
Understanding Billions of Triples
with Usage Summaries

Shahan Khatchadourian and Mariano P. Consens

University of Toronto
shahan@cs.toronto.edu, consens@cs.toronto.edu

Abstract. Linked Data is a way to share and consume interlinked se-
mantic web datasets. Usage summaries can help to understand the struc-
ture within and across interlinked datasets by partitioning entities based
on how they are described, such as grouping entities that are instances of
the same types and described with the same predicates. Because Linked
Data is growing to billions of triples, scalable techniques for generating
usage summaries are essential.

In this work, we implement a novel Hadoop-based technique for gener-
ating usage summaries of billions of triples. We analyze and compare
usage summaries generated for the entire BTC 2010 and 2011 datasets.
We generate usage summaries involving classes and predicates, and of
recommended patterns, such as for inferencing and interlinking.

1 Introduction

In order to continue to promote the production and consumption of datasets
from the Linked Open Data (LOD)1 cloud, it is worthwhile to understand what
kinds of descriptions each dataset provides and how the descriptions between
datasets interact. Patterns have been recommended in [3] for the publication
and consumption of Linked Data; however, as the size of Linked Data grows to
many billions of triples, challenges that affect scalability arise.

Usage, proposed in [2], is a way to characterize the semi-structure of semantic
web datasets based on how an entity is used, such as whether it is an instance
or part of the schema (like a class or predicate). ExpLOD’s [4] usage summaries
extend this notion by succinctly capturing how the actual descriptions are used,
such as how sets of classes and predicates are used in conjunction. When applied
to datasets from the LOD cloud, usage summaries reveal all the unique and
varied descriptions that occur within a dataset as well as across interlinked
datasets. However, ExpLOD’s implementation was bound to datasets that fit in
main memory, limiting the size of datasets for which usage summaries could be
generated. In this paper, we propose a novel, scalable mechanism to generate
usage summaries of billions of Linked Data triples.

1 http://linkeddata.org/

Fig. 1. Instances in class and predicate usage summary of
BTC 2011

Related Work Analysis of the BTC dataset in previous years has generally relied
on statistics based on popularity of single entities, such as ranking each class or
predicate based on the number of instances that it has been used to describe.
Such statistics do not show how different classes and predicates interact and, as
such, miss the opportunity for users to understand the actual descriptions and
how they vary both within and across different datasets.

Our novel approach differs from previous efforts in several ways. First, we
extract all the unique descriptions and are not limited to a specific domain as
in [5]. Second, by employing a flexible and scalable usage summary mechanism,
we generate and compare many usage summaries of billions of triples, and is not
limited to portions of the dataset like in [1]. Our work goes well-beyond previous
efforts by processing the BTC 2010 and 2011 datasets in their entirety.

Contributions Our contributions in this work are as follows:

1. We generate and compare numerous usage summaries of the BTC 2011 and
BTC 2010 datasets.

2. Using several patterns described in [3] that are applicable to publishing and
consuming Linked Data, such as for interlinking or inferencing, we generate
usage summaries of these patterns to show how they are used in varied
descriptions within the BTC datasets.

3. A descripion of our scalable, Hadoop-based implementation that can gener-
ate usage summaries over datasets containing billions of triples.

2 Usage Summaries

In our previous work, ExpLOD [4], we proposed creating summaries of usage
neighbourhoods as a way to help a user’s understanding of datasets from the

Linked Open Data cloud. In this section, we introduce the reader to usage,
usage neighbourhoods and usage summaries.

A usage neighbourhood is a set of entities that are used as part of a semantic
web description, such as whether an entity is an instance, part of the schema
(such as a class or predicate), or acts to create interlinks; they can also overlap
such as predicates used for interlinking. For example, an instance that is of the
single type Person has the class usage neighbourhood consisting of the singleton
set {Person}. As another example, an instance that is a type of more than one
class has a class usage neighbourhood that is the set of classes that it is a type
of, such as {Person, Organizer}. Usage neighbourhoods can involve multiple
usages, such as class and predicate usages (what predicates are used to describe
the instance). Usage neighbourhoods help dataset consumers understand how
usages occur in conjunction and contribute to the semantic web descriptions
contained within the dataset.

