
Protecting Data on Smartphones and Tablets
from Memory Attacks

Patrick Colp†, Jiawen Zhang‡, James Gleeson‡, Sahil Suneja‡,
Eyal de Lara‡, Himanshu Raj∗, Stefan Saroiu∗, and Alec Wolman∗

†University of British Columbia, ‡University of Toronto, and ∗Microsoft Research

Abstract
Smartphones and tablets are easily lost or stolen. This makes them
susceptible to an inexpensive class of memory attacks, such as cold-
boot attacks, using a bus monitor to observe the memory bus, and
DMA attacks. This paper describes Sentry, a system that allows
applications and OS components to store their code and data on
the System-on-Chip (SoC) rather than in DRAM. We use ARM-
specific mechanisms originally designed for embedded systems,
but still present in today’s mobile devices, to protect applications
and OS subsystems from memory attacks.

Categories and Subject Descriptors C.0 [Computer Systems Or-
ganization]: Hardware/software interfaces; D.4.1 [Operating Sys-
tems]: Process Management; D.4.6 [Operating Systems]: Security
and Protection

Keywords encrypted memory, encrypted RAM, AES, cold boot,
bus monitoring, DMA attack, ARM, cache, iRAM, Android,
Nexus, Tegra

1. Introduction
Smartphones and tablets are more easily lost or stolen than desk-
tops or even laptops. This ease of loss makes enterprises and device
owners concerned about the security of the data stored on their de-
vices. Many enterprises today mandate that employee laptops use
disk encryption, such as TrueCrypt [51] or BitLocker [30], to pro-
tect “data at rest”. With such systems, the data on disk is always
encrypted with a key protected by a password or PIN that the user
must enter at boot time. If a device is lost, an attacker cannot re-
trieve the data without knowing the encryption password. Because
laptops are often shutdown or hibernating, such systems provide
adequate safety when dealing with lost devices.

In contrast, smartphones and tablets are rarely powered off. In-
stead, when the screen is off, these devices are in a sleep state where
RAM is continually refreshed. While sleeping, these devices pe-
riodically check for incoming phone calls or application notifica-
tions. When a device is lost, an attacker only needs to press a but-
ton to force the device to immediately resume execution. Encrypt-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694380

ing data at rest is therefore less useful for smartphones and tablets,
as their data can always be decrypted and loaded to RAM with the
press of a button.

Instead, smartphones and tablets offer PIN-unlock: a user must
enter a PIN to unlock her device when the device is idle for more
than a short period of time (e.g., 15 minutes). To prevent brute-
force attacks on the PIN, many smartphones enter a deep-lock state
if an incorrect PIN is entered a few times in a row. A key limitation
of PIN-unlock is that even when the device is locked, unencrypted
data resides in RAM on the stolen device. This allows attackers
to subject lost smartphones and tablets to physical attacks. There
are different avenues to read secrets from RAM, such as cold boot
attacks [25, 31], attaching a bus monitor to monitor data transfers
between the CPU and system RAM [18, 21, 24], or mounting DMA
attacks [7, 9, 36]. For example, Müller and Spreitzenbarth describe
how to mount a cold boot attack on Android smart phones using
only a household freezer, a USB cable and a laptop [31]. Using
their tool named Frost, they were able to recover recent emails,
photos, and visited web sites from physical RAM.

This paper demonstrates that the ARM System-on-Chip (SoC)
architecture used by today’s smartphones and tablets is amenable to
a new security approach – storing users’ sensitive data on the ARM
SoC rather than in DRAM. By storing the secrets on the SoC, we
make physical attacks more difficult to mount because they must
target the SoC to retrieve secrets, which is much more expensive.
The ARM SoC is already equipped with low-capacity storage that
can be used as an adequate alternative to traditional off-the-SoC
DRAM. Its primary usage is to store small amounts of data closer
to the CPU than DRAM. This storage’s presence is (arguably) due
to the role ARM plays in embedded systems, which often require
both fast and predictable performance. Bringing data closer to the
CPU helps these systems meet their real-time performance needs.

This paper presents Sentry, a system that protects against
DRAM attacks by leveraging on-SoC storage mechanisms orig-
inally intended for realtime predictable performance. Sentry can
bootstrap additional secure storage by safely encrypting regions
of memory much larger than the capacity of the ARM SoC. Sen-
try starts with the observation that protecting sensitive data on an
unlocked device offers little value because an attacker can access
the data simply by using the device’s UI. Instead, Sentry encrypts
the memory of sensitive applications and OS subsystems when a
mobile device transitions to a screen-locked state. When the user
unlocks the device, Sentry decrypts memory on demand to reduce
user-perceived resume latency and to save power.

Sentry supports two alternatives to storing secrets in DRAM.
First, Sentry supports iRAM, a small amount of internal SRAM
on the SoC, whose primary usage is storing the runtime state of
the firmware of the platform’s peripherals. Second, Sentry supports

177

cache locking, an old feature of ARM platforms, to “pin” data in
the cache and prevent it from being written back to DRAM. Current
ARM platforms used by smartphones and tablets are equipped with
shared L2 caches with much larger sizes than iRAM.

To enable sensitive applications to run in the background while
the device remains locked, Sentry leverages AES On SoC. Unlike
traditional AES, AES On SoC safely encrypts and decrypts with-
out leaking any sensitive code and data to DRAM. This new im-
plementation carefully manages the sensitive encryption/decryp-
tion state to eliminate the possibility of accidental leaks to DRAM
due to procedure calls (e.g., by passing parameters on the stack)
or to context switches. Sentry uses AES On SoC and fine-grained
software control over the L2 cache to secure the state of sensitive
applications running in the background. When an application starts
running in the background, Sentry transparently reads its encrypted
memory pages from DRAM, stores them on the ARM SoC, and
decrypts them. Similarly, pages are encrypted when written back to
DRAM. Sentry operates with little or no overhead when the device
is unlocked, and can securely run background applications while
the device is locked, albeit at lower performance.

We implement Sentry on a Nexus 4 smartphone and on an
NVidia Tegra 3 development board. On the Nexus 4, Sentry only
uses iRAM to store secrets on the SoC, while on the NVidia board,
Sentry can use both iRAM and the L2 cache. We have firmware
access to the NVidia Tegra 3 board that allows us to enable L2
cache locking (this feature is often disabled by firmware). We
use Sentry to secure a number of Android applications (Twitter,
Google Maps, Contacts, MP3), and dm-crypt, a generic Linux
block-level encryption module. Our evaluation shows that Sentry’s
performance and energy overheads are modest, and its mechanisms
do not affect the rest of the system’s performance in a significant
manner. On a daily basis, Sentry consumes about 2% of a device’s
battery life to protect an application assuming the user unlocks the
device 150 times a day.

2. Sentry
Sentry secures mobile devices against DRAM attacks by leveraging
the limited amount of secure storage available on the ARM SoC to
safely encrypt much larger regions of DRAM.

Main Observation. Sentry builds on the observation that securing
data in memory while a device is unlocked provides limited protec-
tion because any user can access sensitive data by simply interact-
ing with the device’s UI. Instead, Sentry secures memory state only
while a device’s screen is locked.

Sentry encrypts the memory pages of all sensitive applications
when the device starts transitioning to a screen-locked state. When
the device resumes and is successfully unlocked, Sentry decrypts
memory pages on demand as sensitive applications start to run. The
encryption/decryption keys are only stored on the ARM SoC when
the device is locked, and not in DRAM.

While this encrypt-on-lock and decrypt-on-unlock cycle im-
proves security, it has one major drawback – it does not sup-
port background computation. Modern smartphones need to per-
form limited background computations (e.g., receiving notifica-
tions, providing calendar alerts) while the screen is locked. To en-
able this, Sentry runs sensitive background applications in a mode
that guarantees their decrypted state is always confined to the SoC.

This approach makes it possible for Sentry to operate with little
or no overhead when the device is unlocked, while simultaneously
enabling it to run background applications while the device is
locked, albeit at lower performance.

Implementing Sentry requires solving the following three tech-
nical challenges:

In Scope Attacks Out of Scope Attacks
cold boot software attacks (malware)
bus monitoring physical side-channel attacks
DMA attacks code-injection

JTAG attacks
sophisticated physical attacks
(e.g., using electron microscope)

Table 1. Summary of our threat model.

1. On-SoC Storage: Identifying a location on the SoC where
sensitive state (e.g., encryption keys, cleartext pages of sensitive
background applications) can be stored and accessed while running
background applications. All this state must be preserved between
lock and unlock cycles.

