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Abstract. Linked Data is a way to share and consume interlinked se-
mantic web datasets. Usage summaries can help to understand the struc-
ture within and across interlinked datasets by partitioning entities based
on how they are described, such as grouping entities that are instances of
the same types and described with the same predicates. Because Linked
Data is growing to billions of triples, scalable techniques for generating
usage summaries are essential.
We extend our previous work, ExpLOD, by implementing a novel Hadoop-
based technique for generating usage summaries of billions of triples. We
analyze and compare usage summaries generated for the entire BTC
2010 and 2011 datasets. We generate usage summaries involving classes
and predicates, and of recommended patterns, such as for inferencing
and interlinking.

1 Introduction

In order to continue to promote the production and consumption of datasets
from the Linked Open Data (LOD)1 cloud, it is worthwhile to understand the
descriptions each dataset provides and how they interact with other datasets.
The challenge is that, as the size of semantic web datasets grows to billions
of triples, the number of descriptions can grow exponentially, and so, scalable
techniques need to be developed in order to understand the data.

Our previous work, ExpLOD [4], provides a mechanism to create comprehen-
sive usage summaries, where an entity’s usage is characterized as in [2]. Sum-
maries help to understand how published entities are used together by succintly
capturing how entities are described, such as how sets of classes and predicates
are used in conjunction. When applied to datasets from the LOD cloud, us-
age summaries reveal all the unique and varied descriptions that occur within
a dataset as well as across interlinked datasets. Understanding facilitates con-
sumption of linked data. ExpLOD’s implementation was bound to datasets that
fit in main memory, limiting the size of datasets for which usage summaries could
be generated. In this paper, we propose a novel, scalable mechanism to generate
usage summaries of billions of Linked Data triples.

1 http://linkeddata.org/



Fig. 1. Instances in class and predicate usage summary of
BTC 2011

Related Work Analysis of the BTC dataset in previous years has generally re-
lied on statistics based on popularity of single entities, such as the number of
occurrences of a class based on the number of instances that it has been used to
describe. Such statistics do not show how different classes and predicates inter-
act and, as such, miss the opportunity for users to understand how descriptions
vary both within and across different datasets.

Our novel approach differs from previous efforts in several ways. First, we
extract all the unique descriptions and are not limited to a specific domain as
in [5]. Second, our mechanism is flexible, allowing us to generate and compare
many different usage summaries. In particular, we are not limited to portions of
the dataset like in [1] - our work goes well-beyond previous efforts by processing
and comparing the BTC 2010 and 2011 datasets in their entirety.

Contributions Our contributions in this work are as follows:

1. We describe how classes and predicates interact by generating and comparing
numerous usage summaries of the BTC 2011 and BTC 2010 datasets.

2. Using several patterns described in [3] that are applicable to publishing and
consuming Linked Data, such as for interlinking or inferencing, we generate
usage summaries of these patterns and show how they are used in varied
descriptions within the BTC datasets.

3. We describe our scalable, Hadoop-based implementation that can generate
usage summaries over datasets containing billions of triples.

2 Generating Usage Summaries

ExpLOD’s [4] usage summaries help a user’s understanding of datasets from the
Linked Open Data cloud. In this section, we introduce the reader to usage, usage
neighbourhoods and usage summaries.



An entity’s usage describes how it is used within a semantic web description,
such as whether an entity is an instance, part of the schema (such as a class or
predicate), or acts to create interlinks. A usage neighbourhood captures a set of
usages that are used together in a semantic web description. For example, an
instance that is typed as a Person has the class usage neighbourhood consisting
of the singleton set {Person}. As another example, an instance that is a type of
more than one class has a class usage neighbourhood that is the set of classes that
it is a type of, such as {Person, Organizer}. Usage neighbourhoods can include
multiple usages, such as class and predicate usages (what predicates are used to
describe the instance) as a way to help understand the semantic web descriptions
contained within the dataset and how the descriptions occur in conjunction.

Instead of exploring usage neighbourhoods of individual entities, which can
be substantial if the dataset is sizeable, it is more convenient to create a usage
summary that groups those entities that have the same usage neighbourhood.
For example, a class and predicate usage summary groups those instances that
have the same class usage and predicate usage. For example, two instances with
class usage {Person} that have predicate usage {homepage} will be grouped
together, but an instance with class usage {Person, Organizer} and predicate
usage {homepage} will belong to a different group because it has a different class
usage. Usage summaries are a succint way of exploring and understanding the
unique semantic web descriptions of a dataset.

