
A Heuristic Search Approach to Planning with Temporally Extended Preferences

Jorge A. Baier and Fahiem Bacchus and Sheila A. McIlraith

Department of Computer Science

University of Toronto

Toronto, Canada

Abstract

In this paper we propose a suite of techniques for plan-
ning with temporally extended preferences (TEPs). To
this end, we propose a method for compiling TEP
planning problems into simpler domains containing
only final-state (simple) preferences and metric func-
tions. With this simplified problem in hand, we
propose a variety of heuristic functions for planning
with final-state preferences, together with an incre-
mental best-first planning algorithm. A key feature
of the planning algorithm is its ability to prune the
search space. We identify conditions under which
our planning algorithm will generate optimal plans.
We implemented our algorithm as an extension to
the TLPLAN planning system and report on exten-
sive testing performed to evaluate the effectiveness of
our heuristics and algorithm. Our planner, HPLAN-P,
competed in the 5th International Planning Competi-
tion, achieving distinguished performance in the qual-
itative preferences track.

1 Introduction

Standard goals enable a planner to distinguish between plans
that satisfy goals and those that do not. They provide no fur-
ther means of discrimination between successful plans. Pref-
erences, on the other hand, convey information about how
“good” a plan is, thus enabling a planner to distinguish be-
tween successful plans of differing quality. Simple prefer-
ences express preferences over properties of the final state of
a plan, while temporally extended preferences (TEPs) refer to
properties of the whole plan. Planning with TEPs has been
the subject of recent research, e.g., [Delgrande et al., 2004;
Son and Pontelli, 2004; Bienvenu et al., 2006]. It was also a
theme of the 5th International Planning Competition (IPC-5).

In this paper we propose techniques for planning with
TEPs such as those specified in PDDL3 [Gerevini and Long,
2005]. PDDL3, is a planning domain definition language de-
signed specifically for IPC-5. It extends PDDL2.2 to include,
among other things, facilities for expressing TEPs, described
by a subset of linear temporal logic (LTL). A metric func-
tion over simple and TEPs is then used to quantify the plan’s
quality. The aim in solving a PDDL3 planning instance is to
generate a plan that satisfies the hard goals and constraints

while optimizing the metric function.
A key insight, developed early in our investigation, was

that, to be effective, a preference-based planner must actively
guide search towards the achievement of preferences. To this
end, we propose a compilation method that reduces a plan-
ning problem with TEPs into a new problem containing only
simple preferences and some metric functions. The new prob-
lem contains additional domain predicates that emulate the
satisfaction of the TEPs in the original problem. Roughly,
this means that for any TEP ϕ , we have a new predicate Pϕ

that is true in the final state of a plan iff ϕ was satisfied dur-
ing the execution of the plan. The advantage of having such a
compilation is that the possibly complex process of satisfying
a TEP is reduced to the problem of satisfying a simple pref-
erence, i.e., a final-state preference. Hence, we observed that
if we could find ways of adapting existing heuristic search
techniques to achieve simple preferences, we would obtain a
method for solving planning problems containing TEPs.

Unfortunately, heuristics for classical planning goals are
not directly applicable to planning with simple preferences.
A contribution of this paper is the development of a number
of new search heuristics for planning with simple preferences,
that we exploit for planning problems with TEPs encoded as
simple preferences.

Using these heuristics, we propose a planning algorithm
that incrementally finds better plans. Once a plan is found,
its metric value can be used as a bound for future plans: any
plan that exceeds this metric value can be pruned from the
search space. We also prove that under certain fairly natural
conditions our algorithm can generate optimal plans.

We have implemented a planner, HPLAN-P, which uses
these techniques to find good quality plans. The planner is
built as an extension of the TLPLAN system [Bacchus and
Kabanza, 1998] 1. We used our implementation to evalu-
ate the performance of our algorithm and the relative per-
formance of different heuristics on problems from both the
IPC-5 Simple and Qualitative Preferences tracks.

In what follows, we briefly describe PDDL3. Then we out-
line our compilation method, the proposed heuristics, the al-

1The basic TLPLAN system uses LTL formulae to express do-
main control knowledge; thus, LTL formulae serve to prune the
search space. Nevertheless, it has no mechanism for predicting the
future satisfaction or falsification of the LTL formula, providing no
heuristic guidance to the search.

IJCAI07
1808

gorithm we used to realize them and the experiments we per-
formed to evaluate them. We conclude with a discussion of
system performance and related work.

2 Brief Description of PDDL3

PDDL3 extends PDDL2.2 by enabling the specification of
preferences and hard constraints. It also provides a way of
defining a metric function that defines the quality of a plan.
The rest of this section briefly describes these new elements.

Temporally extended preferences/constraints PDDL3
specifies TEPs and temporally extended hard constraints in
a subset of LTL. Both are declared using the :constraints
construct. Preferences are given names in their declaration, to
allow for later reference. By way of illustration, the following
PDDL3 code defines two preferences and one hard constraint.

(:constraints
(and

(preference cautious
(forall (?o - heavy-object)

(sometime-after (holding ?o)
(at recharging-station-1))))

(forall (?l - light)
(preference p-light (sometime (turn-off ?l))))

(always (forall ?x - explosive) (not (holding ?x)))))

The cautious preference suggests that the agent be at a
recharging station sometime after it has held a heavy object,
whereas p-light suggests that the agent eventually turn all
the lights off. Finally, the (unnamed) hard constraint estab-
lishes that an explosive object cannot be held by the agent at
any point in a valid plan.