2. Encrypted DRAM: To enable background operation while
locked, Sentry requires a way to transparently run background ap-
plications whose memory pages are always encrypted in DRAM.
To run these processes, Sentry uses the virtual memory system
to load referenced memory pages onto the SoC, and then decrypt
them in place. Similarly, Sentry encrypts them before paging them
out of the SoC and back to DRAM.

3. On-SoC Encryption: To bootstap its security guarantees, Sentry
requires the encryption/decryption routines to never leak any sen-
sitive information outside the SoC. For example, a generic crypto-
graphic library is insufficient because its function calls may place
their arguments on the stack in DRAM, and as a result they would
violate Sentry’s guarantees.

After we describe our threat model, we then address each of the
above challenges in turn.

3. Threat Model
This section describes three classes of memory attacks within our
threat model, and additional threats that fall outside the scope of
our paper. Table 1 summarizes these threats.

3.1 In-Scope Threats
We are concerned with memory attacks that aim to steal secrets by
reading the memory of a stolen/lost smartphone or tablet.

Cold Boot Attacks. Cold boot attacks exploit the data remanence
effect of RAM to read secrets stored in memory [25]. There are
two ways to mount cold boot attacks. One way is for an attacker
to physically remove the RAM modules from a victim device and
insert them into a compromised device which outputs the RAM’s
content. The bolting of DRAM into the motherboard and the grow-
ing popularity of package-on-package (PoP), where memory is ver-
tically stacked on top of processor, makes this approach ineffective
on today’s mobile phones.

A more practical possibility is to reboot a stolen device and
boot into an attacker-controlled OS that outputs the memory con-
tents [11]. A typical way to mount this attack is by reflashing a de-
vice. This requires a short power-disconnect (i.e., tapping a RESET
button). Müller and Spreitzenbarth used this technique to mount
successful cold boot attacks on Android smart phones [31]. On
phones with a locked bootloader, they were able to recover recent
emails, photos, and visited web sites from physical RAM dumps.
Moreover, on devices with an unlocked bootloader, they recovered
encryption keys from RAM and decrypted the user partition1.

1 Decrypting the user partition on locked devices is not possible because the
unlocking process requires device reflashing which wipes all user data.

178

Bus Monitoring Attacks. An attacker could attach a bus monitor-
ing tool [18, 21] to the memory bus and wait for the CPU to request
sensitive data over the memory bus. For example, a simple reboot
ensures that any secrets (e.g., disk encryption keys) are loaded into
the CPU as they are needed to start decrypting the disk volume
upon startup.

Bus monitoring attacks present a different danger than cold
boot. Bus monitoring enables a class of side-channel attacks based
on memory access patterns. Consider a sensitive application for
which an attacker can monitor its access patterns to its inter-
nal state. For example, AES implementations use tables of pre-
computed values (e.g., the exponentiation of 2 in a particular field,
such as GF (28)) to speed up their computation. While the tables
themselves are not secret, the order in which the table entries are
accessed can reveal secret information. Previous work has shown
fast ways to break AES if its state access patterns are known [50].
Bus monitoring attacks can reveal these access patterns, whereas
cold boot attacks cannot.

To the best of our knowledge, all previous work on protecting
secrets against memory attacks (on x86 platforms) is susceptible to
this attack [32, 33, 41]. Addressing this attack is nontrivial because
the above schemes can only protect small quantities of data, such
as one set of encryption keys. Protecting the entire state of the
encryption/decryption code and data makes the secret state’s size
grow several fold. Such sizes are beyond the protection capabilities
of previous solutions. Our related work section (Section 9) provides
a more in-depth discussion of these issues.

DMA Attacks. An attacker could program a DMA-capable periph-
eral to manipulate the DMA controller and read arbitrary memory
regions. This class of attacks is often referred to as Firewire attacks,
although they can exploit many other DMA interfaces, including
PCMCIA, PCI Express, or even the more recent Thunderbolt in-
terface. A DMA interface allows a peripheral to read memory con-
tents without any cooperation from the processor or the OS. DMA
attacks are successful even when the mobile device is PIN-locked.
As long as the device is not powered-off, one of its DMA con-
trollers can be programmed over a DMA interface.

One form of defense is using an IOMMU, a memory man-
agement unit often found on PCs and laptops today. The OS can
program the IOMMU to restrict what memory regions different
DMA devices can access. Unfortunately, there are two problems
with IOMMUs: (1) some mobile devices lack IOMMUs today,
and (2) IOMMUs cannot authenticate DMA devices and are thus
susceptible to spoofing attacks in which a malicious DMA device
can impersonate another device. Therefore, IOMMUs must be pro-
grammed to deny access to a restricted memory range from all
DMA devices.

Although some ARM platforms lack IOMMUs, most of today’s
ARM platforms are equipped with ARM TrustZone [2], which is
ARM’s hardware support for trusted computing. ARM TrustZone
provides two virtual processors backed by hardware access control.
The software stack can switch between the two states, referred to as
the secure world and the normal world. The OS and all applications
run in the normal world, whereas a small trusted kernel runs in the
secure world. Untrusted code running in the normal world cannot
access protected resources, such as memory pages and peripheral
registers of the secure world. ARM TrustZone can protect against
DMA attacks by giving the secure world control over the memory
storing secrets, and denying normal world’s DMA requests.

3.2 Out-of-Scope Threats
Data residing on a smartphone face many threats other than those
described above.

Software Attacks. This class of attacks compromise the software
on a mobile device and can thus access and steal any secrets,
such as the owner’s PIN number. Such attacks exploit a software
vulnerability to install compromised code. Although an important
class of attacks to consider, this paper focuses on attacks that do
not rely on running compromised software, yet are possible when
the device is in an attacker’s hands.

Physical Side-channel Attacks. Side-channel attacks aim to ob-
tain sensitive information by exploiting physical properties of
the cryptographic implementation, such as timing information or
power consumption. For example, different keys could affect the
amount of processing time or power required to do the encryp-
tion differently, revealing something about the keys’ structure. Al-
though our system does address one class of side-channel attacks
based on observing memory access patterns using bus monitor-
ing, we do not address physical externally measurable side-channel
attacks. Such attacks fall outside our threat model because they re-
quire a relatively high level of sophistication particularly when the
attacker cannot run arbitrary code on the device.

Code-injection Attacks. This class of attacks inject or modify
code running on the platform. One way to mount this attack is to
use a compromised DMA-capable device. However, as described
above, an ARM TrustZone (or an IOMMU) can protect a memory
region against all DMA accesses including writes. Another pos-
sibility is to attach a logic analyzer to the memory or I/O bus and
issue write commands that bypass any ARM TrustZone or IOMMU
protections. We consulted a DRAM hardware expert about these at-
tacks and learned that, albeit possible, these attacks are very chal-
lenging to mount because they are electrically unsound [8]. An at-
tacker needs to use a higher drive strength than the bus to effec-
tively “override” the bus protocol. Using a higher strength has the
potential to damage the memory controller beyond repair. Also, bus
protocols use dynamic time synchronization; the attacker must dis-
cover and synchronize the analyzer’s timings to match those of the
bus. In the expert’s opinion, mounting such an attack costs several
100’s of thousands of dollars, at a minimum.

JTAG Attacks. JTAG attacks are preventable because JTAG can
be disabled. Some mobile vendors disable JTAG by depopulating
the JTAG connector. Unfortunately, the JTAG interface can be re-
enabled by soldering a JTAG cable back to the JTAG pad [38].
Other mobile vendors use a more secure form of JTAG-blocking
based on hardware fuses [46]; such fuses can be disabled at device
provisioning time. JTAG is permanently disabled once this fuse is
burned. Additionally, manufacturers are also starting to build ”au-
thenticated JTAG”, an interface that requires a reader to authenti-
cate to enable JTAG [20].

Sophisticated Physical Attacks. It is hard to anticipate all types
of physical attacks. One example of an advanced attack is using an
electron microscope to examine the internals of the ARM SoC chip
and carry attacks on the stored data [49]. Although possible, such
an attack requires specialized equipment and can often take several
months even when carried out by a skilled attacker.

4. On-SoC Storage
This section presents two alternatives for storing secrets on the SoC
when the device is screen-locked.

