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Abstract. In many applications such as web-based search, document
summarization, facility location and other applications, the results are
preferable to be both representative and diversified subsets of documents.
The goal of this study is to select a good “quality”, bounded-size subset
of a given set of items, while maintaining their diversity relative to a semi-
metric distance function. This problem was first studied by Borodin et
al [1], but a crucial property used throughout their proof is the triangle
inequality. In this modified proof we want to relax the triangle inequality
and relate the approximation ratio of max-sum diversification problem
to the parameter of the relaxed triangle inequality in the normal form of
the problem (i.e., a uniform matroid) and also in an arbitrary matroid.

Introduction

In many search applications, the search engine should guess the correct results
from a given query; therefore, it is important to deliver a diversified and repre-
sentative set of documents to a user. Diversification can be viewed as a trade-off
between having more relevant results and having more diverse results among the
top results for a given query [3]. “Jaguar” is a cliche example in the diversifi-
cation literature [2, 4, 9], but it illustrates the point perfectly as it has different
meanings including car, animal, and a football team. A set of good “quality”
result should cover all these diversified items. The paper by Borodin et al [1]
determines the good quality results with a monotone submodular function and
defines diversity as the sum of distances between selected objects. Since they
consider the distances to be metric, they ask in the conclusion section:

For a relaxed version of the triangle inequality can we relate the approx-
imation ratio to the parameter of a relaxed triangle inequality?

In this study we answer to this question. We call this relaxed triangle in-
equality distance as semi-metric. A semi-metric distance on a set of items is just
like a metric distance, but the triangle inequality is relaxed with a parameter
α ≥ 1 (i.e., d(u, v) ≤ α(d(v, w) +d(w, u))). Answering to this question will make
this method applicable to algorithms that are defined on semi-metric spaces,
e.g., [5, 7, 8]. The IBM’s Query by Image Content system is one of the other
best-known examples of the semi-metric usage in practice; although, it does not
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satisfy the triangle inequality [6]. By modifying the analysis of the previous pro-
posed algorithms in [1], we will show that these algorithms can still achieve a
2α-approximation for this question in the case that there is not any matroid con-
straint and a 2α2-approximation for an arbitrary matroid constraint. In other
words, these new modified analysis are a generalization of the previous analysis
as they are consistent with the previous approximation ratios for α = 1 (i.e., the
metric distance).

Problem 1. Max-Sum Diversification

Let U be the underlying ground set, and let d(., .) be a semi-metric distance
function on U . The goal of the problem is to find a subset S ⊆ U that:

maximizes f(S) + λ
∑
{u,v}:u,v∈S d(u, v)

subject to |S| = p,

where p is a given constant number and λ is a parameter specifying a trade-off
between the distance and submodular function. We give a 2α−approximation
for this problem.

Firstly we introduce our notations following [1]. For any S ⊆ U , we let
d(S) =

∑
{u,v}:u,v∈S d(u, v). We can also define d(S, T ), for any two disjoint sets

S and T as:
d(S ∪ T )− d(S)− d(T ).

Let φ(S) and u be the value of the objective function and an element in U − S
respectively. We can define the marginal gain of the distance function as

du(S) =
∑
v∈S d(u, v)

and similarly marginal gain of the wight function as:

fu(S) = f(S + u)− f(S).

The total marginal gain can also be defined using du(S) and fu(S) as

φu(S) = fu(S) + λdu(S).

Let

f ′u(S) =
1

2
fu(S),

φ′u(S) = f ′u(S) + λdu(S).

Starting with an empty set S, the greedy algorithm (Algorithm 1) adds an
element u from U − S in each iteration, in such a way that maximize φ′u(S).