When a preference is externally universally quantified, it
defines a family of preferences, containing an individual pref-
erence for each binding of the variables in the quantifier.
Therefore, preference p-light defines an individual prefer-
ence for each object of type light in the domain. Preferences
that are not quantified externally, like cautious, can be seen
as defining a family containing a single preference.

Temporal operators, such as sometime-after in the ex-
ample above, cannot be nested in PDDL3. However, our ap-
proach can handle the more general case of nested TEPs.

Precondition Preferences
Precondition preferences are atemporal formulae expressing
conditions that should ideally hold in the state in which the
action is preformed. They are defined as part of the action’s
precondition. For example, the preference labeled econ be-
low specifies a preference for picking up objects that are not
heavy.

(:action pickup :parameters (?b - block)
(:precondition (and (clear ?b)

(preference econ (not (heavy ?b)))))
(:effect (holding ?b)))

Precondition preferences behave something like conditional
action costs. They are violated each time the action is ex-
ecuted in a state where the condition does not hold. In the
above example, econ will be violated every time a heavy
block is picked up in the plan. Therefore these preferences
can be violated a number of times.

Simple Preferences
Simple preferences are atemporal formulae that express a

preference for certain conditions to hold in the final state of
the plan. They are declared as part of the goal. For example,
the following PDDL3 code:

(:goal (and (delivered pck1 depot1)
(preference truck (at truck depot1))))

specifies both a hard goal (pck1must be delivered at depot1)
and a simple preference (that truck is at depot1). Simple
preferences can also be externally quantified, in which case
they again represent a family of individual preferences.

Metric Function
The metric function defines the quality of a plan, generally
depending on the preferences that have been achieved by the
plan. To this end, the PDDL3 expression (is-violated
name), returns the number of individual preferences in the
name family of preferences that are violated by the plan.
When name refers to a precondition preference, the expres-
sion returns the number of times this precondition preference
was violated during the execution of the plan.

The quality metric can also depend on the function
total-time, which returns the plan length. Finally, it is also
possible to define whether we want to maximize or minimize
the metric, and how we want to weigh its different compo-
nents. For example, the PDDL3 metric function:

(:metric minimize (+ (total-time)
(* 40 (is-violated econ))
(* 20 (is-violated truck))))

specifies that it is twice as important to satisfy preference
econ as to satisfy preference truck, and that it is less im-
portant, but still useful, to find a short plan.

3 Preprocessing PDDL3

The preprocessing phase compiles away many of the more
complex elements of PDDL3, yielding a simpler planning
problem containing only simple preferences, a new metric
function that must be minimized that only refers to those
simple preferences, and possibly some hard atemporal con-
straints. In the new problem, the TEPs have been encoded in
new domain predicates.

This phase is key in adapting existing heuristic techniques
to planning with TEPs. One reason for this is that now the
achievement of a TEP is reduced the simple satisfaction of a
domain predicate, i.e., a new optional goal condition. Gener-
ating a compact compiled problem is also key for good per-
formance; our compilation achieves this in part by avoiding
grounding the planning problem. The rest of this section de-
scribes how we do this for each of the PDDL3 elements de-
scribed in the previous section.

Temporally extended preferences/constraints
We use techniques presented by Baier and McIlraith [2006] to
represent the achievement of first-order temporally extended
formulae within the planning domain, ending up with a new
augmented problem. The new problem contains, for each
temporally extended preference or hard constraint ϕ , a new
domain predicate that is true in the final state of a plan if and
only if the plan satisfied ϕ during its execution.

The advantage of using such a compilation, is that first-
order LTL formulae are directly compiled without having to

IJCAI07
1809

{}q0

q1

{}

(exists (?c)

(and (cafe ?c)

(at ?c))) q2
?x

q0

q1

?x

?x

(delivered ?x)

(loaded ?x)

(true)

(delivered ?x)

(or (not (loaded ?x))

(delivered ?x))

(or (not (loaded ?x))

(delivered ?x))

(a) (b)
Figure 1: PNFA for (a) (sometime (exists (?c)

(and (cafe ?c) (at ?c)))), and (b) (forall (?x)

(sometime-after (loaded ?x) (delivered ?x)))

convert the formula into a possibly very large set of ground in-
stances. As a result, the compiled domain is much more com-
pact, avoiding the exponential blowup that can arise when
grounding. As we see later in Section 5, this is key to our
planner’s performance.

The compilation process first constructs a parameterized
nondeterministic finite state automata (PNFA) Aϕ for each
temporally extended preference or hard constraint expressed
as an LTL formula ϕ .2 The PNFA represents a family of non-
deterministic finite state automata. Its transitions are labeled
by sets of first-order formulae. Its states intuitively “monitor”
the progress towards satisfying the original temporal formula.
A PNFA Aϕ accepts a sequence of domain states iff such a se-
quence satisfies ϕ . Figure 1 shows some examples of PNFA
for first-order LTL formulae.