4.1 Alternative #1: Internal RAM (iRAM)
Many smartphones and tablets are equipped with a small amount of
internal SRAM on the SoC, called iRAM. By placing iRAM on the
chip, different SoC subsystems (e.g., the DSP and various micro-
controllers) have fast access to a little bit of memory to run their

179

Memory Preserved iRAM DRAM
OS Reboot (no power loss) 100% 96.4%
Device Reflash (power loss) 0% 97.5%
2 Second Reset (power loss) 0% 0.1%

Table 2. The iRAM (SRAM) and DRAM’s data remanence
rates on a commodity tablet.

firmware. For example, our Tegra 3 development board provides
256KB of iRAM.

However, like DRAM, SRAM storage also suffers from data re-
manence – the memory retains its contents for a period of time upon
a power disconnect. Data remanence makes memory vulnerable to
cold boot attacks [25]. In fact, SRAM decays over time more slowly
than DRAM [10], making it even less suitable for storing secrets.
We performed the following experiment to characterize iRAM’s
data remanence.

Methodology. We connected the Tegra 3 tablet to a debugging
board and used its reset button to power off the tablet for short
periods of time. For each experiment, we varied how long the
power was cut from the board and measured the amount of data
preserved in DRAM and iRAM, respectively. To do so, we created
a process that allocates 1GB of memory (the tablet has 1GB of
DRAM and 256KB of iRAM) and fills it with an 8-byte pattern
written repeatedly.

We then performed three types of board resets that correspond
to mounting different variants of cold boot attacks. First, we just
performed a simple OS reboot. Such an attack is possible for
unlocked mobile devices – an attacker can boot a malicious OS
that dumps the memory. Second, we tapped the reset button (i.e.,
a short power disconnect), which corresponds to the reflashing the
device. The final test is a longer power interrupt – we held the reset
button pressed for two seconds. This corresponds to an attack in
which the memory is yanked out of the device and quickly inserted
into a malicious device which dumps all memory contents.

For each test, we used a kernel-level driver to enumerate all
DRAM and iRAM before starting the test and after the test ended.
We then grepped for the pattern, counted the number of occur-
rences, and used these results to compute data remanence as a ratio.
Each test was per formed at room temperature, and was repeated
five times. Table 2 shows the average results. Previous work has
characterized DRAM and SRAM’s memory remanence as a func-
tion of temperature [10, 25, 43].

Results. iRAM lost all its contents every time the device lost power
no matter for how long. In contrast, at room temperature, DRAM
still preserved a portion of its contents (0.1%) even when losing
power for two seconds.

After private conversations with the ARM board’s hardware
manufacturer, we learned that the board’s firmware zeroes out its
iRAM upon boot up. This behavior is consistent with our results,
and makes iRAM attractive for our security needs.

4.2 Alternative #2: Locked L2 Cache
Cortex-A9 ARM platforms are equipped with a PL310 cache con-
troller [3] whose role is to manage a shared L2 cache. The PL310
offers the ability to lock a portion of the cache to prevent it from be-
ing evicted from the cache. ARM platforms have supported cache
locking for a long time to improve computation performance as
well as the predictability of computation latency. Being able to pin
data into the cache can make small amount of computation faster
and its duration predictable. This piece of functionality is espe-
cially attractive for embedded systems that need real-time guaran-
tees. The PL310 controller mandates the ability to lock a cache by

iRAM Locked
L2 Cache

Cold Boot Safe Safe
Bus Monitoring Safe Safe

DMA Attacks Safe Safe(ARM TrustZone)

Table 3. Security analysis of different storage alternatives to
DRAM.

way, and optionally by cache-line. This is done via a Verilog op-
tion provided to the SoC vendors. Flushing the cache is done with a
single instruction, regardless of the number of ways being flushed.
We were able to enable cache locking by way on our NVidia Tegra
3 board. Unfortunately, we could not enable cache locking on the
Nexus 4 because we do not have access to the boot firmware.

The locked L2 cache is useful for storing secrets on the SoC
only if it guarantees that locked ways are not invalidated and re-
main present in the L2 cache until unlocked. While such a guar-
antee is not important for performance (the original goal of cache
locking), it is crucial to our security needs. Unfortunately, the ARM
spec is silent on whether the L2 cache locking implementation
offers this guarantee. To validate our hardware behavior, we per-
formed the following two experiments.

Validating PL310’s write-back behavior. First, we inspected the
codebase of an ARM simulator built by ARM itself (ARM Fast
Model [1]) and found that the PL310 does not write back locked
entries. Our second experiment was done on our Tegra 3 board. We
started by choosing an 8-byte random pattern that never appears in
DRAM. We wrote the random pattern at the physical address that
maps into a locked cache way, and used DMA reads to read the
DRAM directly bypassing the cache.

Finding a way to “hijack” a DMA controller for our testing
needs proved to be challenging for several reasons. First, few Linux
drivers appeared to use DMA for their data transfers. Second, DMA
controllers transfer data from memory to a device only. Reading the
DMA-ed data from the device is sometimes impossible. For exam-
ple, the NIC only allowed DMA-ing data out to a transmit buffer
that cannot be DMA-ed back in. Incoming DMA transfers from
the NIC were filled from a separate receive buffer. Third, certain
devices expect the DMA-ed data to have a certain format; for ex-
ample, the NIC expects transmitted data to have packet headers.

In the end, we used a driver that offers a high-speed serial chan-
nel. We discovered that the UART controller offers a debugging
port that acts like a loopback interface – it returns all data written
to it. We then modified the driver to DMA data to this debugging
port and then read the serial port to output its contents. This exper-
iment revealed that the hardware does not evict data from a locked
cache way. However, we discovered that flushing the entire cache
does unlock all locked ways. To ensure data safety, our system dis-
ables flushing of locked cache ways. We validated that the locked
way’s entries never appear in DRAM once this OS change is made.

4.3 Security Analysis of Storage Options
Table 3 summarizes our analysis of secure storage choices for
protecting secrets against memory attacks.

Because the low-level firmware zeroes-out iRAM upon boot,
storing secrets in iRAM protects them against cold boot attacks.
Unfortunately, we do not know of any published data on how
prevalent this behavior is across different types of mobile devices,
and as a result we cannot generalize our finding beyond our Tegra
3 device. iRAM is also safe against bus monitoring attacks because
secret data never leaves the SoC and thus does not traverse any
externally exposed busses. Finally, iRAM is safe against DMA

180

attacks as long as access to iRAM is protected inside the ARM
TrustZone only, as described in Section 3.

Similar to iRAM, upon boot the low-level device firmware re-
sets the PL310 L2 cache controller and zeros the L2 cache contents.
As a result, sensitive data in the L2 cache is protected from cold
boot attacks. Bus monitoring attacks are also ineffective because
data does not travel on any exposed busses. On ARM platforms,
DMA attacks are ineffective because DMA transfers data directly
from DRAM, bypassing the L2 cache.

Because the low-level device firmware implements the zeroing
logic for both iRAM and the L2 cache, one attack vector would be
to replace this firmware. However, this attack is difficult to mount
because the device verifies that the low-level firmware is signed
with the manufacturer’s key.

4.4 Trade-Offs
Looking at Table 3 one might ask: What are the security trade-offs
between iRAM and L2 cache locking because both appear to be
safe to these attacks? On one hand, any on-SoC storage is “safe”
because placing sensitive on the SoC protects it from memory
attacks. On the other hand, the hardware, the operating system, or
even an application could accidentally copy data off the SoC to
DRAM (even if not malicious). It is thus important to examine the
security guarantees each on-SoC storage alternative offer.

The key distinction between cache locking and iRAM arises in
how they protect against DMA attacks. On today’s ARM SoCs,
cache coherence for DMA transfers is handled in software. The
operating system must explicitly flush the cache before DMA reads,
and invalidate the cache before DMA writes. Because software
manages the cache for DMA operations, hardware initiated DMA
attacks cannot see the contents of the L2 cache, and therefore L2
cache-locking protects against DMA attacks. In contrast, iRAM is
just like any other system memory (DRAM) with respect to DMA
attacks. iRAM can only be protected from DMA attacks when
software in the TrustZone takes explicit steps to protect it.

4.5 Implementation
iRAM. We implemented a simple memory allocator that manages
the 192KB of iRAM (out of a total of 256KB) on our Tegra 3 tablet.
In our experiments, we discovered that the first 64KB of iRAM
appear to be used by our tablet’s firmware; overwriting this region
of iRAM crashes the tablet.

