et al.’s algo-
rithm computes consequences of individual literals for ar-
bitrary peer topologies and shall serve as the basis for our
query answering algorithm. Here we modify and extend Ad-
jiman et al.’s algorithm to find the distributed consequences
of individual literals as well as their reasons and priorities
in a possibly P-inconsistent PQAS P. These consequences
and their reasons are then used to compute query answers ac-
cording to distributed entailment. Our focus on prioritized
peers enables a search space pruning technique and search
heuristic that drastically improves performance. A query is
posed by a query peer that may be one of the peers of P or
an additional peer connected to P.

3.1 Algorithm

To answer an arbitrary CNF query Q to peer P according
to distributed entailment, Algorithm 1 finds the ranks of the
best-rank arguments from preferred extensions ofAF (P) for
both Q and ¬Q by passing the negation of each subquery to
Find Bottom Distr of Algorithm 2 for a refutation proof and
returns the answer corresponding to the best-rank argument.
BOTH is returned if the best arguments for and against the
query have equal rank and UNK (for unknown) if no argu-
ment for either exists in any preferred extension.

Find Bottom Distr(Q,P, best) finds the best-rank way to de-
rive the empty clause (�) from Q relying on an argument of
rank no worse than best and which is in a preferred extension
of AF (P). Arguments with reason Σ that are in no preferred
extension due to being attacked are detected by recursive
calls to Find Bottom Distr(Σ, P, best) and ignored. To find the
best-rank way of deriving the empty clause from the CNF
query Q, it is split into its individual literals, and each lit-
eral’s distributed consequences that rely on arguments from
preferred extensions (OA sets in the algorithms) are found
by sending a forth message for each. The returned back
messages are collected and merged back together to form the
consequences of the original clauses in Q. We will outline
the workings of the message-passing procedures and give
an example in a moment. Given the consequences of Q,
their OA sets (reasons) are tested for satisfiability (to com-
ply with Definition 3) and for being in a preferred extension
of the argumentation framework induced by the PQAS (to
comply with Definition 11). The latter is done by recursive
calls to Find Bottom Distr, which is only asked to find con-
tradicting arguments of rank worse or equal to the reason at-
tacks on which are to be found. Find Bottom Distr then calls
the subroutine Find Empty Clauses to find contradictions in
the deductive closure of all the consequences of the passed-
in (negated) query Q, which indicate a refutation proof for
the original query. The satisfiability and attack checks are
repeated on those proof candidates and the rank of the best-
rank argument from a preferred extension returned.

Reasons for individual literal’s consequences are com-
puted by the message-passing Algorithms 3, 4, 5, and 6 and
then combined to find reasons for the original CNF query.
In order to compute reasons for a query literal p’s conse-

quences, a forth message is sent to a peer whose signature
contains p and back messages with the consequences col-
lected. A history is used to keep track of which literals
and clauses the currently processed literal depended on, en-
abling the algorithm to detect if a literal has been processed
by the same peer before or whether it depends on its own
negation in the history and thus derives the empty clause.
Each derived clause has an associated OA set (for “original
ancestor”) which contains all original parent clauses and is
used to reconstruct the reasons for consequences and their
ranks. The following notation, proposed by [1], is used in
the message-passing algorithms, which extend Adjiman et
al.’s by priorities, OA sets, and attack checks.

Definition 13 (History ([1])). A history hist is a list of tu-
ples (l, P, c) of a literal l, a peer P , and a clause c. c is a
consequence of l in P , and l is a literal of the clause of the
previous tuple in the hist list.

Definition 14 (Local consequences ([1])). Resolvent(l, Pi)
is the set {c|KBi |=i c ∨ ¬l} of local consequences in peer
Pi of the literal l.

Definition 15 (Acquainted peers by literal ([1])). ACQ(l, P)
is the set {P ′ ∈ V |(P, P ′, Lij) ∈ E, l ∈ Lij} of peers sharing
an edge labeled by Lij with peer P , where l ∈ Lij .

Definition 16 (Distributed disjunction ([1])). The dis-
tributed disjunction operator ⊗ in A ⊗ B forms clauses by
disjoining all combinations of clauses in the sets A and
B . For an indexed set of clause sets {Ai}i, the notation
⊗i∈{1,2,3}Ai means A1 ⊗A2 ⊗A3.

Each peer can send and receive four message types during
the search for consequences of the query. Forth messages
(Algorithm 3) request the search for consequences of a lit-
eral by neighboring peers. The receiving peer computes all
local consequences of the literal of the message (line 15).
When two clauses are resolved, their original ancestors are
added to the resolvent’s OA set. Any consequences with
consistent OA sets are returned to the sender peer via a
back message if a recursive call to Find Bottom Distr verifies
that their reasons are not attacked without defense (line 23).
Then the local consequence clauses are split into their indi-
vidual literals and each sent to the connected peers (if any)
via another forth message (line 35). Back messages (Al-
gorithm 4) are sent back to the sender peer when a conse-
quence with satisfiable and non-attacked OA set is derived.
Upon receiving a back message, a peer stores the contained
consequence of the literal of the corresponding forth mes-
sage (line 3). If their respective OA sets are mutually sat-
isfiable and not attacked, one back message for each com-
bination of per-literal consequences is sent to the last peer
in the history hist (line 17). Final messages (Algorithm 5)
indicate that the exploration of a particular search branch is
completed (Algorithm 3, lines 3, 5, 28, and 37). Prio mes-
sages (Algorithm 6) are sent when a new argument from a
preferred extension is founds whose rank is better than that
of any such argument for the original query known so far
(Algorithm 2, line 29). Prio messages serve to update each
peer’s local value of best(id), which determines the priority
at which peers and clauses of the reasoning process id can