Parameters in the automata appear when the LTL formula
is externally quantified (e.g. Figure 1(b)). The intuition is
that different objects (or tuples of objects) can be in different
states of the automata. As an example, consider a transporta-
tion domain with two packages, A and B, which are initially
not loaded in any vehicle. Focusing on the formula of Figure
1(b), both objects start off in states q0 and q2 of the automata
because they are not loaded in the initial state. This means
that initially both objects satisfy the temporal formula, since
both are in the automaton’s accepting state q2. That is, the
null plan satisfies the formula (b) of Figure 1. Now, assume
we perform the action load(A,Truck). In the resulting state,
B stays in q0 and q2 while A now moves to q1. Hence, A no
longer satisfies the formula; it will satisfy it only if the plan
reaches a state where delivered(A) is true.

To represent the automata within the domain, for each au-
tomaton, we define a predicate specifying the automaton’s
current set of states. When the automaton is parameterized,
the predicate has arguments, representing the current set of
automaton state for a particular tuple of objects. In our exam-
ple, the fact (aut-state q0 A) represents that object A is
in q0. Moreover, for each automaton we define an accepting
predicate. The accepting predicate is true of a tuple of objects
if the plan has satisfied the temporal formula for such a tuple.

As actions are executed, the automata states (as well as

2The construction works for only a subset of LTL [Baier and
McIlraith, 2006]. However, this subset includes all of PDDL3’s
TEPs. It also includes TEPs in which the temporal operators are
nested.

properties of the world) need to be updated. To accomplish
this we define an automata update for each automata. Our
planner performs this update automatically after performing
any domain action. For the automata of Figure 1(b), the up-
date would include rules such as:

(forall (?x) (implies (and (aut-state q0 ?x) (loaded ?x))
(add (aut-state q1 ?x))))

That is, an object ?x moves from state q0 to q1 whenever
(loaded ?x) is true.

Analogously, we define an update for the accepting pred-
icate, which is performed immediately after the automata
update—if the automata reaches an accepting state then we
add the accepting predicate to the world state.

In addition to specifying how the automata states are up-
dated, we need also to specify what objects are in what au-
tomata states initially. This means we must augment the prob-
lem’s initial state by adding a collection of initial automata
facts. Given the original initial state and an automaton, the
planner computes all the states in which a tuple of objects can
be, and then adds the corresponding facts to the new problem.
In our example, the initial state of the new compiled problem
contains facts stating that both A and B are in states q0 and q2.

If the temporal formula originally described a hard con-
straint, the accepting condition of the automaton can be
treated as additional mandatory goal. During search we also
use TLPLAN’s ability to incrementally check temporal con-
straints to prune from the search space those plans that have
already violated the constraint.

Precondition Preferences
Precondition preferences are very different from TEPs: they
are atemporal, and are associated with the execution of ac-
tions. If a precondition preference p is violated n times dur-
ing the plan, then the PDDL3 function (is-violated p)
returns n.

Therefore, the compiled problem contains a new domain
function is-violated-counter-p, for each precondition
preference p. This function keeps track of how many times
the preference has been violated. It is (conditionally) incre-
mented whenever its associated action is performed in a state
that violates the atemporal preference formula. In the case
where the preference is quantified, the function is parameter-
ized, which allows to compute the number of times different
objects have violated the preference.

For example, consider the PDDL3 pickup action given
above. In the compiled domain, the original declaration is
replaced by:

(:action pickup :parameters (?b - block)
(:precondition (clear ?b))
(:effect (and (when (heavy ?b)

(increase (is-violated-counter-econ) 1)))
(holding ?b))) ;; add (holding ?b)

Simple Preferences
As with TEPs, we add new accepting predicates to the com-
piled domain, one for each simple preference. These predi-
cates become true iff the preference is satisfied. Moreover, if
the preference is quantified, they are parameterized.

Metric Function
For each preference, we define a new function is-violated.

IJCAI07
1810

Its value is defined in terms of the accepting predicates (for
temporally extended and simple preferences) and in terms of
the violation counters (for precondition preferences). If pref-
erence p is quantified, then the is-violated function counts the
number of object tuples that fail to satisfy the preference.

The metric function is then defined just as in the PDDL3
definition but making reference to these new functions. If the
objective was to maximize the function we invert the sign of
the function body. Therefore, we henceforth assume that the
metric is always to be minimized.

4 Planning with Heuristic Search

After applying the preprocessing phase described above we
are left with a planning problem containing only simple pref-
erences. We propose to solve this problem with a novel com-
bination of heuristic search techniques.

Heuristic search has been very successful in solving classi-
cal planing problems where the conjunction of all goals must
be achieved. In our case, however, it is generally impossi-
ble to satisfy all preferences. Instead the planner must try
to achieve a “good” subset of the preferences. In particular,
this subset of preferences must be jointly achievable and must
yield a preferred value. Some planners have used techniques
for selecting, during search, a subset of preferences and then
solving that subset as a classical goal using standard planning
heuristics (e.g., YochanPS [Benton et al., 2006]). However,
this introduces the non-trivial problem of first selecting such
a subset.

Our approach is to utilize a unified heuristic search tech-
nique that attempts to tradeoff preference desirability and
ease of achieving during the search for a plan. Another im-
portant factor is that in addition to the preferences the plan-
ning problem generally contains a classical goal, that must be
achieved. Hence, the search must give priority to achieving
the hard goal.

To solve this problem of tradeoffs we have developed an
iterative planning technique that uses a sequence of heuristi-
cally guided planning episodes. Instead of selecting the pref-
erences we want to satisfy, we simply ask the planner to find
a better plan in each planning episode.