A usage summary is created by first constructing an RDF dataset graph
from the input dataset, applying a bisimulation label to each node (described
below), extracting relevant subgraphs that pertain to the usage neighbourhood
of each instance in the dataset, then partitioning the instances based on their
usage neighbourhood.

Usage summaries are generated from the graph representation of a semantic
web dataset. A dataset’s graph has directed edges and labeled nodes, and is
constructed by having a node for each distinct URI that occurs as a subject or
object in a triple, as well as a unique node for each statement’s predicate. For
each statement, an edge is drawn from the subject node to the predicate node,
and from the predicate node to the object node (if it exists).

The bisimulation labels we use are based on a combination of the following:
(1) Usage prefix: “C” for a class, “P” for a predicate. (2) Graph URI hostname:
We consider only the main domain of a statement’s graph URI. For example, we
use bestbuy.com from the URI
http://products.semweb.bestbuy.com/products/16293707/semanticweb.rdf. Techniques described
in [1] can be used to ascribe instances to datasets. (3) Entity URI: We use
the entity URI as is, e.g., http://xmlns.com/foaf/0.1/homePage. Bisimulation labels are
applied to the dataset graph by examining subgraphs to determine each entity’s
usage. For example, the object of a statement with predicate rdf:type is used as a
class, and the subject is an instance of that class, which generates a node labeled
with the object URI and prefixed with “C”, a node labeled “P+rdf:type” for the
predicate, and a node with the instance URI.



Label

Summary usage graph entity

complete x x only if class or predicate

usage x
graph x x

cpo x only if class or predicate

interlink x x only if owl:sameAs, rdf:seeAlso, or skos:exactMatch

index x x only if rdf:Seq or rdf:List

inference x x only if skos:broader or skos:narrower

foaf x x only if foaf:*

skos x x only if skos:*

topic x x only if like foaf:topic or foaf:PrimaryTopic

Table 1. Summaries considered and their bisimulation label

Table 1 shows the bisimulation labels for the usage summaries we have gen-
erated. We adopt a slight variation to the bisimulation label proposed in [4] by
using “+” after the usage prefix, and “|” between the graph hostname and entity
URI. The table specifies the composition of the bisimulation label for each sum-
mary type. For example, the complete bisimulation label concatenates the usage,
the graph URI, and the entity URI, and the cpo bisimulation label concatenates
the usage and the entity URI (which is either a class or predicate). An example
bisimulation label for an entity used as a class in the complete usage summary
is
’C+linkedmdb.org|http://data.linkedmdb.org/resource/movie/film’ and an example class bisim-
ulation label in the cpo usage summary is ’C+http://data.linkedmdb.org/resource/movie/film’.

Technically, a usage summary is a partition of a set of subgraphs that repre-
sent usage neighbourhoods in the dataset graph. The subgraphs in each set are
bisimilar, that is, the subgraphs in a set are pairwise “equivalent” and not with
any subgraphs outside of their set. Specifically, two subgraphs are bisimilar if
they each have a node with the same bisimulation label, and recursively, if the
bisimulation label of nodes connected by outgoing edges are also the same. By
employing multiple labeling schemes, we simplify the creation of different usage
summaries. For example, when using the cpo bisimulation label the two entities
described in Section 2 have the following class and predicate usage neighbour-
hoods:

– {C+Person, C+Organizer, P+rdf:type, P+homepage}
– {C+Person, C+Organizer, P+rdf:type}

3 Usage Summaries of Billions of Triples

In this section, we describe and compare the semi-structure of the 2010 and 2011
BTC datasets with usage summaries generated using the bisimulation labels
listed in Table 1.



3.1 Class and Predicate Usage Neighbourhoods

We begin by analyzing the cpo usage summaries of the BTC 2010 and 2011
datasets. In the class and predicate usage neighbourhoods of BTC 2010 and
BTC 2011 datasets, the 406,170,030 distinct instances in BTC 2010 are described
with 3,281,294 distinct usage neighbourhoods. Meanwhile, the number of distinct
instances in BTC 2011 has decreased to 390,358,846, and they are described with
2,790,334 unique class and predicate usage neighbourhoods.