Algorithm 1 Distributed query answering algorithm

1: Answer Query Distr(Q)
2: Q̄← ¬Q in CNF
3: for all P ∈ P do
4: posP ← Find Bottom Distr(Q̄, P,∞)
5: negP ← Find Bottom Distr(Q,P,∞)
6: pos← minP (posP)
7: neg ← minP (negP)
8: if pos < neg then
9: return Y ES

10: if neg < pos then
11: return NO
12: if neg = pos & pos <∞ then
13: return BOTH

14: return UNK

Algorithm 2 Finding best-rank arguments

1: Find Bottom Distr(Q,P, best)
2: id← newID()
3: best(id)← best
4: for all clauses c ∈ Q do
5: for all literals l ∈ c do
6: send m(Self, P, forth, [(l, Self, c)|hist], l, id)
7: Consc,l ← ∅
8: best prio←∞
9: while final message not received do

10: for all back messages received for clause c and literal l with
ID id, containing consequence cons do

11: Consc,l ← Consc,l ∪ {cons}
12: for all clauses c ∈ Q do
13: Consc ← ⊗l∈cConsc,l

14: c.prio← max(l.prio)
15: c.OA←

S

l∈c l.OA

16: Cons←
S

c∈Q
Consc

17: for all c ∈ Cons do
18: if c.prio > best then
19: Cons← Cons\{c}
20: for all c ∈ Cons do
21: if c.OA is UNSAT or

Find Bottom Distr(c.OA, P, c.prio) ≤ c.prio then
22: Cons← Cons\{c}
23: �Cons ← Find Empty Clauses(Cons)
24: for all � ∈ �Cons do
25: if �.OA is UNSAT or

Find Bottom Distr(�.OA, P,�.prio)≤ �.prio then
26: �Cons ← �Cons\�
27: best prio← min(min�∈�Cons

(�.prio), best prio)
28: if best prio < best(id) then
29: send m(Self, P, prio, best prio, id)

30: return best prio

be safely pruned from the search space. This pruning of the
search space deserves highlighting and results in a signifi-
cant improvement in the performance of the system.

3.2 Example

Returning to the bookstore example of Figure 1, Customer
asserts ord and paid and asks at the bookstore whether the
book will be delivered on time. This is a single-literal query
which Algorithm 1 asks positively and negatively via Algo-

Algorithm 3 Forth message algorithm

1: ReceiveForthMessage(m(Sender, Self, forth, hist, p, id))
2: if (p, Self,) ∈ hist then
3: send m(Self, Sender, final, [(p, Self, true)|hist], id)
4: else if p.prio > best(id) or Self.prio > best(id) then
5: send m(Self, Sender, final, [(p, Self, true)|hist], id)
6: else
7: if (¬p, ,) ∈ hist then
8: hist is of the form [(l′, , c′)|hist′]
9: if c′.OA is SAT then

10: let � be a new empty clause
11: �.OA← c′.OA
12: �.prio← c′.prio
13: if Find Bottom Distr(�.OA, Self,�.prio)>

�.prio then
14: send m(Self, Sender, back,

[(p, Self,�)|hist],�, id)
15: LOCAL(Self)← {p} ∪Resolvent(p, Self)
16: for all c ∈ LOCAL(Self) do
17: let {c∗i }i be the set of clauses that went into c
18: c.OA←

S

i
c∗i .OA (recursively)

19: c.prio← maxi(c
∗
i .prio) (recursively)

20: LOCAL(Self)← {c ∈LOCAL(Self)|
c.prio ≤ best(id)}

21: temp min←∞
22: for all c ∈ LOCAL(Self) s.t. c.OA is SAT do
23: if Find Bottom Distr(c.OA, Self, c.prio)> c.prio

then
24: send m(Self,Sender,back,[(p, Self, c)|hist],c,id)
25: temp min← min(temp min, c.prio)
26: LOCAL(Self)← {c ∈ LOCAL(Self) | all literals in c are

shared}
27: if LOCAL(Self) = ∅ then
28: send m(Self,Sender,final,[(p, Self, true)|hist],id)
29: for all c ∈ LOCAL(Self) do
30: for all l ∈ c do
31: CONS(l, [(p, Self, c)|hist])← ∅
32: ACQ∗ ← {P ′ ∈ ACQ(l, Self)|P ′.prio ≤