L2 cache locking. Locking a cache way is done by programming
the PL310 controller with a special enable way command. This
command has two effects. First, it ensures that all new data loaded
in the cache will be loaded in the enabled way. Second, all data
already loaded in the remaining disabled ways remains in fact
available to reads and writes but no new allocations or evictions will
take place. We can leverage this disable way command to first load
sensitive data into one way, and then lock the way. In pseudocode,
cache locking is done with the following four steps:

1 . f l u s h e n t i r e cache
2 . e n a b l e 1−way
/∗ cache s i z e i s now 128KB ∗ /
3 . w r i t e 0xFF i n a l l s e n s i t i v e d a t a
/∗ warm t h e one−way wi th d a t a ∗ /
4 . e n a b l e l a s t 7−ways
/∗ f i r s t way i s now ‘ ‘ d i s a b l e d ’ ’ ∗ /
/∗ cache s i z e i s now 7x128KB ∗ /

Once a way is locked, we return pointers to free pages mapped
to this cache way. Once the entire way has been allocated, we lock
an additional way if new requests for locked L2 cache memory are
made. Section 8 will show the increasing performance overhead as

encrypted
page

page
table

PTE(young = 0)
7/8
unlocked

DRAM

1/8
locked

Step 1: Copy encrypted page
into locked L2 cache.

copied
page

L2 cache

PTE(young = 0)

Step 2: Decrypt in place.
decrypted

page

PTE(young = 0)

Step 3: Update PTE and
set "young" bit

decrypted
page

PTE(young = 1)

Figure 1. Decrypt on page-in.

additional ways are locked. To unlock a cache way, we erase the
sensitive data and re-enable all unlocked ways:

1 . w r i t e 0xFF i n a l l s e n s i t i v e d a t a
/∗ a l l s e n s i t i v e d a t a e r a s e d ∗ /

2 . e n a b l e (8−k)−ways
/∗ r e s t o r e u n l o c k e d cache ways ∗ /

OS-level changes for handling L2 cache flushes. Flushing the L2
cache unlocks all locked ways. To ensure that data remains locked,
we used a feature of the PL310 cache controller – supporting a
mask that specifies which ways should be flushed. Each time a way
is locked, our system sets this mask appropriately, and resets it
when the way is unlocked. We changed all calls to the L2 cache
flush routines in Linux to use this mask. As a result of these
changes, the code handling L2 cache flushes in Linux grew from
428 to 676 lines of code.

5. Encrypted DRAM
This section describes how Sentry uses paged virtual memory to
secure background applications. Sentry uses paging to manage data
transfers between on-SoC memory and main memory (DRAM).
Sentry ensures that pages stored in DRAM are always encrypted,
and Sentry performs decryption on page-in to on-SoC memory, and
encryption on page-out of on-SoC memory.

We clear a bit (called the young bit in the ARM architecture) of
a Page Table Entry (PTE) to ensure we trap (page fault) whenever
this page is accessed. Upon a page-in, the trap is fired, and we copy
this page into a locked L2 cache way, and decrypt it in place. Once
decryption is done, we modify the PTE to point to the decrypted
page copy stored in the locked way and reset the “young” bit.
Figure 1 illustrates the steps performed by Sentry during decryption
on page-in.

If the locked L2 cache is full, Sentry needs to evict a page. For
this, the same sequence is repeated in reverse. We encrypt in place,
and then copy the page back, modify the PTE to point back to this
location, and clear its young bit to ensure future traps.

While this approach supports running unmodified applications
securely in the background, it has a couple of limitations. First,
system performance is reduced as page faults need to be handled
in software to enable careful control of the L2 cache contents. In

181

addition, the limited capacity of the locked cache ways leads to an
increase in the frequency of paging content in and out of the cache.
Second, direct accesses to physical memory that do not trigger page
faults, such as DMA by I/O devices, is not supported. We expect
these limitations to be negligible because typical background jobs
running on mobile devices (e.g., polling for email, periodically
reading sensor data) have modest processing requirements.

6. On-SoC Encryption
To ensure protection from memory attacks, Sentry’s implementa-
tion of encrypted DRAM cannot use generic encryption and de-
cryption routines. Instead, the encryption and decryption routines
used by Sentry must ensure that they do not leak any sensitive state
to DRAM. This section presents AES On SoC, a secure imple-
mentation of the Advanced Encryption Standard (AES) [34] that
prevents sensitive encryption state from leaking out to DRAM. We
start with an in-depth analysis of AES to classify its state and de-
termine what portion must be protected. We then describe the im-
plementation steps taken to build AES On SoC.

6.1 An In-depth Analysis of AES’s State
Brief AES Primer. The Advanced Encryption Standard (AES) [34]
is a block cipher that operates on 128-bit blocks of plaintext and can
use keys of 128, 192, or 256 bits. AES performs up to four different
operations repeatedly, where each repetition is called a round. In
each round, AES uses a specific, per-round encryption key, derived
from the original encryption key. For performance reasons all round
keys are precomputed and “cached” because they depend on the
original encryption key only, and not on any intermediate state.
While this optimization speeds up performance, it also increases
the amount of AES sensitive state. This raises an interesting trade-
off – a faster AES implementation requires more secure storage.

To precompute the round keys, AES uses two lookup tables,
called the S-box and the R-con. While these lookup tables contain
no secret state, the specific order in which AES looks up into these
tables can leak sensitive information about AES.

To handle input data longer than 128 bits, AES breaks the input
data into 128-bit input blocks and applies the single-block oper-
ation repeatedly. The ciphertexts corresponding to each block are
then combined or chained using different modes of operation. AES
supports many different modes (e.g., ECB, CTR, CBC). Sentry
uses the CBC mode; CBC is also the default AES mode of oper-
ation on Android and Linux.

State Classification. Different types of state can be safe against
some types of memory attacks but not against others. AES’s state
can be classified as follows:

1. Secret state. Secret state is state that, if leaked, will lead to a
compromise. In AES, the input text, the encryption key, and most
of the state derived from the encryption key is secret. Note that not
all state derived from the encryption key is secret; for example, the
ciphertext is not secret.

2. Public state. Public state is state that will not lead to a compro-
mise if leaked. For AES, the public state is the ciphertext and any
additional state that keeps track of the progress of the encryption.
For example, the variable keeping track of the encryption round in
AES is public.

3. Access-protected state. Although not secret, this state’s access
patterns are sensitive. For example, AES (and other symmetric
encryption algorithms) use pre-computed lookup tables to speed up
computation (e.g., the R-con and S-box tables). The lookup tables’
contents are not secret, but monitoring what entries in these tables

AES-128 AES-192 AES-256 Sensitivity
Input block 16 16 16 Secret
Key 16 24 32 Secret
Round Index 1 1 1 Public
Round Keys 320 368 416 Secret
2 Round Tables 2048 2048 2048 Access-protected
2 S-box 512 512 512 Access-protected
Rcon 40 40 40 Access-protected
Block Index 1 1 1 Public
CBC block/ivec 16 16 16 Public

Table 4. The breakdown of AES state in bytes.

are accessed during encryption can reveal sensitive information
about encryption keys.

How much state does AES use? Table 4 presents the state AES
uses for encrypting with different key sizes. The input block holds
the plaintext at the beginning of encryption and the ciphertext at the
end as each round is performed on the same input block. We list its
size as one block of 16 bytes (128 bits); however, the input can be
arbitrarily long. Summing up the sizes of each piece of state leads
to 2970 bytes of state for implementing encryption and decryption
in AES-128.

What Portion of AES State is Sensitive? The last column of
Table 4 classifies AES’s state according to its sensitivity. The bulk
of the state is access-protected and is due to the round tables. In
fact, the round tables alone account for an order of magnitude more
state than the rest of the state variables combined. In summary, the
OpenSSL AES-128 implementation has 352 bytes of secret state,
2600 bytes of access-protected state, and 18 bytes of public state.

6.2 AES On SoC Implementation
Sentry implements the following two AES On SoC versions:

1. iRAM AES On SoC. This version stores all secret and access-
protected stated in iRAM. This required few changes to the generic
OpenSSL AES version that loads its state from DRAM.

2. Locked L2 AES On SoC. This version ensures that all the
secret and access-protected state is allocated in a locked L2 cache
way. On our platform, the size of one way is 128KB, which is
plentiful to store all AES’s sensitive state.