Fig. 2. Instances in class and predicate usage sum-
mary of BTC 2010

Figures 1 and 2 shows the number of instances in the unique class and predi-
cate usage neighbourhoods of BTC 2010 and 2011, respectively. Each series line
represents those neighbourhoods with a fixed number of classes. For example,
the top-most line at the 1-predicate column has exactly 0 classes in its class us-
age, and the series lines underneath have fewer classes. The most popular class
and predicate usage neighbourhood in both BTC 2010 and BTC 2011 (when in-
cluding the graph hostname in the bisimulation label, as described in Section 2)
is:
[C+hi5.com|foaf:Person, P+hi5.com|rdfs:seeAlso, P+hi5.com|foaf:nick], which indicates that
the most commonly occurring description in the datasets are about instances
described by the hi5.com hostname that are of type foaf:Person, are described
only by foaf:nick predicates, and also have an interlinking predicate rdfs:seeAlso.
In fact, 340,583,367 instances in the BTC 2011 dataset have this usage neigh-
bourhood - this is visible in the peak at 2 predicates of Figure 1.

Figures 1 and 2 show that, for some usage neighbourhoods, as the number
of classes increase, the number of instances decrease, and also that the number
of instances decrease as the number of predicates increase. Visual comparison
of the 2010 and 2011 datasets show similar trends, except that in 2011, the
number of instances that are described with 1 or 2 predicates has increased. We
also notice that the number of instances in BTC 2011 described with some usage
neighbourhoods having around 9 or 16 predicates has increased in comparison
to BTC 2010.



Fig. 3. Tail of BTC 2010 Fig. 4. Tail of BTC 2011

In Figures 1 and 2, notice that cpo usage neighbourhoods with 0 classes and
20 predicates describes thousands of instances. In the BTC 2011 dataset, only
cpo usage neighbourhoods with 0 classes and at least 229 predicates describe
fewer than 10 instances each. To show how the number of instances described
with usage neighbourhoods having a high number of predicates varies, we show
the number of instances in usage neighbourhoods with 0,1, and 2 classes with
up to 500 predicates in Figures 3 and 4. We note that cpo usage neighbourhoods
with 0 classes have a long tail, unlike cpo usage nieghbourhoods with at least
1 class. BTC 2010 also has a prominent number of instances that are described
using 1 class and fewer than 200 predicates, a trend that does not appear in
BTC 2011.

3.2 Usage Neighbourhoods of Linked Data Patterns

In this subsection, we explore patterns that have been described in [3]. Our work
focuses on structure-based patterns rather than value-based equivalence, such as
the equivalence of two literals “1” and “1.0”. Instead, we. The bisimulation
labels we use for the following summaries were shown in Table 1, and take into
consideration the originating graph hostname of each usage.

The patterns we explore in this work are the following:

– Topic Relation, Composite Descriptions: where the predicate is like foaf:topic
or foaf:primaryTopic.

– Link Base, See Also, Equivalence links: where the predicate is one of owl:sameAs,
skos:exactMatch or rdfs:seeAlso

– Materialize inferences: where the predicate is like skos:broader and skos:narrower.
– Index Resources: where the instance is typed as a rdf:List or rdf:Seq
– We also examine how the FOAF and SKOS ontologies are used in descrip-

tions in Section 3.3.

Usage Neighbourhoods Instances

2010 2011 2010 2011

Inference 120 256 68,672 842,938

Interlink 2,824 2,212 69,563,476 363,104,656

Topic 2,380 6,223 222,267 1,071,213

Index 12,324 60 710,972 769,138

Table 2. Pattern summaries of BTC 2010 and BTC 2011



Table 2 shows the number of distinct usage neighbourhoods and instances in-
volved in the summaries described above compared between BTC 2010 and BTC
2011. For example, the first row of the table says that in the inference usage sum-
mary, BTC 2010 contains 68,672 instances divided amongst 120 distinct usage
neighbourhoods, while BTC 2010 contains 842,938 instances divided amongst
256 distinct usage neighbourhoods, a substantial increase; topical descriptions
also experience an increase in usage neighbourhoods and instances. The num-
ber of interlinked instances has increased by 5 times despite being expressed
with fewer unique usage neighbourhoods. We also recognize that the number of
indexed resources remains similar, but are expressed using much fewer unique
usage neighbourhoods.