Turning to the details we first present the suite of heuris-
tics we have developed to use within each planning episode,
and then we explain how we control the sequence of planning
episodes.

4.1 Heuristics for Planning with Preferences

Many of our heuristics are based on the well-known tech-
nique of computing a relaxed planning graph [Hoffmann and
Nebel, 2001]. We can view this graph as composed of relaxed
states. A relaxed state at depth n+1 is generated by applying
all the positive effects of actions that can be performed in the
relaxed state of depth n (i.e., by ignoring delete lists and by
applying all of the actions in one step).

Most of the heuristics given below are computed for a state
s by constructing the relaxed graph starting at s and growing
this graph until all goal facts and all preference facts appear
in the relaxed state, or we reach an empirically determined
bound on the depth of the relaxed states. The goal facts corre-
spond to the hard goals, and the preference facts correspond

to instantiations of the accepting predicates used to convert
TEPs to simple preferences (as described above).

Goal distance function (G) This function is a measure of
how hard it is to reach the goal. It is based on a heuristic
proposed by Zhu and Givan [2005]. Formally, let G be the set
of goal facts that appear in the relaxed graph. Furthermore,
if f is a fact, let d(f) be the depth at which f first appears
during the construction of the graph. If all the problem’s goal
facts are in G, then G = ∑ f∈G d(f)k , where k is a positive,
real parameter. Otherwise G = ∞.

Preference distance function (P) This function is a mea-
sure of how hard it is to reach the various preference facts.
It is analogous to G but for preferences. Let P be the set
of preference facts that appear in the relaxed graph. Then
P = ∑ f∈P d(f)k, for a parameter k. Notice that P is not pe-
nalized when there are unreachable preference facts since in
general the plan will not achieve all preferences.

Optimistic metric function (O) This is an estimate of the
value achievable by any plan extending the partial plan reach-
ing s. O does not require constructing the relaxed planning
graph. Rather it is computed by evaluating the metric func-
tion in s assuming no precondition preference will be vio-
lated in the future, and that all unviolated preferences will be
achieved in the future. Under the condition that the metric
function is non-increasing in the number of achieved prefer-
ences, O will be a lower bound on the best plan extending s.
O is a variant of “optimistic weight” Bienvenu et al. [2006].

Best relaxed metric function (B) B is another estimate of
the value achievable by extending s. B utilizes the relaxed
planning graph to obtain its estimate. In particular, we eval-
uate the metric function in each of the relaxed worlds of the
planning graph and take B to be the minimum among these
values. B will generally yield a better (higher) estimate of
the optimal value achievable by extending s since it will re-
gard preferences that do not appear in the relaxed states as be-
ing unsatisfiable. Under a slightly more complex method for
building the relaxed planning graph B can be guaranteed to
be a lower bound under the same condition as O (i.e., that the
preference metric is non-increasing in the number of achieved
preferences). However, this technique was not used in the em-
pirical results reported. Hence in our experiments B was not
a guaranteed lower bound.

Discounted metric function (D(r)) A weighting of the
metric function evaluated in the relaxed states. Assume
s0,s1, . . . ,sn are the relaxed states of the graph, where si is
at depth i. The discounted metric, D(r), is:

D(r) = M(s0)+
n−1

∑
i=0

(M(si+1)−M(si))r
i
,

where M(si) is the metric function evaluated in the relaxed
state si, r is a discount factor (0 ≤ r ≤ 1).

The D function is optimistic with respect to preferences
that seem easy and pessimistic with respect to preferences
that look hard. Intuitively, the D function estimates the met-
ric of a plan that is a successor of the planning state by “be-
lieving” more in the satisfaction of preferences that appear
to be easier. Observe that M(si+1)−M(si) is the amount of
metric value gained when passing from state si to state si+1.

IJCAI07
1811

This amount is then multiplied by ri, which decreases as i in-
creases. Observe also that, although the metric gains are dis-
counted, preferences that are weighted higher in the PDDL3
metric will also have a higher impact on the value of D. That
is, D achieves the desired tradeoff between the ease of achiev-
ing a preference and the value of achieving it.

A computational advantage of the D function is that it is
very easy to compute. As opposed to other approaches, this
heuristic never needs to make an explicit selection of the pref-
erences to be pursued by the planner.

Sequence of Planning Episodes

When search is started (i.e., no plan has been found), the al-
gorithm uses the goal distance function (G) as its heuristic in
a standard best first search. The other heuristics are ignored
in this first planning episode. This is motivated by the fact
that the goal is a hard condition that must be satisfied. In
some problems the other heuristics (that guide the planner to-
wards achieving a preferred plan) can conflict with achieving
the goal, or might cause the search to become too difficult.

After finding the first plan, the algorithm restarts the search
from scratch, but this time it uses some combination of the
above heuristics to guide the planner towards a preferred plan.
Let USERHEURISTIC() denote this combination. USER-
HEURISTIC() could be any combination of the above heuris-
tic functions. Nevertheless, in this paper we consider only
a small subset of all possible combinations. In particular,
we consider only prioritized sequences of heuristics, where
the lower priority heuristics are used only to break ties in the
higher priority heuristics.