best(id)}
33: for all RP ∈ ACQ∗ do
34: FINAL(l, [(p, Self, c)|hist], RP)← false
35: send m(Self,RP,forth,[(p, Self, c)|hist],l,id)
36: if no forth message sent then
37: send m(Self,Sender,final,[(p, Self, true)|hist],id)

rithm 2. Algorithm 2 passes each on as a forth message.
At the Bookstore peer, ¬del ontime generates the local con-
sequence ¬pmt rcvd ∨ ¬ord which is split into its individ-
ual literals. A forth message containing ¬pmt rcvd is sent
to Visa, CCOne, and CCTwo. Visa generates ¬paid which
resolves with paid to the empty clause at Customer. The
empty clause with its OA set is passed back to Visa and then
to Bookstore via back messages. ¬pmt rcvd generates no
consequences in CCOne or CCTwo, and final messages are
sent for these branches. The ¬ord of the consequence in
Bookstore is sent as a forth message to Customer where it
resolves with ord to the empty clause and is passed back
as a back message. The empty clauses for ¬pmt rcvd and
¬ord are merged back together at the bookstore and the re-
sulting OA set {¬pmt rcvd∨¬ord∨ del ontime, pmt rcvd∨
¬paid, paid, ord} is determined to be consistent. Thus a rea-

Algorithm 4 Back message algorithm

1: ReceiveBackMessage(m(Sender, Self, back, hist, c∗, id))
2: hist is of the form [(l′, Sender, c′), (p, Self, c)|hist′]
3: CONS(l′, [(p, Self, c)|hist′])←

CONS(l′, [(p, Self, c)|hist′]) ∪ c∗

4: RESULT← (⊗l∈c\{l′}CONS(l, [(p, Self, c)|hist′]))⊗{c∗}
5: for all cl ∈ RESULT s.t. cl contains a distributed consequence

for each l ∈ c do
6: let {c∗i }i be the set of distributed consequence clauses that

went into cl
7: cl.OA←

S

i
c∗i .OA

8: cl.prio← maxi(c
∗
i .prio)

9: RESULT← {cl ∈ RESULT|cl.prio ≤ best(id) and cl.OA
is SAT}

10: if hist′ = ∅ then
11: U ← User
12: else
13: U ← the first peer P ′ of hist′

14: temp min←∞
15: for all cl′ ∈ RESULT do
16: if Find Bottom Distr(cl′.OA, Self, cl′.prio)> cl′.prio

then
17: send m(Self, U, back, [(p, Self, c)|hist′], cl′, id)
18: temp min← min(temp min, cl′.prio)

Algorithm 5 Final message algorithm

1: ReceiveFinalMessage(m(Sender, Self, final, hist, id))
2: hist is of the form [(l′, Sender, true), (p, Self, c)|hist′]
3: FINAL(l′, [(p, Self, c)|hist′], Sender)← true
4: if ∀c∗ ∈ LOCAL(Self) and ∀l ∈ c∗,

FINAL(l, [(p, Self, c∗)|hist′],) = true then
5: if hist′ = ∅ then
6: U ← User
7: else
8: U ← the first peer P ′ of hist′

9: send m(Self, U, final, [(p, Self, true)|hist′], id)

Algorithm 6 Prio message algorithm

1: ReceivePrioMessage(m(Sender, Self, prio, x, id))
2: if x < best(id) then
3: best(id)s← x
4: for all RP ∈ ACQ(, Self) s.t. RP 6= Sender do
5: send m(Self,RP, prio, best(id), id)

son for del ontime is found with rank 5 (max over the three
peers contributing clauses to the reason). It is verified that
the argument this reason is in is in a preferred extension by
recursively passing it to Algorithm 2 and observing that no
contradiction is derived (and the reason is thus not attacked).
Similarly the empty clause can be derived from del ontime

using Bookstore, CCOne, and Customer, resulting in a rea-
son of rank 10 for ¬del ontime. The argument with this
reason, however, is determined to be attacked by a recursive
call to Algorithm 2 and thus ignored. Since del ontime is
inferred with better rank than ¬del ontime, YES is returned
as the answer in Algorithm 1.

3.3 Analysis

We proved various results for the algorithms and restate the
most important theorems here. The proofs are outlined in
as much detail as space permits. Our ultimate goal in this
analysis is to show that Algorithm 1 is sound and complete
with respect to distributed entailment (Definition 11). To
this end, we will first establish that Algorithms 3, 4, and 5
are sound and complete wrt. computing the reasons of dis-
tributed consequences of individual literals and then use this
result to show that Algorithm 2 computes the rank of the
best-rank argument for the query that belongs to a preferred
extension of the argumentation framework AF (P) induced
by the PQAS P. In order to make the line of argumenta-
tion easier to follow, we will first consider the algorithms
without priority-based pruning and without recursive calls
to Find Bottom Distr of Algorithm 2 (i.e. without checking
reasons for being attacked). Without attack checks, the ar-
guments that the computed reasons belong to are valid argu-
ments, but do not necessarily belong to a preferred extension
of AF (P), which is necessary for distributed entailment. We
gradually add both attack checks and priority-based pruning
back in to arrive at our final soundness and completeness
result.

We proceed by establishing the following in this order,
each bullet corresponding to a theorem.