Handling context switches. Irrespective of where it is stored, sen-
sitive state is loaded in the regular CPU registers at runtime to per-
form computation. If left unhandled, a context switch could evict all
the sensitive data from the CPU registers and place it on the stack
in DRAM. To avoid this situation, computation handling sensitive
state is performed with interrupts raised. For this, we created two
different macros called onsoc disable irq() and onsoc enable irq().
Our AES On SoC implementations encapsulate the computation
handling secure state within these two macros. The first macro dis-
ables interrupts whereas the second macro zeroes all regular regis-
ters and re-enables interrupts. Our implementation raises interrupts
for 160 microseconds on average on our Tegra 3 board.

Handling procedure calls. Sensitive state can also be put on the
stack when passed as arguments to procedure calls. According to
the ARM procedure call standard [4], the first four arguments to a
procedure call are passed in registers, and the rest on the stack.
The sensitive state is safe as long as is passed in the first four
arguments to a procedure call. We inspected the AES On SoC
implementation and checked that no procedure called used more
than four arguments. This guarantees that all state is passed in
registers and never put on the stack.

182

7. Prototypes
We developed two Sentry prototypes: one on an NVidia Tegra 3
ARM development board, and one on a Google Nexus 4 smart-
phone. Tegra 3 allows us the low-level access needed to enable
cache-locking. This prototype fully implements Sentry including
support for secure on-SoC encryption and background applications.
In contrast, Nexus 4 does not support cache locking, and therefore
cannot run background applications while locked. However, Nexus
4 enabled us to run experiments with widely used mobile apps,
and to collect meaningful power measurements. Instead, our Tegra
board is not as optimized for low energy consumption as a retail
device, such as the Nexus 4.

Secure On Suspend. Our Nexus 4 prototype takes advantage of
the fact that smartphones seek to suspend their state to DRAM
frequently (this corresponds to the ACPI S3 state) to save energy.
These suspend events occur after brief periods of user inactivity,
or when the user turns off the phone by pressing the power button.
Wake-up occurs (1) upon detecting user interaction, such as the user
pressing the home or camera buttons, or (2) when some hardware
event fires, such as an incoming phone call, or when some period
timer fires.

Selective Encryption. On a device lock, a strawman design would
encrypt all user-level state and most of the kernel state, except
for kernel state needed for resuming the device, some low-level
device drivers (e.g., cell telephony driver), and the code that handles
decryption and device unlock. Despite its security appeal, such an
approach incurs significant latency and energy cost.

Our experiments showed that encrypting 2GB of DRAM con-
tents on a modern smartphone (Nexus 4) takes over a minute even
when using all its four CPU cores and its crypto accelerator simul-
taneously. This also had a steep energy price: a single full-memory
(2GB) encryption consumed over 70 Joules, completely depleting
the battery after 410 suspend/resume cycles only. Hardware trends
also do not look promising – while future smartphones will be
equipped with faster CPU cores, their DRAM sizes will also be
increasing, and energy consumption will continue to be a bottle-
neck. Given that a typical user consults her phone on average 150
times per day [5], to be practical Sentry must add little overhead in
terms of time and energy.

Instead, Sentry only secures selected applications and OS sub-
systems identified as sensitive. On Android, users mark applica-
tions for encryption using an extension to the systems setting menu
to chose the ones from a list of installed apps.

Upon device locking, Sentry walks the page tables of all pro-
cesses marked sensitive and encrypts them. The Tegra prototype
relies on AES On SoC for encryption. The Android prototype uses
the default Linux Crypto API for encryption, and stores the en-
cryption key in iRAM. In addition, the Android prototype marks
encrypted processes as un-schedulable and places them in a special
queue to prevent them from running in the background while the
phone remains locked.

We also ported AES On SoC to the Linux Crypto API to ensure
that the encryption does not release sensitive data outside the SoC.
Any legacy software already designed to use this API automatically
works with our system. We register our AES implementation with
the API, providing it with a higher priority than the default AES
implementation. Thus, if both the generic AES and our AES are
loaded, the crypto system will favor ours.

On-demand Decryption. Sentry decrypts on demand using a lazy
approach to minimize the impact of decryption to resume latency
and energy consumption. We modified the page fault handler to
enable on-demand page decryption. Encrypted pages have modified
page table entries (PTE) to generate a trap next time the page is

accessed. When the page fault is generated, Sentry decrypts the
page in the context of the page fault handler. By using a lazy
approach, Sentry saves energy and time in the case when users
unlock their phones, engage in a just a few interactions, and re-lock
their phones.

While most memory is decrypted on demand, Sentry handles
DMA regions used by the GPU and I/O devices differently. These
regions do not trigger page faults when accessed directly by their
I/O devices using physical addresses. To handle these cases, Sentry
eagerly decrypts DMA regions once the device is unlocked. These
regions can vary in size, from 1MB for the Contacts application, to
3MB for Twitter, and 15MB for Google Maps.

A final case is handling memory pages shared between applica-
tions. If a memory page is shared with an application deemed non-
sensitive, Sentry assumes that the contents of this memory page are
not secret and skips encrypting it. However, if the page is shared
only between sensitive applications, Sentry encrypts the page.

Securing Persistent State. Another concern is handling the per-
sistent state of sensitive applications. Using file-system encryption
only is not sufficient because the cryptography library could leave
sensitive data in DRAM during execution. Instead, we incorpo-
rate AES On SoC in dm-crypt, a transparent block-level encryp-
tion module in Linux. At a high-level, dm-crypt makes three calls
to an AES library, one to set the encryption and decryption keys,
and two calls to encrypt and decrypt data. As described earlier, we
incorporated AES On SoC into the kernel’s Crypto API and mod-
ified dm-crypt to use AES On SoC instead of the default kernel
AES library.

Securing Freed Pages. Another concern is handling memory
pages that have been de-allocated (i.e. “freed”) by a sensitive appli-
cation because such pages could contain sensitive data. Although
Linux has a kernel thread whose job is to zero-out these freed
pages, there is no guarantee when this is done. This is not a risk
for background applications because Sentry always encrypts these
pages when paged out from the L2 cache even when freed. How-
ever, this is a potential risk for applications encrypted at screen-
lock. This risk is eliminated by waiting for the kernel thread to
zero-out all freed pages before locking the screen. We measured
this overhead on our Nexus 4 device and found it negligible – the
kernel thread can zero-out pages at a rate of 4.014 GB/s and an
energy cost of 2.8 micro-Joules per MB.

Bootstrapping. Sentry uses two root keys for AES encryption, a
volatile root key and a persistent one. The volatile key is used to
encrypt all sensitive applications’ memory pages. The volatile key
is stored on the SoC and is generated upon each platform reboot
with different values. The persistent key is used to encrypt all on-
disk, persistent state (using dm-crypt). This key is derived from a
combination of user input (a password entered at boot time) and a
secret value stored in a secure hardware fuse on the device. Present
mobile devices are already equipped with such a secure fuse storing
a random, hard-to-guess number only readable by code running
inside ARM TrustZone. We implemented code that reads the secure
fuse and generates an AES persistent root key, although this code
is not integrated into Sentry yet.

Minimum On-SoC Memory Requirements. The minimum amount
of on-SoC memory required to implement Sentry is only two pages.
Sentry requires at least one page for AES On SoC, and another for
the code and data of the sensitive application being decrypted/en-
crypted. We verified that our Tegra 3 Sentry prototype works in this
configuration, although the system becomes very slow because of
very frequent page faults.

183

0

20

40

60

0

0.5

1

1.5

Contacts Maps Twitter MP3

M
B

yt
e

s
D

e
cr

yp
te

d

Ti
m

e
 (

Se
co

n
d

s) Time (Seconds)
MegaBytes

Figure 2. Performance overhead upon device unlock.

0

5

10

15

20

0

0.5

1

1.5

Contacts Maps Twitter MP3

M
B

yt
e

s
D

e
cr

yp
te

d

Ti
m

e
 (

Se
co

n
d

s) Time (Seconds)
MegaBytes

4.3% 1.2%

1.3% 0.2%

Figure 3. Performance overhead at runtime.

0

20

40

60

0

1

2

3

Contacts Maps Twitter MP3

M
B

yt
e

s
En

cr
yp

te
d

Ti
m

e
 (

Se
co

n
d

s)

Time (Seconds)
MegaBytes

Figure 4. Performance overhead upon device lock.