Lemma 1. Given an α-relaxed triangle inequality semi-metric distance function
d(., .), and two disjoint sets X and Y , we have the following inequality:

α(|X| − 1)d(X,Y ) ≥ |Y |d(X)
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Algorithm 1 Greedy algorithm

1: Input
2: U : set of ground elements
3: p: size of final set
4: Output
5: S: set of selected elements with size p
6: S = ∅
7: while |S| < p do
8: find u ∈ U \ S maximizing φ′

u(S)
9: S = S ∪ {u}

10: end while
11: return S

Proof. Consider u, v ∈ X and an arbitrary w ∈ Y . We know that:

α(d(v, w) + d(w, u)) ≥ d(u, v)

By changing w we get:

α(d({v}, Y ) + d({u}, Y )) ≥ |Y |d(u, v)

and then all combinations of u and v:

α(|X| − 1)d(X,Y ) ≥ |Y |d(X)

Theorem 1. Algorithm 1 achieves a 2α-approximation for solving Problem 1
with α-relaxed distance d(., .) and monotone submodular function f .

Proof. Let Gi be the greedy solution at the end of step i, i < p and G be
the greedy solution at the end of the algorithm. Suppose that O is the optimal
solution and let A = O ∩ Gi, B = Gi \ A and C = O \ A. Obviously the
algorithm achieves the optimal solution when p = 1; thus we assume p > 1. Now
we consider two different cases: |C| = 1 and |C| > 1. If |C| = 1 then i = p − 1.
Let C = {v} and u be the element that algorithm will take for the next (last)
step. Then for all v ∈ U \ S we have:

φ′u(Gi) ≥ φ′v(Gi)
f ′u(Gi) + λdu(Gi) ≥ f ′v(Gi) + λdv(Gi)

thus:

φu(Gi) = fu(Gi) + λdu(Gi)

≥ f ′u(Gi) + λdu(Gi)

≥ f ′v(Gi) + λdv(Gi)

≥ 1

2
φv(Gi)
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as a result φ(G) ≥ 1
2φ(O) ≥ 1

2αφ(O).
Now consider |C| > 1. By using Lemma 1 we have the following inequalities:

α(|C| − 1)d(B,C) ≥ |B|d(C) (1)

α(|C| − 1)d(A,C) ≥ |A|d(C) (2)

α(|A| − 1)d(A,C) ≥ |C|d(A) (3)

A and C are two disjoint sets and we know that A ∪ C = O; thus:

d(A,C) + d(A) + d(C) = d(O) (4)

We can assume that p > 1 and |C| > 1 (The greedy algorithm obviously finds
the optimal solution when p = 1). Then following multipliers are applied to
equations 1, 2, 3, 4 respectively:

1
(|C|−1) ,

|C|−|B|
p(|C|−1) ,

i
p(p−1) ,

i|C|
αp(p−1) .

If we add them, we have:

d(B,C) + d(A,C)− d(A,C)
i|C|(1− 1

α )

p(p− 1)
− d(C)

i|C|(p− |C|)
αp(p− 1)(|C| − 1)

≥ d(O)
i|C|

αp(p− 1)

Since p > |C| and α ≥ 1,

d(A,C) + d(B,C) ≥ d(O)
i|C|

αp(p− 1)
.

thus (we substituted 1
α with x, thus 0 < x ≤ 1),

d(C,Gi) ≥ d(O)
xi|C|
p(p− 1)

From the submodularity of f ′(.) we can get∑
v∈C

f ′v(Gi) ≥ f ′(C ∪Gi)− f ′(Gi)

also the monotonity of f ′(.) suggests that

f ′(C ∪Gi)− f ′(Gi) ≥ f ′(O)− f ′(G).

Subsequently we have: ∑
v∈C

f ′v(Gi) ≥ f ′(O)− f ′(G).
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Therefore ∑
v∈C

φ′v(Gi) =
∑
v∈C

[f ′v(Gi) + λd({v}, Gi)]

=
∑
v∈C

f ′v(Gi) + λd(C,Gi)

≥ [f ′(O)− f ′(G)] + d(O)
λxi|C|
p(p− 1)

.