• Computation of reasons for consequences of individual
literals by Algorithms 3, 4, and 5 without priority-based
pruning and attack checks

• Computation of reasons for arbitrary CNF queries by
Algorithm 2 without priority-based pruning and attack
checks

• Computation of reasons for arbitrary CNF queries by Al-
gorithm 2 without priority-based pruning but with attack
checks

• Termination of Algorithm 2

• Correctness of priority-based pruning

• Soundness and completeness of Algorithm 1 wrt. dis-
tributed entailment

First, the following theorem states that, without priority-
based pruning and attack checks, the message-passing algo-
rithms find the reasons of distributed consequences of indi-
vidual literals. Both theorem and proof somewhat resem-
ble those in [1], but additionally take into account link lan-
guages and validity of reasons (satisfiability of OA sets).

Theorem 3 (Soundness and completeness wrt. computing
reasons for consequences of individual literals). Let P be a
possibly P-inconsistent PQAS. The following holds for Al-
gorithms 3, 4, and 5 without calls to Find Bottom Distr of
Algorithm 2 and without priority-based pruning. There ex-
ist peers Pi and Pj and a literal p in Lij s.t. Pi receives
the message m(Pj , Pi, back, [(p, Pj , c)], c) as a response to the
message m(Pi, Pj , forth, ∅, p) iff there is a set of formulas Σ
s.t. P |=Σ p→ c, where c is a clause.

Proof sketch. The message passing Algorithms 3, 4, and 5
can be shown to be sound and complete for computing dis-
tributed consequences of an individual literal, i.e. those for

which a reason exists (by Definition 3). This is proved by
induction on the length of the history hist by relating the
merging of distributed consequences of individual literals
of a clause (line 4 of Algorithm 4) to the inductive step of
Definition 3 and checking the satisfiability of OA sets to in-
sure consistent reasons. The full proof is very similar to that
in [1], but additionally accounts for satisfiability checks of
OA sets and for the constraints imposed by link languages
(in the inductive step of Definition 3). �

Theorem 4 extends the above result to full CNF queries
to Algorithm 2. I.e., it is shown that without priority-based
pruning and attach checks, reasons are correctly computed,
although they may still be attacked.

Theorem 4 (Best-rank reasons). Let P be a pos-
sibly P-inconsistent PQAS. Then for some peer P ,
Find Bottom Distr(Q,P,∞) of Algorithm 2 without recursive
calls to itself and without priority-based pruning returns the
rank of the best-rank reason for ¬Q.

Proof sketch. Theorem 3 establishes that the message-
passing Algorithms 3, 4, and 5, invoked at some peer P
connected to the peer relevant for the query, find all con-
sequences of individual literals along with their support-
ing reasons. For each clause in the negated query Q in
CNF, Algorithm 2 calls the message-passing algorithms to
find its per-literal consequences (line 6) and merges them
back together to obtain the consequences of the negated
query (line 13). All contradictions ultimately caused by the
negated query (since all consequences resulting from unsat-
isfiableOA sets are ignored, lines 21 and 25) are found in the
deductive closure of the per-clause consequences (line 23)
and the priority of the best one, corresponding to the best-
rank reason, is returned. �

The result obtained in Theorem 4 is extended below to
consider only reasons of arguments for the query that are in
a preferred extension of AF (P). This is achieved when con-
sidering recursive calls to Find Bottom Distr of Algorithm 2,
which serve as attack checks on the argument with the rea-
son under consideration. Theorem 5 is the core of establish-
ing the soundness and completeness of Algorithm 1 as ar-
guments in preferred extensions are the basis for distributed
entailment (Definition 11).

Theorem 5 (Best-rank reasons of preferred extensions). Let
P be a possibly P-inconsistent PQAS. Then for some peer
P , Find Bottom Distr(Q,P,∞) of Algorithm 2 with recursive
calls to Find Bottom Distr but without priority-based pruning
returns the rank of the best-rank reason for ¬Q that belongs
to an argument in a preferred extension of AF (P).

Proof sketch. We already know that, without recursive calls
to Find Bottom Distr, the algorithms find the best-rank reason
for the query (Theorem 4). It remains to show that reasons
which are in no preferred extension ofAF (P) are filtered out
by posing the reasons to recursive calls of Find Bottom Distr

to find attacks.
This is proved by induction on the number of recursive

calls to Find Bottom Distr. The intuition underlying the proof
is as follows. In the base case, Algorithm 2 returns ∞

because no consequence of Q has better or equal priority
than best and all of Q’s consequences are thus disregarded
(line 19). In this case there is no argument attacking Q, so Q
is in a preferred extension of AF (P).

We briefly outline the induction step as follows. In this
step, a recursive call to Find Bottom Distr returns a priority
better than best, indicating that an argument attacking Q ex-
ists. Call that argument Q′. Since Q is attacked by Q′, it is
disregarded by the algorithm (lines 21 and 25). There are
two cases.

(1): Q′ is not attacked by any other argument of better
rank. Then Q′ is a valid attack on Q and Q is thus in no
preferred extension of AF (P) and hence Q is rightfully dis-
regarded by the algorithm.