Instead of exploring the usage neighbourhoods in the dataset on an instance-
by-instance basis, which can be substantial if the dataset is sizeable, it is more
convenient to group those instances from the dataset that have the same usage
neighbourhood into a usage summary. For example, a class and predicate usage
summary groups those instances that have the same class usage (the instances
are of the same types) and predicate usage (the instances are described with
the same set of predicates). Two instances with class usage {Person} that have
predicate usage {homepage} will be grouped together as they have the same class
and predicate usage, but an instance with class usage {Person, Organizer} and
predicate usage {homepage} will be placed in a different group because it has a
different class usage. An advantage of usage summaries is that they allow a user
to capture and understand how instances are described.

An RDF dataset graph is a graph with directed edges and labeled nodes
created by constructing a node for each distinct URI that occurs as a subject
or object in a triple, as well as a unique node for each statement’s predicate.
Technically, a usage summary is a partition of a set of subgraphs from the
dataset graph. The subgraphs in each set are bisimilar, that is, the subgraphs
in a set are pairwise “equivalent” and not with any subgraphs outside of their
set. Specifically, two subgraphs are bisimilar if they each have a node with the
same label, and recursively, if the labels of nodes connected by outgoing edges
are also the same. We simplify the creation of different usage summaries by
employing the flexibility of a bisimulation label, a function that applies labels
to an RDF dataset graph. A usage summary is created by first constructing an
RDF dataset graph from the input dataset, applying the bisimulation labels to
the nodes, extracting relevant subgraphs that pertain to usage neighbourhoods,
then partitioning the subgraphs using bisimulation.

We adopt a slight variation to the bisimulation label proposed in [4] by using
“+” after the usage prefix, and “|” between the graph hostname and entity URI.
The bisimulation labels we use are based on a combination of the following: (1)
Usage prefix: “C” for a class, “P” for a predicate. (2) Graph URI hostname: We
consider only the main domain of a statement’s graph URI. For example, we use

bestbuy.com from the URI
http://products.semweb.bestbuy.com/products/16293707/semanticweb.rdf. Techniques described
in [1] can be used to ascribe instances to datasets. (3) Entity URI: We use the
entity URI as is, e.g., http://xmlns.com/foaf/0.1/homePage.

Bisimulation labels are applied to the dataset graph by examining subgraphs
to determine each entity’s usage. For example, the object of a statement with
predicate rdf:type is used as a class, and the subject is an instance of that class,
which generates a node labeled with the object URI and prefixed with “C”, a
node labeled “P+rdf:type” for the predicate, and a node with the instance URI.
For example, using a bisimulation label constructed from the concatenation of
the usage and the entity URI (which we show prefixed here), the two entities
described in Section 2 have the following class and predicate usage neighbour-
hoods:

– {C+Person, C+Organizer, P+rdf:type, P+homepage}
– {C+Person, C+Organizer, P+rdf:type}

Table 1 shows the summaries we have generated and the bisimulation labels
they consider.

Summary usage graph entity

usage x
graph x x
nbr x x x
interlink x x only if owl:sameAs, rdf:seeAlso, or skos:exactMatch

index x x only if rdf:Seq or rdf:List

inference x x only if skos:broader or skos:narrower

foaf x x only if foaf:*

skos x x only if skos:*

topic x x only if like foaf:topic or foaf:PrimaryTopic

Table 1. Summaries considered and their bisimulation label

3 Usages in Billions of Triples

In this section, we describe the semi-structure of the 2011 BTC dataset with
several different types of usage summaries, and include comparisons to usages
in the 2010 BTC dataset.

3.1 Class and Predicate Usages

A class and predicate usage summary is an easy-to-understand and informative
summary of how classes and predicates are used with each other for describing
instances by capturing the unique combinations of their occurrences. In terms
of class and predicate usages in the BTC 2010 and BTC 2011 datasets, the
406,170,030 distinct instances in BTC 2010 are described with 3,281,294 distinct
usages. Meanwhile, the number of distinct instances in BTC 2011 has decreased
to 390,358,846, and which are correspondingly described with 2,790,334 unique
class and predicate usages.