Since achieving the goal remains mandatory, USER-
HEURISTIC() always uses G as the first priority, and with
some of the other heuristics at a lower priority. For exam-
ple, consider the prioritization sequence GD(0.3)O. When
comparing two states of the frontier, the planner first looks at
the G function. The best state is the one with lower G value
(i.e. lower distance to the goal). However, if there is a tie,
then it uses D(0.3) (the best state being the one with a smaller
value). Finally, if there is still a tie, we use the O function.
In Section 5, we investigate the effectiveness of several such
prioritized heuristics sequences.

One other component of the planning algorithm is that we
utilize a scheme for caching relaxed states (and the heuristic
computed at these states) so that we can short-circuit the re-
laxed planning graph construction if the same relaxed state is
encountered again. Since constructing the relaxed states can
be expensive this caching scheme yields a useful speedup.

Increasing Plan Quality Once we have completed the first
planning episode (using G) we want to ensure that each sub-
sequent planning episode yields a better plan.

This is achieved by using increasingly restrictive pruning
in each planning episode. In particular, in each planning
episode the algorithm prunes from the search space any state
s that we estimate cannot reach a better plan than the best plan
found so far. This estimate is provided by the function MET-
RICBOUNDFN() which is given as an argument to the search
algorithm. METRICBOUNDFN(s) must compute or estimate
a lowerbound on the metric of any plan extending s. We have
used two of the above heuristics, B and O, for this bounding

Input : init: initial state, goal, hardConstraints: a set of hard
constraints, USERHEURISTIC(): a heuristic function,
METRICBOUNDFN(): function estimating metric for a partial
plan

begin
bestMetric← worst case upper bound; HEURISTICFN← G
frontier← INITFRONTIER(init)
while frontier �= ∅ do

current ← REMOVEBEST(frontier)
f ←Evaluate hardConstraints in current
if f is not false then

if current is a plan and its metric is < bestMetric then
Output the current plan
if this is first plan found then

HEURISTICFN← USERHEURISTIC()
frontier← INITFRONTIER(init) [search restarted]
hardConstraints← hardConstraints∪

{always(METRICBOUNDFN() < bestMetric)}

bestMetric← METRICFN(current)

succ← EXPAND(current)
f rontier←MERGE(succ, frontier,HEURISTICFN)

end

Algorithm 1: HPLAN-P’s search algorithm.

function.

PDDL3 domains may also contain hard constraints. Hence,
in addition to pruning by bounding, the algorithm prunes
from its search space any state that violates a hard constraint.

Putting the above together we obtain the Algorithm 1.

4.2 Properties of the Algorithm

We can show that under certain conditions our search algo-
rithm is guaranteed to return an optimal or a k-optimal so-
lution. It is important to note that our conditions impose no
restriction on the USERHEURISTIC() function. In particular,
we can still ensure optimality even if this function is inadmis-
sible. In planning this is important, as inadmissible heuristics
are typically required for adequate search performance.

We require in our proofs that METRICBOUNDFN(s) be a
lower bound on the metric value of the optimal plan extend-
ing s. In this case we say that the pruning is sound. When
sound pruning is used, optimal plans are never pruned from
the search space. Therefore, we can be sure no state that leads
to an optimal plan will be discarded by the algorithm. More-
over, optimality can be guaranteed when the algorithm stops.

Lemma 1 If Algorithm 1 terminates and a sound (or no)
pruning has been used, then the last plan returned, if any,
is optimal.

Proof: Each planning episode has returned a better plan, and
the algorithm stops only when the final planning episode has
rejected all possible plans. Since the bounding function never
prunes an optimal plan this means that no plan better than the
last one returned exists. �

As described above, if the metric function is non-
increasing in the number of achieved preferences, O will be
a lower bound. As a matter of fact, all metric functions used
in IPC-5 are non-increasing in the number of achieved pref-
erences.

Lemma 1 still does not guarantee that an optimal solution
will be found because the algorithm might never terminate.
To guarantee this, we impose further conditions to sound

IJCAI07
1812

pruning. First, we require that the initial value of bestMetric
(worst case upper bound) be finite. Second, we require of the
plan metric function that for every value r less than the ini-
tial value of bestMetric the number of plans with metric value
less then r is finite.

Theorem 1 If the metric function satisfies the conditions
above, the initial value of bestMetric is finite, and a sound
(or no) pruning is used, then Algorithm 1 is guaranteed to
find an optimal plan, if any exists.

Proof: Each planning episode only examines plans with met-
ric value less than bestMetric. By assumption this is a finite
set of plans, so each episode must complete and the algo-
rithm must eventually terminate. Now the result follows from
Lemma 1. �

k-Optimality Another condition that our algorithm can
achieve is k-optimality. We say that a planning algorithm is
k-optimal if it is always able to find an plan that is optimal
with respect to the set of plans of length i ≤ k.

Theorem 2 If a sound (or no) pruning is used, then Algo-
rithm 1 is k-optimal when search is restricted to plans of
length bounded by k.

Proof: Follows from a similar argument as Lemma 1. �

5 Implementation and Evaluation

We have implemented our ideas in the planner HPLAN-P.
HPLAN-P consists of two modules. The first is a prepro-
cessor that reads PDDL3 problems and generates a plan-
ning problem with only simple preferences expressed as a
TLPLAN domain. The second module is a modified version
of TLPLAN that is able to compute the heuristic functions
and implements the algorithm of Section 4.