(2): Q′ is itself attacked by an argumentQ′′ of better rank.
Then either (a) Q∪Q′′ 6|= ⊥ (i.e. both reasons are consistent)
or (b) Q ∪Q′′ |= ⊥ (i.e. they are not consistent).

(a): Q′′ is in the same conflict-free set withQ and thus de-
fendsQ against the attack fromQ′. In this case the algorithm
rightfully disregards Q′ as an attacking reason.

(b): Q′′ also attacks Q directly (since both are mutually
inconsistent). Thus the recursive call to Find Bottom Distr

will return a better priority than best due to Q′′ already and
disregarding Q′ will do no harm. �

Theorem 6 below establishes that Algorithm 2 terminates,
a necessary condition for soundness and completeness.

Theorem 6 (Termination (partially following [1])). Algo-
rithm 2 terminates.

Proof sketch. There are two recursions in the overall algo-
rithm; one grows the history to find consequences of conse-
quences using the message passing algorithms, and the other
checks whether reasons are attacked via recursive calls to
Find Bottom Distr.

For each forth message, a new element is added to the his-
tory. There are finitely many variables and peers, so there are
only finitely many possible history elements. Thus a history
can only be of a finite length. Therefore, only finitely many
forth messages can be sent. A forth message necessarily re-
sults in a final message and thus this recursion terminates.

The number of recursions of Find Bottom Distr cannot be
infinite as for each priority level (parameter best in Algo-
rithm 2), there are finitely many possible attacks (or incon-
sistencies of better or equal rank, since the global theory is
finite) and the priority limit best at which possible attacks
are valid is monotonically increasing (i.e. worsening) with
each recursive call to Find Bottom Distr. �

Given termination of Algorithm 2, it is easily shown that
Algorithm 1 terminates.

In the following, we reintroduce priority-based pruning
and show that soundness and completeness are retained. The
pruning strategy, while not necessary for the correctness of
the algorithm, allows for large performance improvements
due to a significantly smaller search space.

Theorem 7 (Pruning by priority limit). The following hold
for a PQAS running Algorithms 2, 3, 4, 5, and 6. (i) When-
ever a peer updates its local value of best, there exists a

reason for the original query or its negation with priority
best. (ii) Forth messages and acquainted peers ignored by a
peer P cannot result in a reason for the original query or its
negation with better or equal rank than the current value of
best.

Proof sketch. (i) The algorithms only send prio messages if
a new argument from a preferred extension for either the
query or its negation has been found (line 29 Algorithm 2
and line 5 of Algorithm 6).

(ii) Ignoring a forth message or a peer of a certain pri-
ority amounts to ignoring a clause of that priority. In a
history [(ln, Pn, cn), . . . , (li, Pi, ci), . . . , (l1, P1, c1)], the prior-
ities ci.prio are monotonically increasing with increasing i

due to the priority of a resolvent being the max-value of the
priorities of the input clauses. Thus an empty clause derived
from a clause c with priority c.prio > best cannot have a
priority better than or equal to best. The empty clause cor-
responds to the reason (via its OA set) and its priority to the
reason’s rank. �

Since Algorithm 2 finds the rank of the best-rank argu-
ment for the query (Theorem 5), and the algorithm termi-
nates (Theorem 6), asking all peers the query and its nega-
tion results in an answer according to distributed entailment
(Algorithm 1). The following theorem formalizes this main
result of the present paper regarding our set of query answer-
ing algorithms.

Theorem 8 (Soundness and completeness wrt. distributed
entailment). Given a PQAS P, Answer Query(Q) of Algo-
rithm 1 returns YES iff P |=D Q and P 6|=D ¬Q, NO iff
P |=D ¬Q and P 6|=D Q, BOTH iff P |=D Q and P |=D ¬Q
and UNK otherwise.

Proof sketch. Assume that P |=D Q and P 6|=D ¬Q. Then
Answer Query(Q) of Algorithm 1 collects the ranks of the
best-rank arguments for and against the query resulting by
asking them at all peers in posP and negP , respectively
(lines 4 and 5). The overall best ranks for and against the
query are found (lines 6 and 7) and known to be correct
(Theorem 5). Since P |=D Q and P 6|=D ¬Q, we will have
pos < neg and YES is returned by the algorithm (line 9).
The argument for the algorithm returning NO if P |=D ¬Q
and P 6|=D Q is symmetric.

Assume that P |=D Q and P |=D ¬Q. Then we will have
pos = neg <∞ and Algorithm 1 returns BOTH (line 13).

If neither pos < ∞ nor neg < ∞, the algorithm returns
UNK (line 14).

The reverse direction can be shown similarly. �

3.4 Pruning and Ordering Heuristic

Time can be saved by the message-passing algorithms when
searching for the best-rank reasons for a query and its nega-
tion simultaneously by exploiting the priority ordering over
the peers and the resulting priority ordering over formu-
las. Since we are only interested in the best-rank argu-
ment from a preferred extension, and since clauses and peers
with worse priority than the currently best known such argu-
ment are pruned away, it generally pays off for each peer to

process messages with consequences of better priority first.
This technique ensures that better-rank reasons are found
earlier and the priority limit best is updated more quickly,
resulting in a larger part of the search space being pruned.
Furthermore, the best-rank reason from a preferred exten-
sion will be found earlier (although not necessarily first as
the algorithm runs concurrently across distributed peers). In
Section 4, we present empirical results illustrating the effec-
tiveness of this priority-ordering heuristic.