Fig. 2. Instances in class and predicate usage sum-
mary of BTC 2010

Figures 1 and 2 shows the number of instances in the class and predicate
usages of BTC 2010 and 2011. Each series line represent the class and predicate
usages with a fixed number of classes, the top-most line happens to have exactly
0 classes in its class usage, and the lines underneath have decrementally fewer
classes; the bottom-most series line represents the class and predicate usages
with exactly 20 classes. The graph shows that, as the number of classes increase,
the number of instances decrease, and also that the number of instances de-
crease as the number of predicates increase. When comparing the 2010 and 2011
datasets, we see that the trends appear similar, except that in 2011, the number
of instances that are described with around 2 predicates has increased.

Fig. 3. Tail of BTC 2010 Fig. 4. Tail of BTC 2011
Notice that the two datasets contain usages with 0 classes that have a sub-

stantial number of instances described with 20 predicates. In fact, at least 229
predicates are needed before the number of instances in usages with 0 classes
have fewer than 10 instances. Figures 3 and 4 shows the number of instances in
usages with 0,1, and 2 classes with up to 500 predicates. We note that class and
predicate usages with 0 classes have a long tail, while applying 1 or more classes
does not have a similar, stable tail. BTC 2010 also has a prominent number of
instances that are described using 1 class and fewer than 200 predicates, but
which trend does not appear in BTC 2011.

When considering the origin of triples (captured with the graph hostname in
the bisimulation label), the most popular class and predicate usage neighbour-
hood in both BTC 2010 and BTC 2011 is:
[C+hi5.com|foaf:Person, P+hi5.com|rdfs:seeAlso, P+hi5.com|foaf:nick], which indicates that
the most commonly occurring description in the datasets are about instances
described by the hi5.com graph hostname that are of type foaf:Person, are de-
scribed only by foaf:nick predicates, and also have an interlinking predicate
rdfs:seeAlso. In fact, 340,583,367 instances in the BTC 2011 dataset have this
class and predicate usage neighbourhood.

3.2 Usages of Linked Data Patterns

In this subsection, we explore patterns that have been described in [3]. Since
we do not consider value-based equivalence, such as the two literals “1” and
“1.0”, we exclude identifier-based patterns, as discussed in. Instead, we focus
on structure-based patterns. The bisimulation labels we use for the following
summaries were shown in Table 1, and take into consideration the originating
graph hostname of usages.

The patterns we explore in this work are the following:

– Topic Relation, Composite Descriptions: where the predicate is like foaf:topic
or foaf:primaryTopic. We also examine the more general case of FOAF
schema usage as a relevant schema for describing instances in general.

– Link Base, See Also, Equivalence links: where the predicate is one of owl:sameAs,
skos:exactMatch or rdfs:seeAlso

– Materialize inferences: where the predicate is like skos:broader and skos:narrower.
We also examine the more general case of SKOS schema usage as a relevant
schema for triples expressing inferences.

– Index Resources: where the instance is typed as a rdf:List or rdf:Seq

Usages Instances

2010 2011 2010 2011

Inference 120 256 68,672 842,938

Interlink 2,824 2,212 69,563,476 363,104,656

Topic 2,380 6,223 222,267 1,071,213

Index 12,324 60 710,972 769,138

Table 2. Pattern summaries of BTC 2010 and BTC 2011

Table 2 shows the number of distinct usages and instances involved in the
summaries described above compared between BTC 2010 and BTC 2011. For ex-
ample, the first row of the table says that in the inference usage summary, BTC
2010 contains 68,672 instaces divided amongst 120 distinct usage neighbour-
hoods, while BTC 2010 contains 842,938 instances divided amongst 256 distinct
usages, a substantial increase; topical descriptions also experience an increase
in usages and instances. The number of interlinked instances has increased by 5
times despite being expressed with fewer unique usages. We also recognize that

Fig. 5. FOAF schema usage Fig. 6. SKOS schema usage

the number of indexed resources remains similar, but are expressed using much
fewer unique usages.

