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Introduction

In the GAN methodology, we have a Generator network G, and a
Discriminator network D.

The Discriminator is used to predict whether a data instance is
synthetic or real. The Generator G is trained to confuse G by training
high quality data.

GANs are trained by propagating gradients backward from D to G.

This is only feasible if generated data is continuous.
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Discrete data, encoded as one-hot representation, can be sampled
from a categorical distribution, however this sampling process is not
differentiable.

We can however obtain a differentiable approximation from the
Gumbel-Softmax distribution.
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The Gumbel distribution trick

The CDF of a standard Gumbel distribution is given by
CDFgumbel(gi ) = exp(−exp(−gi ))

A random variable gi is said to have a Gumbel distribution if
gi = − log (− log (U)) where U ∼ Uniform[0, 1] (Inverse transform
sampling)

The Gumbel-Max trick is a method to sample from a categorical
distribution Cat(α1, α2, ...αK )
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let set {gk}k≤K be an i.i.d sequence of standard Gumbel random
variables.

The trick is based on the observation that
kmax = arg maxk(logαk + gk) follows the desired categorical
distribution. (Proof at blog post by Ryan Adams 1)

Hence a discrete variable sampled from the categorical distribution
can be written as:
y = onehot(arg maxk(logαk + gk))

Therefore, procedure to sample from a categorical distribution is:

draw Gumbel noise by transforming uniform random samples.
add it to logαk (αk can be unnormalized probability)
take value of k that produces the maximum.

1https://hips.seas.harvard.edu/blog/2013/04/06/the-gumbel-max-trick-for-discrete-
distributions/
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Gumbel-Softmax relaxation trick

Since, arg max operator is not continuous, we need a differentiable
approximation.

The Gumbel-softmax trick is to approximate the operator with a
softmax transformation.

We approximate y with:
yk = exp((logαk+gk )/τ)∑K

i=1 exp((logαi+gi )/τ)
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Example problem

The GAN is made to approximate sequence given by the below CFG.
S → x |S + S |S − S |S ∗ S | S/S , where x is the terminal.

Examples of valid strings:
x ∗ x + x − x/x ∗ x + x + x ,
x + x ,
x
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RNN for discrete sequences

The generative model is based on an LSTM RNN

Figure: A classic LSTM RNN model during the prediction phase
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The LSTM RNN is trained to predict a hidden-state vector h at every
time step, the softmax operator is then applied to h which gives us a
distribution over all possible generated characters (in our case:
x ,+,−, /, ∗)
LSTM model is trained by matching the softmax distribution to a
one-hot encoding of the input data via Maximum Likelihood
Estimation (MLE).

We need to build a generative model for discrete sequences, which is
accomplished by sampling through the LSTM using GAN approach

Satya Krishna Gorti CSC2547 9 / 16



In this case, both Generator G, and Discriminator D are LSTMs with
parameters Θ and Φ respectively.

The Generator network G takes as input a sample-pair which
effectively replaces the initial of the hidden and memory cell states.

Figure: Generator network for discrete sequences
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Figure: The GAN network
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Our aim while training the GAN is to minimize differentiable loss
functions for G and D to update Θ and Φ.

Since we already know that sampling points from G from the
categorical distribution given by the LSTM is not differentiable.

We can now use the Gumbel-softmax distribution to sample from
LSTM and optimize Θ and Φ using back-propagation.

i.e. Instead of
y = onehot(arg max

k
(hi + gi )) (1)

we instead use,
y = softmax((h + g)(1/τ)) (2)

when τ → 0, we have same distribution of that generated by (1)
when τ →∞, the samples are always from uniform probability vector.
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Algorithm
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Experimenation

5000 samples with maximum length of 12 characters were generated
from CFG defined previously. (All sequences with less than 12
characters were padded with spaces)

Trained G and D for 20,000 mini-batch iterations.

Linearly annealed temperature coeff from τ = 5 to τ = 1.
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Results

Figure: Results
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Thank you
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