Recall that two of the key elements in our algorithm are the
iterative pruning strategy and the heuristics used for planning.
In the following subsections we evaluate the effectiveness in
obtaining good quality plans using several combinations of
the heuristics. As a testbed, we use the problems of the qual-
itative preferences track of IPC-5, all of which contain TEPs.
The IPC-5 domains are composed by two transportation do-
mains: TPP and trucks, a production domain: openstacks,
a domain which involves moving objects by using machines
under several restrictions: storage, and finally, rovers, which
models a rover that must move and collect experiments. Each
domain consists of 20 problems. The problems in the trucks,
openstacks, and rovers domains have hard goals and prefer-
ences. The remaining problems have only preferences. Pref-
erences in these domains impose interesting restrictions on
plans, and usually there is no plan that can achieve them all.

At the end of the section, we compare our planner against
the other planners that participated in IPC-5. The results are
based on the data available from IPC-5 [Gerevini et al., 2006]

and our own experiments.

5.1 The Effect of Iterative Pruning

To evaluate the effectiveness of iterative pruning we com-
pared the performance of three pruning functions: the opti-
mistic metric, the best relaxed metric, and no pruning at all.
From our experiments, we conclude that most of the time

pruning produces better results than no pruning, and that,
overall, pruning with B usually produces better results than
pruning with O.

The impact of pruning varies across different domains. In
the TPP domain pruning has a minor effect. Pruning with
O produces very slight improvements in the plans’ quality
(around 1%), whereas pruning with B produces no clear im-
provement. In the openstacks domain, pruning with O has no
effect, whereas pruning with B improves the quality of plans
by over 5%. A similar phenomenon occurs in the rovers do-
main, where O has no effect, but B improves the quality of
plans by over 6%. In storage, pruning with O improves the
plan’s metric by about 1%, whereas B worsens the quality by
about 1%. Finally, in trucks, pruning with O improves quality
by over 10%, and pruning with B by over 15%.

An interesting observation is that, although pruning with
B can sometimes remove optimal solutions, in some domains
its use is critical to obtaining good performance. Notably,
in most of the openstacks problems it was impossible to im-
prove upon the first plan found without the use of B for prun-
ing. For example, when using the best-performing heuristic
along with B for pruning, the planner was able to improve
the first plan found in 18 of 20 problems. However, the same
heuristic used with no pruning or with O pruning was able to
improve plans in only 2 of 20 problems.

A side effect of pruning is that it can sometimes prove
(when the conditions of Lemma 1 are met) that an optimal
solution has been found. Indeed, the algorithm stops on most
of the simplest problems across all domains. If no pruning
was used the search would generally never terminate.

5.2 Performance of Heuristics

To determine the effectiveness of various prioritized heuristic
sequences (Section 4.1) we compared 44 heuristic sequences
using B as a pruning function, allowing the planner to run for
15 minutes over each of the 80 IPC-5 problem instances. All
the heuristics had G as the highest priority (therefore, we omit
G from their names). Specifically, we experimented with O,
B, OP, PO, BP, PB, OM, MO, and BD(r), D(r)B, OD(r),
D(r)O for r ∈ {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1}. The M
in OM and MO denotes the PDDL3 metric function. Note
that the O, OM, and MO heuristics are the only ones that do
not use the relaxed planning graph to guide the search towards
the satisfaction of the preferences.

In general, we say that a heuristic is better than another if it
produces plans with better quality, where quality is measured
by the metric of the plans. To evaluate how good a heuristic is,
we measure the percent improvement of the metric of the last
plan found with respect to the metric of the first plan found.
Thus, if the first plan found has metric 100, and the last has
metric 20, the percent improvement is 80%. Since first plan
is always found using G its metric value is always the same,
regardless of the heuristic we choose. Hence this measure can
be used to objectively compare performance.

Table 1 shows the best and worst performing heuristics in
each of the domains tested. In many domains, several heuris-
tics yield very similar performance. Moreover, we conclude
that the heuristic functions that use the relaxed graph are key

IJCAI07
1813

Domain 1 Plan >1 Plan Best heuristics Worst heuristics

openstacks 18 18
for all r’s: DO(r) [9.17], OD(r)[9.17],
BP[8.73], MO[8.05], OM[8.05]

PO[7.06], OP[7.06], PB[7.06],
O[7.14], B[7.15]

trucks 3 3
PB[96.76], BP[96.76],
for r ≥ 3: DO(r)[96.76], OD(r)[96.76],
BD(r)[96.76], DB(r)[96.76]

all remaining[89.75]

storage 16 9
for r < 0.05: BD(r)[66.49],
OD(0.01)[66.49], BD(0.1)[65.58], OM[65.58]

B[46.96], O[46.96], PO[51.44],
PB[51.44], MO[53.00]

rovers 11 10
DO(0.5)[21.91], DB(0.5)[21.41],
for r ∈ {.01, .05, .1} DB(r), DO(r)[21.35]

BP[11.35], OP[12.02],
PB[15.63],PO[15.63]

TPP 20 20 O[58.69], B[46.92], DO(0.3)[26.93]
PO[12.81], PB [12.81] BD(1)[13.95],
BD(0.9)[14.09], BD(0.7)[14.09]

Table 1: Performance of different heuristics in the problems of the qualitative preferences track of IPC-5. The second column
shows the number of problems where at least one plan was found. The third, shows how many of these plans were subsequently
improved upon by the planner. The average percent metric improvement wrt. the first plan found is shown in square brackets.

to good performance. In all problems, save TPP, the heuris-
tics that used the relaxed graph had the best performance.