8. Evaluation
This section evaluates the energy and performance overheads of
Sentry in its various modes of protection.

8.1 Methodology
To evaluate Sentry, we use our two different hardware platforms:
(1) an NVidia Tegra 3 ARM development board running Ubuntu
Linux that allows us the low-level access needed to enable cache-
locking, and (2) a Google Nexus 4 smartphone running a full-
featured version of the Android OS. On the Tegra, we run a custom
version of the Linux kernel v3.1.10, and on the Nexus the Linux
kernel version is v3.4.0. The Tegra 3 contains a quad-core Cortex
A9 CPU running at 1.2 GHz with 1GB of RAM, and the Nexus 4
contains a quad-core SnapdragonS4 CPU running at 1.5 GHz with
2 GB of RAM. All experiments are repeated at least ten times. All
our graphs plot the average and the standard deviation, although
sometimes the standard deviation is so low that it can barely be
seen in the graph.

All mobile devices we are familiar with disable L2 cache lock-
ing in firmware. Because we only have access to the Tegra board’s
firmware, this is the sole platform where we can run our cache
locking experiments. We only perform energy measurements on the

0

1

2

3

Contacts Maps Twitter MP3

Jo
u
le
s

Encrypt-on-Lock
Decrypt-on-Unlock

Figure 5. Energy overhead of encrypt-on-lock and decrypt-on-
unlock.

Nexus 4 platform because our Tegra development board is not op-
timized for low energy consumption required by retail devices.

8.2 Performance and Energy Overheads
We use a series of application-level benchmarks to characterize the
performance and energy overheads of Sentry. We then follow with
microbenchmarks that show the raw AES energy and performance
characteristics on our platforms.

Macrobenchmarks
We consider five different aspects of Sentry’s overhead.

1. What is the performance overhead of Sentry on device
lock and unlock? We run four Android applications, Contacts,
Maps, Twitter, and ServeStream (an MP3 streaming app) both with
and without Sentry on the Nexus 4. We measure their performance
throughout their lifetime, from device unlock (where the memory
pages of these applications start being decrypted), to running the
applications, to device lock (where the memory pages of these
applications must be all encrypted).

Device Unlock: Our first experiment measures the overhead
added by Sentry of unlocking the Nexus 4 and performing a simple
resume step of a single, sensitive application. This step decrypts
only that portion of the application’s memory pages needed to re-
sume the application. Figure 2 shows Sentry’s overhead in terms of
both time and megabytes of data decrypted. We find that resuming
sensitive applications has modest overhead, taking anywhere from
200 ms (Contacts) to a second and a half (Maps). This overhead is
roughly proportional to the amount of data to be decrypted.

Sensitive Application Performance: We scripted each of these
applications to perform a series of typical tasks. We run the script
right after unlocking the screen and measure its duration; the scripts
for the four applications take about 17 seconds for Twitter, 20
seconds for Maps, 23 seconds for Contacts, and 5 minutes for
the MP3 app. With Sentry, the script takes longer to run because
the applications are decrypting their memory pages on demand.
Figure 3 presents Sentry’s overhead in terms of time and megabytes
of data decrypted. While these applications run, Sentry’s overhead
is small ranging between 0.2% and 4.3%.

Device Lock: Finally, all memory pages of the applications must
be encrypted before the device is locked. Figure 4 shows this per-
formance overhead. Again, the overhead is modest adding between
700 ms to 2 seconds per application. As before, the overhead is
proportional to the amount of data needed to be encrypted.

Energy Profile: Figure 5 shows the energy overhead of device
lock and unlock operations for protecting one sensitive application.
These results do not include the energy consumed by an applica-
tion at runtime; our benchmarking results later will show the en-
ergy costs of encryption/decryption at runtime. As Figure 5 shows,

184

0

0.5

1

1.5

Without Sentry With Sentry
(256KB)

With Sentry
(512KB)

Ti
m

e
 in

 K
e

rn
e

l (
s)

Figure 6. Performance of background computation for alpine.

0

0.05

0.1

0.15

Without Sentry With Sentry
(256KB)

With Sentry
(512KB)

Ti
m

e
 in

 K
e

rn
e

l (
s)

Figure 7. Performance of background computation for vlock.

the overhead is minimal for all apps. Even for Google Maps, a rel-
atively large application that needs to decrypt 38 MB of memory
pages during device lock, and encrypt 48 MB, the energy overhead
of device lock/unlock is modest consuming up to 2.3 Joules. We
measure the unlock overhead conservatively because applications’
memory pages are decrypted on demand rather than all at once as is
the case with our experiment. Even so, Sentry will consume daily
about 2% of a device’s battery life to protect an application assum-
ing the user locks and unlocks a phone 150 times a day.

2. What is the performance of Sentry’s encryption and de-
cryption for background computation?

On our Tegra 3 board, we ported three applications to Sentry:
alpine (an e-mail reader based on pine), vlock (a text-based lock
screen application), and xmms2 (an MP3 player). These applica-
tions represent the types of actions users do when their smartphones
are locked – they listen to music (xmms2), receive e-mail (alpine),
and lock and unlock their devices’ screens (vlock).

We run each application in the background for several seconds
and measure the elapsed time spent inside of the kernel with and
without Sentry. Figures 6, 7, and 8 show the results of our experi-
ments. Sentry’s overhead varies from a factor of 2.74 in the case of
alpine when running with 256KB of locked L2 cache, to 48% in the
case of xmms2 when running with 512KB of locked L2 cache. Al-
though these overheads are high, we find Sentry’s performance ad-
equate because applications are generally not performance-critical
while running in the background. Furthermore, these overheads are
all relative to kernel time only, and not user time. Sentry’s perfor-
mance overhead is lower when considering an application’s total
time both in kernel and user-space. In all our experiments, we found
that applications remain responsive when run in the background
with Sentry.

3. What is Sentry’s performance overhead for protecting file-
system access with dm-crypt?

One of the most common ways to encrypt a file-system is using
the dm-crypt Linux kernel module. Using Sentry to protect dm-

0

0.5

1

1.5

2

Without Sentry With Sentry
(256KB)

With Sentry
(512KB)

Ti
m

e
 in

 K
e

rn
e

l (
s)

Figure 8. Performance of background computation for xmms2.

crypt provides appealing security properties because it ensures that
all persistent data in the system is secured against memory attacks.

We start by devising an experiment that isolates the perfor-
mance overhead of Sentry when used on dm-crypt. dm-crypt per-
formance is usually disk-bound, so we setup an in-memory disk
partition of 450 MB and protect it with dm-crypt. We use three
filebench [19] workloads: sequential reads, random reads, and ran-
dom read/writes. All the dm-crypt benchmarks are run on the Tegra
platform with cache-locking enabled.

For each run, the benchmark first creates a variety of files and
then runs a sequence of I/O operations on these files, according to
each workload. The initial file creation warms up the file system’s
buffer cache, and most of the I/O operations end up being serviced
from the cache, without exercising the block-level AES encryption.
To eliminate this effect, we also run the workloads using direct I/O
to bypass the buffer cache.

Figure 9 shows the throughput in megabytes per second of
two workloads – running random reads (on the left) and random
read/writes (on the right). Each graph has groups of three bars; the
first bar corresponds to running with dm-crypt disabled, the second
bar corresponds to running dm-crypt without Sentry, and the last
bar corresponds to running dm-crypt with Sentry. The presence
of the file system buffer cache “masks” some of the performance
overhead of Sentry. Encryption adds no performance overhead for
the randread benchmark. However, encryption cuts throughput by
a factor of two for the randrw benchmark (the y-axis of Figure 9
is shown with a log-scale). When we eliminate the system buffer
cache by using direct I/O, the impact of encryption on throughput
is clearly visible.

4. What is the performance impact on the rest of the system
when the L2 cache size is effectively reduced by cache locking?

Locking L2 cache ways can affect the performance of the rest
of the system. We quantify this effect by running a CPU intensive
task while locking different numbers of cache ways. Figure 10
shows, on the Tegra platform, the average duration of a Linux
kernel compilation as a function of the number of locked cache
ways. We use “make -j 5” as our build command, which runs up
to five commands simulatenously during the build. As expected,
the full compilation process takes longer as more ways are locked.
However, the effect of locking a single way, which reduces the
effective cache size by 128 KB (out of a total cache size of 1 MB)
is not large. It takes 14.53 minutes to compile the Linux kernel
with one locked way versus 14.41 minutes with no locked ways, an
increase of 7.2 seconds (less than 1%).

