GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution Matt Kusner, Jose Miguel Hernandez-Lobato

Satya Krishna Gorti

University of Toronto

- In the GAN methodology, we have a Generator network G, and a Discriminator network D.
- The Discriminator is used to predict whether a data instance is synthetic or real. The Generator G is trained to confuse G by training high quality data.
- GANs are trained by propagating gradients backward from D to G.
- This is only feasible if generated data is continuous.

- Discrete data, encoded as one-hot representation, can be sampled from a categorical distribution, however this sampling process is not differentiable.
- We can however obtain a differentiable approximation from the Gumbel-Softmax distribution.

- The CDF of a standard Gumbel distribution is given by $CDF_{gumbel}(g_i) = exp(-exp(-g_i))$
- A random variable g_i is said to have a Gumbel distribution if $g_i = -\log(-\log(U))$ where $U \sim Uniform[0, 1]$ (Inverse transform sampling)
- The Gumbel-Max trick is a method to sample from a categorical distribution Cat(α₁, α₂, ...α_K)

- let set {g_k}_{k≤K} be an i.i.d sequence of standard Gumbel random variables.
- The trick is based on the observation that
 k_{max} = arg max_k(log α_k + g_k) follows the desired categorical
 distribution. (Proof at blog post by Ryan Adams ¹)
- Hence a discrete variable sampled from the categorical distribution can be written as:
 - $y = onehot(arg \max_k(\log \alpha_k + g_k))$
- Therefore, procedure to sample from a categorical distribution is:
 - draw Gumbel noise by transforming uniform random samples.
 - add it to $\log \alpha_k$ (α_k can be unnormalized probability)
 - take value of k that produces the maximum.

¹https://hips.seas.harvard.edu/blog/2013/04/06/the-gumbel-max-trick-for-discretedistributions/

- Since, arg max operator is not continuous, we need a differentiable approximation.
- The Gumbel-softmax trick is to approximate the operator with a softmax transformation.
- We approximate y with: $y_k = \frac{\exp((\log \alpha_k + g_k)/\tau)}{\sum_{i=1}^{K} \exp((\log \alpha_i + g_i)/\tau)}$

- The GAN is made to approximate sequence given by the below CFG. $S \rightarrow x | S + S | S - S | S * S | S/S$, where x is the terminal.
- Examples of valid strings:

x * x + x - x/x * x + x + x,x + x,x

< 注入 < 注入

• The generative model is based on an LSTM RNN

Figure: A classic LSTM RNN model during the prediction phase

- The LSTM RNN is trained to predict a hidden-state vector h at every time step, the *softmax* operator is then applied to h which gives us a distribution over all possible generated characters (in our case: x, +, -, /, *)
- LSTM model is trained by matching the softmax distribution to a one-hot encoding of the input data via Maximum Likelihood Estimation (MLE).
- We need to build a generative model for discrete sequences, which is accomplished by sampling through the LSTM using GAN approach

- In this case, both Generator G, and Discriminator D are LSTMs with parameters Θ and Φ respectively.
- The Generator network G takes as input a sample-pair which effectively replaces the initial of the hidden and memory cell states.

Figure: Generator network for discrete sequences

Figure: The GAN network

2

- Our aim while training the GAN is to minimize differentiable loss functions for G and D to update Θ and Φ.
- Since we already know that sampling points from G from the categorical distribution given by the LSTM is not differentiable.
- We can now use the Gumbel-softmax distribution to sample from LSTM and optimize Θ and Φ using back-propagation.
- i.e. Instead of

$$y = onehot(\arg\max_{k}(h_i + g_i))$$
(1)

we instead use,

$$y = softmax((h+g)(1/\tau))$$
(2)

when $\tau \to 0$, we have same distribution of that generated by (1) when $\tau \to \infty$, the samples are always from uniform probability vector.

- 1: data: $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \sim p(\mathbf{x}),$
- Generative LSTM network G_⊖
- 3: Discriminative LSTM network D_{Φ}
- 4: while loop until convergence do
- 5: Sample mini-batch of inputs $B = {\mathbf{x}_{B_1}, \dots, \mathbf{x}_{B_m}}$
- 6: Sample noise $N = \{\mathbf{z}_{N_1}, \dots, \mathbf{z}_{N_m}\}$
- 7: Update discriminator $\Phi = \operatorname{argmin}_{\Phi} \frac{1}{m} \sum_{\mathbf{x} \in B} \log D_{\Phi}(\mathbf{x}) \frac{1}{m} \sum_{\mathbf{z} \in N} \log(1 D_{\Phi}(G_{\Theta}(\mathbf{z})))$
- 8: Update generator $\Theta = \operatorname{argmin}_{\Theta} \frac{1}{m} \sum_{\mathbf{z} \in N} \log \frac{D_{\Phi}(G_{\Theta}(\mathbf{z}))}{1 D_{\Phi}(G_{\Theta}(\mathbf{z}))}$

9: end while

3

イロト 不得下 イヨト イヨト

- 5000 samples with maximum length of 12 characters were generated from CFG defined previously. (All sequences with less than 12 characters were padded with spaces)
- Trained G and D for 20,000 mini-batch iterations.
- Linearly annealed temperature coeff from $\tau = 5$ to $\tau = 1$.