5.3 Comparison to Other Approaches

We entered HPLAN-P in the IPC-5 Qualitative Preferences
track [Gerevini et al., 2006], achieving 2nd place behind
SGPlan5 [Hsu et al., 2007]. Despite HPLAN-P’s distin-
guished standing, SGPlan5’s performance was superior to
HPLAN-P’s, sometimes finding better quality plans, but
generally solving more problems and solving them faster.
SGPlan5’s superior performance was not unique to the pref-
erences tracks. SGPlan5 dominated all 6 tracks of the IPC-5
satisficing planner competition. As such, we conjecture that
their superior performance can be attributed to the partition-
ing techniques they use, which are not specific to planning
with preferences, and that these techniques could be com-
bined with those of HPLAN-P.

HPLAN-P consistently performed better than MIPS-BDD

[Edelkamp et al., 2006] and MIPS-XXL [Edelkamp, 2006];
HPLAN-P can usually find plans of better quality and solve
many more problems. MIPS-BDD and MIPS-XXL use related
techniques, based on propositional Büchi automata, to handle
LTL preferences. We think that part of our superior perfor-
mance can be explained because our compilation does not
ground LTL formulae, avoiding blowups, and also because
the heuristics are easy to compute. For example, MIPS-XXL

and MIPS-BDD were only able to solve the first two problems
(the smallest) of the openstacks domain, whereas HPLAN-P
could quickly find plans for almost all of them. In this do-
main the number of preferences was typically high (the third
instance already contains around 120 preferences). On the
other hand, something similar occurs in the storage domains.
In this domain, though, there are many fewer preferences, but
these are quantified. More details can be found on the results
of IPC-5 [Gerevini et al., 2006].

While we did not enter the Simple Preferences track, exper-
iments performed after the competition indicate that HPLAN-
P would have done well in this track. To perform a com-
parison, we ran our planner for 15 minutes3 on the first 20
instances4 of each domain. In Table 2, we show the perfor-
mance of HPLAN-P’s best heuristics compared to all other

3In IPC-5, planners where given 30 min. on a similar machine.
4Only the pathways domain has more than 20 problems.

Domain HPLAN-P SGPlan5 YochanPS MIPS-BDD MIPS-XXL

#S Ratio #S Ratio #S Ratio #S Ratio #S Ratio

TPP 20 1 20 .82–.86 12 1.1–1.2 9 1–1.1 9 1.99–2.23

trucks 3 1 20 1 13 1 4 1 3 1

storage 20 1 20 .75–.82 4 3.6–4.3 4 0.88–1 4 12.8–15.4

pathways 20 1 20 .81–.82 4 1.13 10 0.88 15 1.33–1.34

Table 2: Relative performance of HPLAN-P’s best heuristics
for simple preferences, compared to other IPC-5 participants.
Ratio compares the performance of the particular planner and
HPLAN-P’s. Ratio > 1 means HPLAN-P is superior, and
Ratio < 1 means otherwise. #S is the number of problems
solved.

participants, in those domains on which all four planners
solved at least one problem. In the table, #S is the number
of problems solved by each approach, and Ratio is the aver-
age ratio between the metric value obtained by the particular
planner and the metric obtained by our planner. Thus, val-
ues over 1 indicate that our planner is finding better plans,
whether values under 1 indicate the opposite.

We conclude that HPLAN-P is typically outperformed by
SGPlan5. Although not in the table, in the most simple in-
stances usually HPLAN-P does equally well or better than
SGPlan5. HPLAN-P can solve more instances than those
solved by YochanPS, MIPS-XXL and MIPS-BDD. Further-
more, it outperforms YochanPS and MIPS-XXL in terms of
achieved plan quality. HPLAN-P’s performance is compara-
ble to that of MIPS-BDD in those problems that can be solved
by both planners. Finally, we again observed that the best-
performing heuristics in domains other than TPP are those
that use the relaxed graph, and, in particular, the D heuristic.

6 Summary and Related Work

In this paper we presented a suite of techniques for plan-
ning with TEPs and hard constraints. The techniques are
amenable to integration with a variety of classical and simple-
preference planners.

Our first contribution was to propose a compilation method
that reduces planning problems with PDDL3 LTL preferences
into problems containing only simple (i.e., final-state) pref-
erences. A unique feature of our compiled representation
is that it is parameterized, preserving the quantification in-
herent in PDDL3. With the planning problem conveniently

IJCAI07
1814

transformed, we proposed a number of heuristics for plan-
ning with simple preferences. We also proposed an incre-
mental best-first search planning algorithm, guided by a pri-
oritized sequence of these heuristics. A key feature of our
algorithm is that it can use heuristic functions to prune the
search space during incremental planning. We proved that
under some fairly natural conditions our algorithm can gen-
erate optimal plans.

We implemented our algorithm and heuristics as an exten-
sion to the TLPLAN planning system and performed exten-
sive experiments on IPC-5 problems to evaluate the effec-
tiveness of our heuristic functions and algorithm. While no
heuristic dominated all test cases, several clearly provided su-
perior guidance towards solutions. In particular, those that
use the relaxed graph in some way proved to be the most ef-
fective in almost all domains. Experiments also confirmed the
essential role of pruning in solving large problems. HPLAN-
P scales better than many other approaches to planning with
preferences. We attribute much of this superior performance
to the fact that we do not ground our planning problems.