Let ui+1 be the element taken at step (i+ 1), then we have

φ′ui+1
(Gi) ≥

1

p
[f ′(O)− f ′(G)] + d(O)

λxi

p(p− 1)
.

If we sum over all i from 0 to p− 1, we have

φ′(G) =

p−1∑
i=0

φ′ui+1
(Gi) ≥ [f ′(O)− f ′(G)] + d(O)

λx

2

Hence,

f ′(G) + λd(G) ≥ f ′(O)− f ′(G) + d(O)
λx

2

and

φ(G) = f(G) + λd(G) ≥ 1

2
[f(O) + xλd(O)]

≥ x

2
[f(O) + λd(O)]

=
1

2α
φ(O).

ut

Problem 2. Max-Sum Diversification for Matroids

Let U be the underlying ground set, and F be the set of independent subsets
of U such that M =< U,F > is a matroid. Let d(., .) be a semi-metric distance
function on U and f(.) be a non-negative monotone submodular set function
measuring the weight of the subsets of U . This problem aims to find a subset
S ⊆ F that:

maximizes f(S) + λ
∑
{u,v}:u,v∈S d(u, v)

where λ is a parameter specifying a trade-off between the two objectives. Again,
φ(S) is the value of the objective function. Because of the monotonicity of the
φ(.), S should be a basis of the matroid M. We give a 2α−approximation for
this problem.
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Without loss of generality, we assume that the rank of the matroid is greater
than one. Let

{x, y} = argmax
x,y∈F

[f({x, y}) + λd(x, y)].

We now consider the following local search algorithm:

Algorithm 2 Local Search algorithm

1: Input
2: U : set of ground elements
3: M =< U ,F >: a matroid on U
4: S: a basis of M containing both x and y
5: Output
6: S
7: while ∃{u ∈ (U − S)∧ v ∈ S} such that S + u− v ∈ F ∧ φ(S + u− v) > φ(S) do
8: S = S + u− v
9: end while

10: return S

Theorem 2. Algorithm 2 achieves an approximation ratio of 2α2 for max-sum
diversification with a matroid constraint.

As the algorithm is optimal for the case that the rank of the matroid is two,
we assume that the rank of the matroid is greater than two. The notation is like
before and O and S are the optimal solution and the solution at the end of the
local search algorithm, respectively. Let A = O ∩S, B = S −A and C = O−A.
We utilize the following two lemmas from the [1].

Lemma 2. For any two sets X,Y ∈ F with |X| = |Y |, there is a bijective
mapping g : X → Y such that X − x+ g(x) ∈ F for any x ∈ X.

Since both S and O are bases of the matroid, they have the same cardinality;
subsequently, B and C have the same cardinality, too. Let g : B → C be the
bijective mapping results from Lemma 2 such that S − b + g(b) ∈ F for any
b ∈ B. Let B = {b1, b2, ..., bt}, and let ci = g(bi) for all i. As claimed before,
since the algorithm is optimal for t = 1, we assume t ≥ 2.

Lemma 3.
∑t
i=1 f(S − bi + ci) ≥ (t− 2)f(S) + f(O).

Now we are going to prove two lemmas regarding to our semi-metric distance
function.

Lemma 4. If t > 2, α(d(B,C)−
∑t
i=1 d(bi, ci)) ≥ d(C).

Proof. For any bi, cj , ck, we have

α(d(bi, cj) + d(bi, ck)) ≥ d(cj , ck).



Max-Sum Diversification and Semi-metric Spaces 7

Summing up these inequalities over all i, j, k with i 6= j, i 6= k, j 6= k, we have
each d(bi, cj) with i 6= j is counted (t− 2) times; and each d(ci, cj) with i 6= j is
counted (t− 2) times. Therefore

α(t− 2)[d(B,C)−
t∑
i=1

d(bi, ci)] ≥ (t− 2)d(C),

and the lemma follows.

