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Introduction

In the GAN methodology, we have a Generator network G, and a
Discriminator network D.

The Discriminator is used to predict whether a data instance is
synthetic or real. The Generator G is trained to confuse G by training
high quality data.

GANSs are trained by propagating gradients backward from D to G.

This is only feasible if generated data is continuous.
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@ Discrete data, encoded as one-hot representation, can be sampled
from a categorical distribution, however this sampling process is not
differentiable.

@ We can however obtain a differentiable approximation from the
Gumbel-Softmax distribution.
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The Gumbel distribution trick

@ The CDF of a standard Gumbel distribution is given by
CDFgumbel(gi) = eXP(—eXP(—gi))

@ A random variable g; is said to have a Gumbel distribution if
gi = —log (—log (U)) where U ~ Uniform[0, 1] (Inverse transform
sampling)

@ The Gumbel-Max trick is a method to sample from a categorical
distribution Cat(ag, ag,...ak)
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o let set {gx }k<k be an i.i.d sequence of standard Gumbel random
variables.

@ The trick is based on the observation that
Kmax = arg max,(log ay + gk) follows the desired categorical
distribution. (Proof at blog post by Ryan Adams 1)

@ Hence a discrete variable sampled from the categorical distribution
can be written as:
y = onehot(arg max, (log ax + gk))

@ Therefore, procedure to sample from a categorical distribution is:

e draw Gumbel noise by transforming uniform random samples.

e add it to log ax (ak can be unnormalized probability)
o take value of k that produces the maximum.

https://hips.seas.harvard.edu/blog/2013/04/06 /the-gumbel-max-trick-for-discrete-

distributions/
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Gumbel-Softmax relaxation trick

@ Since, arg max operator is not continuous, we need a differentiable
approximation.

@ The Gumbel-softmax trick is to approximate the operator with a
softmax transformation.

o We approximate y with:
exp((log ok +gk)/7)

Yk = K exp((log a-+&1)/7)
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Example problem

@ The GAN is made to approximate sequence given by the below CFG.
S—>x|S+S5|S-5|5%xS5|S5/S, where x is the terminal.
@ Examples of valid strings:
X*X+X—x/x*x+x+ X,
X+ X,
X
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RNN for discrete sequences

@ The generative model is based on an LSTM RNN
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Figure: A classic LSTM RNN model during the prediction phase
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@ The LSTM RNN is trained to predict a hidden-state vector h at every
time step, the softmax operator is then applied to h which gives us a
distribution over all possible generated characters (in our case:

X, 4, —, /%)
@ LSTM model is trained by matching the softmax distribution to a

one-hot encoding of the input data via Maximum Likelihood
Estimation (MLE).

@ We need to build a generative model for discrete sequences, which is
accomplished by sampling through the LSTM using GAN approach
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@ In this case, both Generator G, and Discriminator D are LSTMs with
parameters © and ® respectively.

@ The Generator network G takes as input a sample-pair which
effectively replaces the initial of the hidden and memory cell states.
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Figure: Generator network for discrete sequences
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Figure: The GAN network
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@ Our aim while training the GAN is to minimize differentiable loss
functions for G and D to update © and ¢.

@ Since we already know that sampling points from G from the
categorical distribution given by the LSTM is not differentiable.

@ We can now use the Gumbel-softmax distribution to sample from
LSTM and optimize © and ¢ using back-propagation.

@ i.e. Instead of
y = onehot(arg max(h; + g;)) (1)
k

we instead use,

y = softmax((h+ g)(1/7)) (2)

when 7 — 0, we have same distribution of that generated by (1)
when 7 — 00, the samples are always from uniform probability vector.
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Algorithm

bl

: data: {xq,...,x,} ~ p(x),

. Generative LSTM network Go

: Discriminative LSTM network Dg
- while loop until convergence do

Sample mini-batch of inputs B = {xp,,...,xg,, }
Sample noise N = {zy,,...,2nN,, |

Update discriminator & = argming —L 3" - plog Dg(x)— 2 37, log(1—

Update generator © = argming —% Y pen log %

: end while
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Experimenation

@ 5000 samples with maximum length of 12 characters were generated
from CFG defined previously. (All sequences with less than 12
characters were padded with spaces)

@ Trained G and D for 20,000 mini-batch iterations.

o Linearly annealed temperature coeff from 7 =5 to 7 = 1.
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Thank you
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