3.3 FOAF and SKOS Usage Neighbourhoods

Fig. 5. FOAF schema usage Fig. 6. SKOS schema usage

Figure 5 shows the number of instances in that usage neighbourhoods involv-
ing the FOAF ontology for the BTC 2010 and BTC 2011 datasets. It reveals that
BTC 2011 has fewer distinct usage neighbourhoods as well as fewer instances
than in BTC 2010. This could be as a result of a shutdowns of social networking
sites such as vox.com, which was the eleventh-most common FOAF usage neigh-
bourhood in BTC 2010, but removed from BTC 2011. Figure 6 shows SKOS
usage in the BTC 2010 and BTC 2011 datasets, and reveals that the BTC 2011
dataset has increased the number of distinct usage neighbourhoods and describes
more instances.

4 Implementation

We first generate the most detailed summary, the cpo summary specifically,
which is based on the bisimulation label that concatenates the usage prefix, graph
hostname, and entity URI. We then generate coarser summaries (that use include
fewer details in their bisimulation label). Although we have a basic SPARQL-
based implementation using Jena, we implented the summaries using low-level



string- and line-based parsing. We did this for economic reasons - processing
graphs takes at least an order of magnitude longer.

The cpo summary, from which all other summaries were generated, is com-
puted using two Hadoop jobs. The first job takes a BTC dataset, GZipped
NQuad files read using the NxParser library2, as input, and computes the cpo
usage neighbourhood for each distinct subject in the dataset; each unique blank
node identifier that appeared as a statement’s subject was also included. The
job outputs GZipped tab-separated files containing the subject URI, and its cpo
usage neighbourhood.

The second job takes the output of the first job and switches the key and
value, so that the reduce task groups subjects by their usage neighbourhood
(using string comparison). The output of this job is the cpo usage summary,
which is stored as compressed tab-separated files containing each distinct usage
neighbourhood and the number of instances with that usage neighbourhood.
These two jobs completed on 40 Amazon Elastic MapReduce3 large instances
in under 40 minutes each. Since the cpo summary output is only 10% of the
original dataset size, it becomes feasible to analyze the remainder of summaries
locally. Other summaries are generated using a similar approach.

5 Online Exploration Tool

Figure 7 displays a screenshot of our online exploration tool accessible at http://
www.cs.toronto.edu/˜shahan/swc2011/. An interactive line graph can be moused-
over to display the usage neighbourood at specific points, and selecting a point
also selects its respective data row in the table appearing underneath the graph.
The charts are implemented with the Google Charts API displaying data up-
loaded to Google Spreadsheets.

6 Conclusions

In this work, we have described a scalable technique to generate usage summaries
of Linked Data containing billions of triples. Using flexible bisimulation labels,
we generated and compared several usage summaries to aid understanding of
how classes and predicates are used in the entire BTC datasets. Additionally,
we have reported the variations of patterns that have been recommended such
as for interlinking and inferencing.

Semantic Web Challenge, Billion Triple Track Requirements Our
work, which uses the entire BTC 2010 and 2011 datasets, drives an analysis of
Linked Data using increasingly more detailed usage summaries. Usage summaries
that describe how instances, classes, and predicates are used together benefit
Linked Data consumers by giving them insight to the descriptions contained in

2
http://code.google.com/p/nxparser/

3
http://aws.amazon.com/elasticmapreduce/



Fig. 7. Screenshot of online exploration tool

the dataset. In addition, recommended publication patterns are also explored as
usage, showing the ease and flexibility of our approach. Since our implementation
is Hadoop-based, it is scalable; however, processing these datasets required only
a few dollars worth of initial investment to generate the most detailed summary
desired, after which coarser summaries were generated locally, each summary
taking generally taking less than an hour to compute. We also generate usage
summaries based on properties relevant to real-world semantic web applications,
such as interlinking and inferencing.
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1. C. Böhm, J. Lorey, D. Fenz, E. Kny, M. Pohl, and F. Naumann. Creating voiD
descriptions. Semantic Web Challenge 2010.

2. L. Ding and T. Finin. Characterizing the semantic web on the web. In ISWC, pages
242–257, 2006.

3. L. Dodds and I. Davis. Linked data patterns.
http://patterns.dataincubator.org/book, Sept. 2011.

4. S. Khatchadourian and M. P. Consens. ExpLOD: Summary-based exploration of
interlinking and RDF usage in the linked open data cloud. In ESWC (2), pages
272–287, 2010.

5. G. T. Williams, J. Weaver, M. Atre, and J. A. Hendler. Scalable reduction. Semantic
Web Challenge 2009.