3.5 Discussion

Since we are reasoning with peer KBs that may be mutu-
ally inconsistent, we want to ensure that any conclusions
we draw are derived from a consistent subset of these KBs.
Hence, before sending a found consequence in a back mes-
sage, the algorithm checks the satisfiability of the clause’s
OA set, since this set could be inconsistent. This may be
done either by a call to a SAT solver or by comparing the
clauses in the OA set against cached nogoods as in [12].
Both approaches have their merits—one needs no precom-
puted nogoods and the other may amortize their computation
over multiple queries.

In the special case of a P-consistent PQAS the computa-
tion of query answers is less costly. Since no contradictions
can be derived in such a system, a reason only exists either
for the query, its negation, or neither. Furthermore, the satis-
fiability of clause sets and therefore also the acceptability of
reasons is guaranteed in a P-consistent system and OA sets
need not be tracked nor their consistency checked. Priorities
need not be tracked when trying to find the answer to a query
only. In this case, the first reason for the query found will
suffice and the algorithm may terminate. If the best-rank rea-
son for the answers is of interest (for example, if priorities
represent reliability), priorities must be tracked, but only the
query and not its negation asked in a P-consistent system.

4 Implementation and Experiments

To evaluate our pruning technique and ordering heuristic,
we created an implementation that simulates on a single ma-
chine a PQAS where reasons are not checked for being at-
tacked (to either leave the freedom to judge acceptability to
the querying peer or when it can be assumed that reasons are
not attacked in the given PQAS). Although this is a limited
case of the full system, this demonstrates the effectiveness
of the pruning strategy. There is a message queue for each
peer, and peers take turns to process one message each. The
default message queue is a first-in first-out (FIFO) queue,
ensuring that messages are processed in the order received.
The ordering heuristic uses a priority message queue, which
is sorted by the priorities of clauses and peers of the mes-
sages and returns better-priority messages first. Our prun-
ing strategy prunes consequences and peers of worse prior-
ity than the currently best known argument from a preferred
extension.

We executed experiments to evaluate the effectiveness of
both our priority-ordering heuristic and our pruning strategy.
The quality of query answers need not be empirically evalu-
ated as a full implementation of the algorithms would neces-

sarily return the globally correct answer due to their sound-
ness and completeness wrt. distributed entailment (Theo-
rem 8). We ran three variants of the algorithm querying
each proposition of each of a set of several hundred ran-
domly generated PQAS instances. For a given number of of
peers, instances were generated by giving each peer the same
number of (distinct) propositions, sharing a random subset
of them with a random selection of other peers through la-
beled connections, and randomly generating a fixed number
of clauses of length 1–3 within each peer from its local vo-
cabulary. Each instance had 4–20 peers with 4–8 clauses
per peer, 1–6 shared propositions per peer, and a total of 8–
96 distinct propositions. An incomplete attempt to answer
a query by a given variant of the algorithm was aborted af-
ter ten minutes. Out of all queries given, the naive, prun-
ing, and ordering methods solved 1341, 2292, and 2842
queries, respectively. The average number of messages re-
quired to solve a query for the three methods were 2735,
1266, and 456 messages, respectively. Figure 2 shows the
results for individual queries in terms of the number of mes-
sages passed throughout the system to solve a query. The
top plot contrasts the total number of messages sent until ter-
mination of the naive algorithm (without pruning) with the
number of messages used when pruning. Problem instances
are sorted by the number of messages used by the naive ap-
proach. The bottom plot compares the number of messages
sent by the ordering heuristic version with the pruning-only
version and is sorted by the hardness of problems for the lat-
ter. We chose the number of messages sent to answer a query
as a performance measure as in a real-world distributed sys-
tem, messages would be sent over a network, creating a bot-
tleneck for the system. In both plots only non-trivial queries
that have been solved by at least one of the three methods
are shown. A non-trivial query is one that took the naive al-
gorithm at least 300 messages to solve. Such queries took on
average 52, 52, and 46 messages to solve for the naive, prun-
ing, and ordering versions of the algorithm, respectively, so
ignoring such trivial queries does not hurt the evaluation of
the naive approach in the comparison with the other two ap-
proaches. Figure 3 shows the number of messages saved
by the pruning and priority-ordering techniques compared
to not using them for the same set of queries (and in the
same order) as in Figure 2.