Results

x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x x-x/x/x x x x/x*x*x x x x/x/x*x x x x/x/x*x x x x-x/x*x x x x-x/x*x x x x-x+x+x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x -/x-//x/ +x/x/ /x *x+/-xx *x /x-x+*x - xxx-x+x * * *+-x/x- *	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x* + - * / -x+/+/+x x-x*x/x+x x+x x+ + +- + x-x+x*	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x / +x+++xx/ -x + * / +*-x*x+x- -x-+*x* -+ x-x*-*x-x * /x +x- *+x/x+x/x	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x x+x*x *- x **x+x-x *x*x+x*xx / x-x+x-*/x+x+ */xx+ x / x -x+*x x + x+
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x x-x/x/x x x x/x*x*x x x x/x/x*x x x x/x/x*x x x x-x/x*x x x x-x/x*x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x -/x-//x/ +x/x/ /x *x+/-xx *x /x-x+*x - xxx-x+x * *	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x* + - * / -x+/+/+x x-x*x/x+x x+x x+ + +- +	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x / +x+++xx/ -x + * / +*-x*x+x- -x-+*x* -+ x-x*-*x-x * /x +x-	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x x+x*x *- x **x+x-x *x*x+x*x / x-x+x-*/x+x+ */xx+ x / x
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x x-x/x/x x x x/x*x*x x x x/x*x*x x x x/x/x*x x x x-x/x*x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x -/x-//x/ +x/x/ /x *x+/-xx *x /x-x+*x -	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x* + - * / -x+/+/+x x-x*x/x+x x+x x+ +	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x / +x+++xx/ -x + * / +*-x*x+x- -x-+*x* -+ x-x*-*x-x	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x x+x*x *- x **x+x-x *x*x+x*x / x-x+x-*/x+x+
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x x-x/x/x x x x/x*x*x x x x/x/x*x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x -/x-//x/ +x/x/ /x *x+/-xx *x	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x* + - * / -x+/+/+x x-x*x/x+x	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x / +x+++xx/ -x + * / +*-x*x+x- -x-+*x* -+	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x x+x*x *- x **x+x-x *x*x+x*x /
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x x-x/x/x x x x/x*x*x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x -/x-//x/ +x/x/ /x	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x* + - * / -x+/+/+x	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x / +x+++xx/ -x + * / +*-x*x+x-	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x x+x*x *- x **x+x-x
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x x-x/x/x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x -/x-//x/	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x* + - *	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x / +x+++xx/ -x + * /	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x x+x*x *- x
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x x+x/x*x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ / *x-xxx*x/x+x	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* * +x*-**/x*	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x / +x+++xx/	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x x*-+x/* //x
x/x-x*x x x x*x-x+x x x x/x/x-x x x/x*x-x x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x + -++//+ /	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x /x +/-* *	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x +/+x*x x /	+x*x/x/x /* x+ x xxx+/x+x/x /x x+x+x*x*x
x/x-x*x x x x*x-x+x x x x/x/x-x x	+/+x*x/x*xx* *x+x*x-x*x+* +x*+ x +	-/x/x/x- x//-xxx/x/*/ *x/x*- *-x	x+xx/-/x*x-x x*x*x*x-xx* x+xxx-x x	+x*x/x/x /* x+ x xxx+/x+x/x
x/x-x*x x x x*x-x+x x x	+/+x*x/x*xx* *x+x*x-x*x+*	-/x/x/x- x//-xxx/x/*/	x+xx/-/x*x-x x*x*x*x-xx*	+x*x/x/x /* x+ x
$x/x-x*x \times x$	+/+x*x/x*xx*	-/x/x/x	x+xx/-/x*x-x	+x*x/x/x
	** **/ * **		r	
x+x-x-x x	*-x x x/+*x	x///x x /	/+ x * *	x/x x*x / x
x+x-x+x x	+*-*+x-*/x	x -x*/-x-	-x-x+xx	x//- ///x
x-x-x*x x	/xx/ /	· · · · · · · · · · · · · · · · · · ·	- +x*x x	x/x+/x* - +
x/x/x+x x	+ /*	+ x * +	x-x-x+x-x-	/x-x/- * /
x = x + x = x - x - x	/+x*x x*x	x+-*x+x-x-x*	-x-x/x+x-	-x+xx//x*//
x = x / x + x - x	*		*_y_/*y*yyy	+ **** * * */
x + x + x + x + x		^XT/ T X	-x+x	X + X / / + X + / X + X / X + X / X + X +

CSC2547

Thank you

2

イロト イヨト イヨト イヨト