Microbenchmarks
These microbenchmarks are useful in understanding sources of

overhead in the application macrobenchmarks. On Tegra, we use
three AES implementations: unsafe AES (unmodified OpenSSL
AES), cache-locked AES, and iRAM AES. On the Nexus 4, we use
three versions of AES: unsafe AES (unmodified OpenSSL AES)

185

1

10

100

1000

randread randread (direct I/O)

M
B

yt
e

s/
se

co
n

d No Crypto
Generic AES
Sentry

1

10

100

1000

randrw randrw (direct I/O)

M
B

yt
e

s/
se

co
n

d No Crypto
Generic AES
Sentry

Figure 9. Performance of dm-crypt for random reads (left) and random read/writes (right).

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

M
in

u
te

s

of Locked Cache Ways

Figure 10. Performance of Linux kernel compile. Compiling
Linux gets gradually slower as more cache ways are locked.

both at running in user-level and in the kernel, and the hardware
accelerator AES.

Figure 11 shows the performance of AES for all the different
AES variants on both platforms, with the Nexus 4 on the left and
Tegra 3 on the right. At first, we were surprised to discover that
AES is slower when running on the crypto hardware accelerator
than on the CPU. However, upon investigation, this discrepancy
is due to two factors. First, we are using 4KB blocks of data (the
page size) to encrypt/decrypt. Crypto accelerators exhibit higher
performance when encrypting large amounts of data. Second, our
experiment is done upon phone lock and we suspect that the crypto
accelerator is down-scaling its frequency. We repeated this experi-
ment with the phone fully awake and the crypto accelerator is 4×
faster. However, we were unable to prevent the crypto hardware
from being down-scaled in our experiments. Without downscaling,
the performance of our crypto accelerator is similar to previously
published results [28].

Figure 11 also shows that Nexus 4 is much faster than our Tegra
development board. Finally, and more importantly, on Tegra using
AES On SoC adds negligible overhead (less than 1%).

Figure 12 shows the full-system energy overhead of CPU-based
encryption versus hardware-accelerated encryption on Nexus 4.
These results are driven by how long encryption takes using each
method. Hardware-accelerated encryption is much less energy-
efficient than the CPU due to the lower throughput of the AES
hardware accelerator when encrypting 4 KB memory pages.

9. Related Work
9.1 On Chip AES Schemes
A few previous projects have investigated the idea of storing AES
keys in CPU registers. In addition of being AES-for-x86-specific,
most of these previous solutions fail to guard access-protected state
and thus are subject to bus monitoring attacks. Furthermore, to
us, it is unclear how to extend these solutions to safeguard the
voluminous access-protected state.

In AESSE [32], Müller et al. implement AES for x86 proces-
sors by leveraging the SSE functionality of Pentium III and later
processors to both store encryption and decryption keys and to per-
form the AES computation. Their initial implementation, based on
the FIPS documentation [34], performed all the calculations se-
quentially on the input data, producing a very slow implementa-
tion. Their final implementation makes use of the table lookup op-
timization, improving performance from a 100× slowdown to a 6×
slowdown over regular AES. In this implementation, all of the AES
lookup tables (i.e., access-protected state) are stored in DRAM.

Their later work, TRESOR [33] expands on the AESSE func-
tionality to support 64-bit CPUs with support for Intel’s encryption
instructions (AES-NI). This version is resilient to memory attacks
because all AES’s state is stored in AES-NI in the CPU. However,
such an approach is not extensible beyond protecting AES imple-
mentations only.

Simmons [41] disables model-specific registers used for debug-
ging and instead re-purposes them to store a single 128-bit AES
key. This key is used to decrypt other keys stored encrypted in
DRAM. This improves the performance to only a 2× slowdown
over regular AES. The implementation’s description specifies that
no temporary data is stored in DRAM, although the paper offers
no clear explanation on how large round tables are being stored in
model-specific registers.

9.2 Other Forms of Defense
Encrypted RAM. Encrypted RAM schemes aim at storing data
encrypted in DRAM. There are two main differences between our
approach and encrypted RAM: (1) encrypted RAM’s performance
overhead is typically high and (2) it is unclear whether encrypted
DRAM can protect against DMA attacks. In particular DMA trans-
fers should be automatically decrypted otherwise there is little ben-
efit of using DMA for fast memory access.

Cryptkeeper [35] expands the traditional memory hierarchy by
proposing to encrypt a large portion of DRAM. Their implementa-
tion stores DRAM’s encryption keys in the clear portion of RAM.

Another project [12] proposed the idea of encrypting the mem-
ory for processes when evicted from the cache. Like Sentry, they
use a form of cache locking to ensure that sensitive data leaving the
SoC is encrypted. However, this previous work differs from Sentry
in four aspects. First, it only describes a preliminary design with no
implementation. Second, the evaluation is all done in simulation on
top of a Pentium-based architecture (whereas their design is aimed
at ARM SoC) while artificially injecting hypothetical costs, such
as the number of cycles encryption might take. Third, it is aimed
at embedded systems and does not meet the needs of smartphones
today. For example, there is no notion of “pin lock”, no background
processes, no discussion of DMA capabilities. Instead, a different
set of assumptions are made, such as whether MMU is present or
what types of crypto engines could be found on embedded sys-
tems. Finally, the cache-locking mechanism discussed is hypothet-

186

0

10

20

30

40

50

Generic AES Generic AES
(in kernel)

Crypto Hardware

M
B

/s
e

c

0

10

20

30

40

50

Generic AES AES_On_SoC
(Locked L2)

AES_On_SoC
(iRAM)

M
B

/s
e

c

Figure 11. AES performance. Comparison of OpenSSL AES, the kernel CryptoAPI AES, and hardware-accelerated AES on Nexus (left),
and OpenSSL AES, cache-locked Sentry, and iRAM Sentry on Tegra.

0.00

0.03

0.06

0.09

0.12

OpenSSL CryptoAPI HW Accelerated

µ
J/

b
yt

e

Figure 12. Energy overhead. Comparison of OpenSSL AES, the
kernel Crypto API AES, the hardware-accelerated AES on Nexus.

ical, and thus it is unclear how the cache locks its contents (e.g., by
way or by line).

Other methods have been proposed that store encryption keys
in a secret place. ZIA [14] and Transient Authentication [15] use
user-carried, small hardware tokens, and CleanOS [48] uses cloud
servers for storing encryption keys. Unlike Sentry, such schemes
rely on additional external infrastructure in the form of an Internet
connection [48] or short-range wireless interfaces [14, 15]. Tran-
sient Authentication also does not support running background ap-
plication securely while the phone is locked. Another difference
lies in the type of abstractions used. CleanOS provides APIs that
let applications define their sensitive data that needs protection. In-
stead, Sentry reduces the programmer’s burden by encrypting all
sensitive applications’ state.

Auditing file-systems. Keypad [23] keeps logs of file-system ac-
cesses. While such an approach does not explicitly defend against
memory attacks, it enables the victim to determine what portion of
their data has been compromised when the mobile is lost.

9.3 Complementary Threat Models
A large body of work aims at protecting the integrity and confiden-
tiality of trusted applications’ code and data [13, 16, 17, 22, 26, 29,
37, 39, 40, 42, 44, 45, 47, 52]. These related works defend against a
compromised OS (e.g., malware) or a compromised privileged VM,
whereas Sentry relies on the OS to defend against DRAM attacks.

10. Discussion
ARM TrustZone: Today’s ARM platforms offer TrustZone [2], a
set of hardware extensions for code and data isolation. TrustZone
can be used to isolate a set of secure services from the general pur-
pose operating system. With TrustZone, the processor can execute
instructions in one of two processor modes, referred to as the nor-
mal world, where untrusted code executes, and the secure world,
where secure services run. One CPU instruction allows the soft-

ware stack to switch back and forth between these two worlds. All
memory allocated to the secure world remains inaccessible to the
normal world. This offers a form of protection where malware in
the normal world cannot infect the secure world. ARM TrustZone
does not encrypt secure world memory.

Sentry uses TrustZone to enable cache-locking. This requires
configuring certain co-processor registers which are only accessible
from the secure world of TrustZone. We have access to TrustZone
only on our Tegra 3 device, but not on the Nexus 4 (due to locked
firmware). This is why we cannot test cache locking behavior on
the Nexus 4.

Unfortunately, ARM TrustZone cannot help prevent cold boot
or bus monitoring attacks. Removing RAM modules (one form of
cold boot attack) and bus monitoring make the entire contents of
RAM vulnerable, including any RAM allocated to the TrustZone.
Reflashing the device firmware (another form of cold boot attack)
also can bypass TrustZone’s protection of secure world memory.