The graphs show that pruning can lead to a drastic re-
duction in the number of messages generated over the naive
algorithm, and in turn, that the ordering heuristic in con-
junction with pruning often beats pruning alone. In a large
number of cases, the savings due to both pruning and order-
ing are very significant. In some cases there are no or almost
no savings, and in many cases the savings are somewhere in-
between. In instances where no consequences or peers can
be pruned, our pruning strategy may require slightly more
messages than the naive approach (prio message overhead).
In a few degenerate cases, the heuristic version of the algo-
rithm can use more messages than the pruning-only version.
This occurs when a medium-priority message generating a
reason and best update is at the front of the FIFO queue in
the pruning-only algorithm, but the heuristic version pro-
cesses better-priority messages that lead to no reason first,

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

Problem Instances

N
u
m

b
e
r

M
e
s
s
a
g
e
s

Pruning vs. No Pruning

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

Problem Instances

N
u
m

b
e
r

M
e
s
s
a
g
e
s

Pruning vs. Pruning with Ordering Heuristic

no pruning

pruning

pruning

pruning + ordering heuristic

Figure 2: Total number of messages sent

0 500 1000 1500 2000 2500 3000
−2000

0

2000

4000

6000

8000

10000

Problem Instances

M
e
s
s
a
g
e
s
 S

a
v
e
d

Message Savings for Pruning vs. No Pruning

0 500 1000 1500 2000 2500 3000
−2000

0

2000

4000

6000

8000

10000

Problem Instances

M
e
s
s
a
g
e
s
 S

a
v
e
d

Message Savings for Ordering vs. Pruning

Figure 3: Number of messages saved

potentially generating messages of bad priority before the
pruning cutoff variable best is updated in Algorithm 6.

5 Discussion and Related Work

In this paper we provided a formal characterization of a P2P
query answering system and a distributed entailment relation
which extends established work on argumentation frame-
works to the distributed and prioritized case. Our system
includes a priority ordering over the peers (which may re-
flect trust or reputation) and allows for inconsistent infor-
mation among them. The priority ordering is employed both
to find the best-rank argument (for or against a query) from
a preferred extension, and to improve the efficiency of this
computation. While a priority specification as simple as the
one presented in this paper is sufficient for many applica-
tions, our framework can be easily extended to richer speci-
fications of priorities and aggregation schemes.

We provided an extension to Adjiman et al.’s message-
passing algorithm that computes query answers in the pres-

ence of inconsistent knowledge and, optionally, a preference
ordering over the peers’ knowledge. In this paper we used
this preference ordering solely to determine whether or not
a query was entailed by the system. However, the algo-
rithm can be trivially extended to report the best priority with
which a formula is entailed. We proved our algorithm sound
and complete with respect to our specification. The com-
plexity of the problem requires the algorithms to be doubly
recursive, and thus doubly exponential in runtime. We pro-
vided a safe pruning technique and ordering heuristic to al-
leviate some of this cost. Empirical analysis demonstrated a
dramatic improvement in the algorithm’s performance using
these techniques. This work provides a foundation for many
interesting extensions, including one to rule languages for
the Semantic Web such as SWRL and RuleML, informa-
tion integration by ontology translation between peers, and
richer priority specification and aggregation schemes. One
especially promising direction is our current work on global
closed-world reasoning from local closed-world reasoners.

The work presented in this paper touches upon issues
from a variety of other areas of research including but not
limited to distributed reasoning in AI and databases, reason-
ing with inconsistent knowledge, and reasoning with priori-
ties and about trust.

In Section 1 we discussed the most significant related
work within the area of distributed logical reasoning (i.e.,
[1, 3, 12]). Also related is the work on distributed logical
reasoning with distributed first-order logics [9], and on dis-
tributed description logics [19].

Much of the related work on reasoning with inconsistent
knowledge concerns inconsistency within a lone KB. Ar-
gumentation frameworks (used in this paper to define dis-
tributed entailment) provide one of the most plausible se-
mantics for inconsistent knowledge [13]. Preference-based
argumentation frameworks only consider preference order-
ings over arguments, not individual formulas, and compute
the best preference ordering over arguments as a function of
an ordering over conclusions, and not the other way around
[2, 16]. Benferhat et al. compare several entailment rela-
tions for prioritized inconsistent KBs [5]. (We exploited
their notion of prioritized argued entailment to define dis-
tributed reasons in this paper.) Previously, Baral et al. pre-
sented an approach to merge multiple inconsistent KBs with
associated integrity constraints [4]. In related work, Nebel
explored syntax-based approaches to belief revision [17].
Grosof provided a framework for prioritized, inconsistent
logic programs with unique consistent answer sets [15]. Pri-
orities have also been used in [8] to achieve extended default
reasoning in centralized theories.

There is also significant work on distributed inconsistent
databases. For example, Bertossi and Bravo study query
answering in P2P data exchange systems that must adhere
to data exchange constraints and trust relationships between
peers. They develop a semantics of consistency within this
setting [6, 7]. Calvanese et al. develop global semantics in
first-order and epistemic logics for P2P systems of databases
that may be globally inconsistent, and present a correspond-
ing query answering algorithm [11, 10]. Other related work
is on P2P information management systems, in which the

peers are again regular databases (e.g., [20, 14]). Again, in
all of these approaches, information sources are databases,
i.e. they contain facts but no rules. This means that, while
the work in this paper is restricted to propositional logic, in
many cases their knowledge is expressed in first-order lan-
guages. However, distributed database systems are restricted
to exchanging facts, whereas we enable a diversity of propo-
sitional reasoning in our PQAS.