Figure 5 shows the number of instances in that usages involving the FOAF
schema for the BTC 2010 and BTC 2011 datasets. It reveals that BTC 2011
has fewer distinct usage neighbourhoods as well as fewer instances than in BTC
2010. This could be as a result of a shutdowns of social networking sites such as
vox.com, which was the eleventh-most common usage FOAF usage neighbour-
hood in BTC 2010, but removed from BTC 2011. Figure 6 shows SKOS usage in
the BTC 2010 and BTC 2011 datasets, and reveals that the BTC 2011 dataset
has increased the number of distinct usage neighbourhoods and describes more
instances.

4 Implementation

For simplicity, we first generate the most detailed summary, the nbr summary
specifically, which is based on the bisimulation label that concatenates the usage
prefix, graph hostname, and entity URI. We then generate coarser summaries
(that use include fewer details in their bisimulation label). Although we have a
basic SPARQL-based implementation using Jena, which we intend to describe as
future work, we implented the summaries using low-level string- and line-based
parsing. We did this for economic reasons - processing graphs takes at least an
order of magnitude longer.

The nbr summary, from which all other summaries were generated, is com-
puted using two Hadoop jobs. The first job takes a BTC dataset, GZipped
NQuad files read using the NxParser library2, as input, and computes the nbr
usage neighbourhood for each distinct subject in the dataset; each unique blank
node identifier that appeared as a statement’s subject was also included. The
job outputs GZipped tab-separated files containing the subject URI, and its nbr
usage neighbourhood.

The second job takes the output of the first job and switches the key and
value, so that the reduce task groups subjects by their usage neighbourhood
(using string comparison). The output of this job is the nbr usage summary,
which is stored as compressed tab-separated files containing each distinct usage

2 http://code.google.com/p/nxparser/

neighbourhood and the number of instances with that usage neighbourhood.
These two jobs completed on 40 Amazon Elastic MapReduce3 large instances
in under 40 minutes each. Since the nbr summary output is only 10% of the
original dataset size, it becomes feasible to analyze the remainder of summaries
locally. Other summaries are generated using a similar approach.

5 Conclusions

In this work, we have described a scalable technique to generate usage summaries
of Linked Data containing billions of triples. Using flexible bisimulation labels,
we generated and compared several usage summaries to aid understanding of
how classes and predicates are used in the entire BTC datasets. Additionally,
we have reported the variations of patterns that have been recommended for
interlinking and inferencing.

A Requirements

Our work, which uses the entire BTC 2010 and 2011 datasets, drives an analysis
of Linked Data using increasingly more detailed usage summaries. Usage sum-
maries that describe how instances, classes, and predicates are used together
benefit Linked Data consumers by giving them insight to the descriptions con-
tained in the dataset. In addition, recommended publication patterns are also
explored as usage, showing the ease and flexibility of our approach. Since our im-
plementation is Hadoop-based, it is scalable; however, processing these datasets
required only a few dollars worth of initial investment to generate the most de-
tailed summary desired, after which coarser summaries were generated locally,
each summary taking generally taking less than an hour to compute. We also
generate usage summaries based on properties relevant to real-world semantic
web applications, such as interlinking and inferencing. Our results will be avail-
able online at http://www.cs.toronto.edu/˜shahan/swc2011/.

References

1. C. Böhm, J. Lorey, D. Fenz, E. Kny, M. Pohl, and F. Naumann. Creating voiD
descriptions. Semantic Web Challenge 2010.

2. L. Ding and T. Finin. Characterizing the semantic web on the web. In ISWC, pages
242–257, 2006.

3. L. Dodds and I. Davis. Linked data patterns.
http://patterns.dataincubator.org/book, Sept. 2011.

4. S. Khatchadourian and M. P. Consens. ExpLOD: Summary-based exploration of
interlinking and RDF usage in the linked open data cloud. In ESWC (2), pages
272–287, 2010.

5. G. T. Williams, J. Weaver, M. Atre, and J. A. Hendler. Scalable reduction. Semantic
Web Challenge 2009.

3 http://aws.amazon.com/elasticmapreduce/