Lemma 5.
∑t
i=1 d(S − bi + ci) ≥ (t− 2)d(S) + 1

αd(O).

Proof.

t∑
i=1

d(S − bi + ci)

=
t∑
i=1

[d(S) + d(ci, S − bi)− d(bi, S − bi)]

= td(S) +

t∑
i=1

d(ci, S − bi)−
t∑
i=1

d(bi, S − bi)

= td(S) +

t∑
i=1

d(ci, S)−
t∑
i=1

d(ci, bi)−
t∑
i=1

d(bi, S − bi)

= td(S) + d(C, S)−
t∑
i=1

d(ci, bi)− d(A,B)− 2d(B).

There are two cases. If t > 2 then by Lemma 4 we have

d(C, S)−
t∑
i=1

d(ci, bi)

= d(A,C) + d(B,C)−
t∑
i=1

d(ci, bi)

≥ d(A,C) +
1

α
d(C).

We know that

d(S) = d(A) + d(B) + d(A,B)

thus we have

2d(S)− d(A,B)− 2d(B) ≥ d(A).
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Therefore

t∑
i=1

d(S − bi + ci)

= td(S) + d(C, S)−
t∑
i=1

d(ci, bi)− d(A,B)− 2d(B)

≥ (t− 2)d(S) + d(A,C) +
1

α
d(C) + d(A)

≥ (t− 2)d(S) +
1

α
d(O)

if t = 2, then since the rank of the matroid is greater than two, A 6= ∅. Let z be
an element in A, then we have

2d(S) + d(C, S)−
t∑
i=1

d(ci, bi)− d(A,B)− 2d(B)

= d(A,C) + d(B,C)−
t∑
i=1

d(ci, bi) + 2d(A) + d(A,B)

≥ d(A,C) + d(c1, b2) + d(c2, b1) + d(A) + d(z, b1) + d(z, b2)

≥ d(A,C) + d(A) +
1

α
d(c1, z) +

1

α
d(c2, z)

≥ d(A,C) + d(A) +
1

α2
d(c1, c2)

≥ 1

α2
(d(A,C) + d(A) + d(C))

≥ 1

α2
d(O)

Therefore

t∑
i=1

d(S − bi + ci)

= td(S) + d(C, S)−
t∑
i=1

d(ci, bi)− d(A,B)− 2d(B)

≥ (t− 2)d(S) +
1

α2
d(O).

This completes the proof.

Now we can complete the proof of Theorem 2.
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Proof. Since S is a locally optimal solution, we have φ(S) ≥ φ(S − bi + ci) for
all i. Therefore for all i we have

f(S) + λd(S) ≥ f(S − bi + ci) + λd(S − bi + ci)

Summing up over all i, we have

tf(S) + λtd(S) ≥
t∑
i=1

f(S − bi + ci) + λ

t∑
i=1

d(S − bi + ci)

By Lemma 3 we know

tf(S) + λtd(S) ≥ (t− 2)f(S) + f(O) + λ

t∑
i=1

d(S − bi + ci)

Then by Lemma 5 we have

tf(S) + λtd(S) ≥ (t− 2)f(S) + f(O) + λ(t− 2)d(S) +
λ

α2
d(O)

Therefore,

2f(S) + 2λd(S) ≥ f(O) +
λ

α2
d(O)

Since α ≥ 1,

2f(S) + 2λd(S) ≥ f(O) +
λ

α2
d(O) ≥ 1

α2
φ(O)

φ(S) ≥ 1

2α2
φ(O).

ut

Conclusion

In this study we answer a proposed question in [1] about the existence of a
bound on max-sum diversification problem with semi-metric distances and give
a 2α-approximation for this question in the case that there is not any matroid
constraint and a 2α2-approximation for an arbitrary matroid constraint. One
interesting question that may be posed is whether it is possible to prove similar
results for a non-monotone submodular function?
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