There is a variety of related work on planning with prefer-
ences. Systems by Bienvenu et al. [2006] and Son and Pon-
telli [2004] can plan with TEPs; however, they are far less
efficient predominantly because they do not use heuristics
to guide search towards achievement of preferences. These
planners also use a different, qualitative language to describe
the quality of a plan that can refer explicitly to numbers, as
opposed to the PDDL3 metric function.

YochanPS [Benton et al., 2006] is a heuristic planner for
simple preferences. Our approach is similar to theirs in the
sense that both use a relaxed graph to obtain a heuristic esti-
mate. However YochanPS is not an incremental planner and
does not use pruning. To compute its heuristic, it explicitly
selects a subset of preferences to achieve. This can be very
costly in the presence of many preferences.

MIPS-XXL [Edelkamp et al., 2006] and MIPS-BDD

[Edelkamp, 2006] both use Büchi automata to plan with tem-
porally extended preferences. However, since the LTL for-
mulae need to be grounded it is prone to exponential blow-up.
Further, the search techniques used in both of these planners
are quite different from those we exploit. MIPS-XXL itera-
tively invokes a modified Metric-FF [Hoffmann, 2003] forc-
ing plans to have decreasing metric values. MIPS-BDD, on the
other hand, performs a cost-optimal breath-first search that
does not use heuristics.

SGPlan5 [Hsu et al., 2007] uses a completely different ap-
proach. It partitions the planning problem into several sub-
problems. It then solves this problems using heuristics, and
then integrates their solutions.

Finally, less related is the approach by Brafman and
Chernyavsky [2005] proposed a CSP approach to planning
with final-state qualitative preferences specified using TCP-
nets. The preferences cannot be temporal.

References

[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza. Plan-
ning for temporally extended goals. Annals of Mathematics and
Artificial Intelligence, 22(1-2):5–27, 1998.

[Baier and McIlraith, 2006] J. A. Baier and S. A. McIlraith. Plan-
ning with first-order temporally extended goals using heuristic
search. In Proc. of the 21st National Conference on Artificial
Intelligence (AAAI-06), pp. 788–795, Boston, MA, 2006.

[Benton et al., 2006] J. Benton, S. Kambhampati, and M. B. Do.
YochanPS: PDDL3 simple preferences and partial satisfaction
planning. In 5th International Planning Competition Booklet
(IPC-2006), pp. 54–57, Lake District, England, July 2006.

[Bienvenu et al., 2006] M. Bienvenu, C. Fritz, and S. McIlraith.
Planning with qualitative temporal preferences. In Proc. of the
10th Int’l Conference on Knowledge Representation and Reason-
ing (KR-06), pp. 134–144, Lake District, England, 2006.

[Brafman and Chernyavsky, 2005] R. Brafman and
Y. Chernyavsky. Planning with goal preferences and con-
straints. In Proc. of the 15th Int’l Conference on Automated
Planning and Scheduling (ICAPS-05), pp. 182–191, June 2005.

[Delgrande et al., 2004] J. P. Delgrande, T. Schaub, and H. Tom-
pits. Domain-specific preferences for causal reasoning and plan-
ning. In Proc. of the 14th Int’l Conference on Automated Plan-
ning and Scheduling (ICAPS-04), pp. 63–72, Whistler, Canada,
June 2004.

[Edelkamp et al., 2006] S. Edelkamp, S. Jabbar, and M. Naizih.
Large-scale optimal PDDL3 planning with MIPS-XXL. In 5th
International Planning Competition Booklet (IPC-2006), pp. 28–
30, Lake District, England, July 2006.

[Edelkamp, 2006] S. Edelkamp. Optimal symbolic PDDL3 plan-
ning with MIPS-BDD. In 5th International Planning Competi-
tion Booklet (IPC-2006), pp. 31–33, Lake District, England, July
2006.

[Gerevini and Long, 2005] A. Gerevini and D. Long. Plan con-
straints and preferences for PDDL3. Technical Report 2005-
08-07, Department of Electronics for Automation, University of
Brescia, Brescia, Italy, 2005.

[Gerevini et al., 2006] A. Gerevini, Y. Dimopoulos, P. Haslum, and
A. Saetti. 5th International Planning Competition, July 2006.
http://zeus.ing.unibs.it/ipc-5/.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF
planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302, 2001.

[Hoffmann, 2003] J. Hoffmann. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research, 20:291–341, 2003.

[Hsu et al., 2007] C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Con-
straint partitioning for solving planning problems with trajectory
constraints and goal preferences. In Proc. of the 20th Int’l Joint
Conference on Artificial Intelligence (IJCAI-07), Hyderabad, In-
dia, January 2007. To appear.

[Son and Pontelli, 2004] T. C. Son and E. Pontelli. Planning with
preferences using logic programming. In Proc. of the 7th Int’l
Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-04), number 2923 in LNCS, pp. 247–260. Springer,
2004.

[Zhu and Givan, 2005] L. Zhu and R. Givan. Simultaneous heuris-
tic search for conjunctive subgoals. In Proc. of the 20th National
Conference on Artificial Intelligence (AAAI-05), pp. 1235–1241,
Pittsburgh, Pennsylvania, USA, July 9-13 2005.

IJCAI07
1815

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