Lastly, there has been a diversity of work on trust repre-
sentation and aggregation for distributed systems. Much of
the work that is most closely related to this paper concerns
the role of trust in peer data exchange systems, as discussed
above [7]. In this work, trust relationships exist between
peers expressed in binary relations of the form “peer A trusts
its own data less/equally much as that of peer B”. This dif-
fers significantly from the priorities used in our work as such
binary relations do not necessarily give rise to a partial or
total ordering of the peers by priority or trust. For a more
extensive review of trust models see [18].

Acknowledgments

We are very grateful to Gerhard Brewka for feedback on this
work in its various stages of development. We also thank
Christian Fritz for helpful discussions on technical details of
the paper. Michael Gruninger provided his insights on an
earlier version of this work. We furthermore thank Philippe
Adjiman for providing an early version of his P2PIS code
which we did not end up using. Support from the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) is also gratefully acknowledged.

References

[1] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset,
and L. Simon. Distributed Reasoning in a Peer-to-Peer
Setting: Application to the Semantic Web. Journal of
Artificial Intelligence Research, 25:269–314, 2006.

[2] L. Amgoud and C. Cayrol. A Reasoning Model Based
on the Production of Acceptable Arguments. AMAI
Journal, 34:197–216, 2002.

[3] E. Amir and S. McIlraith. Partition-Based Logical
Reasoning for First-Order and Propositional Theories.
Artificial Intelligence, 162(1-2):49–88, 2005.

[4] C. Baral, S. Kraus, and J. Minker. Combining Multiple
Knowledge Bases. IEEE Transactions on Knowledge
and Data Engineering, 3(2):208–220, 1991.

[5] S. Benferhat, D. Dubois, and H. Prade. Some Syntac-
tic Approaches to the Handling of Inconsistent Knowl-
edge Bases: a Comparative Study Part 2: the Prior-
itized Case. In E. Orłowska, editor, Logic at Work:
Essays Dedicated to the Memory of Helen Rasiowa,
volume 24, pages 437–511. Physica-Verlag, 1999.

[6] Leopoldo E. Bertossi and Loreto Bravo. Query
Answering in Peer-to-Peer Data Exchange Systems.
In Proceedings of the EDBT workshops, Heraklion,
Greece, pages 476–485, 2004.

[7] Leopoldo E. Bertossi and Loreto Bravo. The Seman-
tics of Consistency and Trust in Peer Data Exchange
Systems. In Proceedings of LPAR 2007, pages 107–
122, 2007.

[8] G. Brewka and T. Eiter. Prioritizing Default Logic.
In Intellectics and Computational Logic, pages 27–45.
Kluwer Academic Publishers, 2000.

[9] Ghidini C. and Serafini L. Distributed First Order Log-
ics. In Frontiers of Combining Systems 2, pages 121–
139. Research Studies Press Ltd. Baldock, 2000.

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, and Riccardo Rosati. In-
consistency Tolerance in P2P Data Integration: An
Epistemic Logic Approach. Information Systems,
33(4-5):360–384, 2008.

[11] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Logical Foundations
of Peer-to-peer Data Integration. In PODS ’04: Pro-
ceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems,
pages 241–251, New York, NY, USA, 2004. ACM.

[12] P. Chatalic, G.-H. Nguyen, and M.-C. Rousset. Rea-
soning with Inconsistencies in Propositional Peer-to-
Peer Inference Systems. In ECAI 2006, pages 352–
357, 2006.

[13] P. M. Dung. On the Acceptability of Arguments and its
Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[14] Enrico Franconi, Gabriel Kuper, Andrei Lopatenko,
and Ilya Zaihrayeu. A Distributed Algorithm for Ro-
bust Data Sharing and Updates in P2P Database Net-
works. In Proceedings of the EDBT P2P&DB work-
shop, Heraklion, Greece, pages 446–455, 2004.

[15] B. N. Grosof. Courteous Logic Programs: Prioritized
Conflict Handling for Rules. Technical Report RC
20836, IBM, 1997.

[16] S. Kaci and L. van der Torre. Preference Reason-
ing for Argumentation: Non-monotonicity and Algo-
rithms. In Proceedings of the International Workshop
on Non-Monotonic Reasoning (NMR’06), pages 237–
243, 2006.

[17] B. Nebel. Syntax-based Approaches to Belief Revi-
sion. In P. Gärdenfors, editor, Belief Revision, vol-
ume 29, pages 52–88. Cambridge University Press,
1992.

[18] Jordi Sabater and Carles Sierra. Review on Computa-
tional Trust and Reputation Models. Artificial Intelli-
gence Review, 24(1):33–60, 2005.

[19] L. Serafini and A. Tamilin. DRAGO: Distributed Rea-
soning Architecture for the Semantic Web. Technical
Report T04-12-05, ITC-irst, 2004.

[20] I. Zaihrayeu. Towards Peer-to-Peer Information Man-
agement Systems. PhD thesis, University of Trento,
2006.