Running 3rd-party applications inside TrustZone makes them
immune to DMA attacks. However, this approach brings signifi-
cant challenges: running an OS/browser/DalvikVM in the Trust-
Zone [39] and porting each app to it. The TrustZone’s software
stack could become very large, increasing the TCB of any other
security services that rely on TrustZone.

Intel Software Guard Extensions (SGX): Intel has recently an-
nounced SGX [6, 27], a new set of CPU instructions for code and
data isolation. Unlike TrustZone, the memory allocated to an “en-
clave” is encrypted in hardware, which renders cold boot and bus
monitoring attacks ineffective. However, SGX brings in a set of ad-
ditional challenges. First, OS code cannot run inside of SGX (SGX
runs ring 3 code only). Second, based on the current documenta-
tion, SGX offers no form of protection against rollback attacks (i.e.,
no secure counters). Third, SGX technology appears to be aimed at
the server market targetting cloud computing datacenters.

Architecture suggestions: This work demonstrates the feasibil-
ity and security benefits of locking data on the SoC. We believe that
modern CPUs could offer a small amount of memory on the SoC to-
gether with a pin-on-SoC abstraction. Operating systems can make
use of this abstraction to store cryptographic keys used to bootstrap
additional system security, such as encrypted main memory. Such
keys will be much better protected from memory attacks. In Sentry,
we went to great lengths to use ARM-based mechanisms designed
for computation performance and predictability (e.g., cache lock-
ing and internal RAM), and applied them to our security needs.
However, Sentry’s design would be greatly simplified in the pres-
ence of a simple abstraction that would guarantee a small amount
of memory pinned on the SoC. This memory should be inaccessible
to DMA controllers to further prevent DMA-based attacks.

To increase the security of on-SoC storage, we also recommend
that low-level firmware should always erase it (i.e., zero it) upon

187

device boot up. Additionally, this low-level firmware should not
be modifiable to guarantee an attacker cannot simply disable it.
Although this step would increase the time required for the device
to boot up, the increase should be modest because zero-ing out a
small amount of memory should be relatively fast. We believe this
overhead is justified given the additional security gains.

11. Conclusions
This paper shows that today’s smartphones and tablets have several
performance features that can be retrofitted to defend against mem-
ory attacks. We implement Sentry, a system that leverages these
features to guarantee that the sensitive state of a program is never
stored in DRAM, but always stored on the ARM SoC. Our main ob-
servation is that sensitive state only needs to be encrypted when the
device is screen-locked. However, to run computation in the back-
ground when the screen is locked, Sentry decrypts and encrypts the
memory pages of sensitive applications as they are paged in and
out. Sentry uses a carefully engineered AES crypto library (called
AES On SoC) that never stores any sensitive state in DRAM. This
combination of mechanisms ensures Sentry never leaks any sensi-
tive state to DRAM when the device is screen-locked.

Acknowledgments
We would like to thank our shepherd, Gernot Heiser, and the anony-
mous reviewers for their thorough feedback. We would also like to
thank Andrew Baumann and Jay Lorch for their feedback on earlier
drafts of this paper.

References
[1] ARM. Fast models. http://www.arm.com/products/tools/

models/fast-models/index.php. Accessed: 2014-12-10.

[2] ARM. ARM security technology – building a secure sys-
tem using trustzone technology. http://infocenter.arm.
com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.
pdf, 2005–2009.

[3] ARM. PL310 cache controller reference manual, 2007.
http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0246a/DDI0246A_l2cc_pl310_r0p0_trm.pdf.

[4] ARM. Procedure Call Standard for the ARM Architec-
ture. http://infocenter.arm.com/help/topic/com.arm.
doc.ihi0042e/IHI0042E_aapcs.pdf, 2012.

[5] T. T. Athonen and A. Moore. Commununities dominate brands. http:
//communities-dominate.blogs.com/brands/2013/03/. Ac-
cessed: 2014-12-10.

[6] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with haven. In Proc. of the 11th Symposium on
Operating System Design and Implementation (OSDI), Broomfield,
CO, 2014.

[7] M. Becher, M. Dornseif, and C. N. Klein. Firewire - all your memory
are belong to us. In Proc. of CanSecWest Applied Security Conference,
2005.

[8] R. Bittner. Personal Communication, April 2014.

[9] A. Boileau. Hit by a bus: Physical access attacks with firewire. In
Proc. of 4th Annual Ruxcon Conference, 2006.

[10] C. Cakir, M. Bhargava, and K. Mai. 6T SRAM and 3T DRAM data
retention and remanence characterization in 65nm bulk CMOS. In
Custom Integrated Circuits Conference (CICC), 2012.

[11] E. M. Chan, J. C. Carlyle, F. M. David, R. Farivar, and R. H. Camp-
bell. Bootjacker: compromising computers using forced restarts. In
Proceedings of the 15th ACM conference on Computer and communi-
cations security (CCS).

[12] X. Chen, R. P. Dick, and A. Choudhary. Operating system controlled
processor-memory bus encryption. In Proceedings of the conference
on Design, automation and test in Europe, 2008.

[13] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Overshadow:
A Virtualization-Based Approach to Retrofitting Protection in Com-
modity Operating Systems. In Proc. of 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Seattle, WA, 2008.

[14] M. D. Corner and B. D. Noble. Zero-interaction authentication. In
Proc. of the 8th Annual International conference on Mobile computing
and networking (Mobicom), 2002.

[15] M. D. Corner and B. D. Noble. Protecting applications with transient
authentication. In Proc. of the 1st International Conference on Mobile
systems, applications and services (MobiSys), 2003.

[16] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Protecting
applications from hostile operating systems. In Proc. of 19th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2014.

[17] O. H. A. Dunn, S. Kim, M. Lee, and E. Witchel. Inktag: Secure ap-
plications on an untrusted operating system. In Proc. of 18th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2013.

[18] EPN Solutions. Analysis tools for DDR1, DDR2, DDR3, em-
bedded DDR and fully buffered DIMM modules. http://www.
epnsolutions.net/ddr.html. Accessed: 2014-12-10.

[19] Filebench. Filebench: File system benchmark. http://
sourceforge.net/projects/filebench/. Accessed: 2014-12-
10.

[20] Freescale Semiconductor. Configuring secure JTAG for the i.MX 6 se-
ries family of applications processors. http://cache.freescale.
com/files/32bit/doc/eng_bulletin/AN4686.pdf, 2013.

[21] FuturePlus System. DDR2 800 bus analysis probe. http://www.
futureplus.com/download/datasheet/fs2334_ds.pdf, 2006.

[22] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
A Virtual Machine-Based Platform for Trusted Computing. In Proc. of
19th ACM Symposium on Operating Systems Principles (SOSP), Lake
George, NY, 2003.

[23] R. Geambaşu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy.
Keypad: An Auditing File System for Theft-prone Devices. In Proc.
of the European Conference on Computer Systems (EuroSys), 2011.

[24] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet,
and R. Vaslin. Reconfigurable hardware for high-security/high-
performance embedded systems: The SAFES perspective. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 16(2):
144–155, 2008.

[25] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In Proc. of the
17th USENIX Security Symposium, 2008.

[26] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. L. orzynski,
F. Mehnert, and M. Peter. The Nizza secure-system architecture. In
Proc. of 1st International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), 2005.

[27] Intel. Software Guard Extensions Programming Reference.
https://software.intel.com/sites/default/files/
329298-001.pdf, 2013.

[28] V. Keränen. Cryptographic algorithm benchmarking in mobile de-
vices. Technical Report Master’s Thesis, University of Oulu, 2013.

[29] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB Reduction and Attestation. In
Proc. of IEEE Symposium on Security and Privacy, Oakland, CA, May
2010.

[30] Microsoft. BitLocker Drive Encryption. http://windows.
microsoft.com/en-us/windows7/products/features/
bitlocker.

188

http://www.arm.com/products/tools/models/fast-models/index.php
http://www.arm.com/products/tools/models/fast-models/index.php
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0246a/DDI0246A_l2cc_pl310_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0246a/DDI0246A_l2cc_pl310_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://communities-dominate.blogs.com/brands/2013/03/
http://communities-dominate.blogs.com/brands/2013/03/
http://www.epnsolutions.net/ddr.html
http://www.epnsolutions.net/ddr.html
http://sourceforge.net/projects/filebench/
http://sourceforge.net/projects/filebench/
http://cache.freescale.com/files/32bit/doc/eng_bulletin/AN4686.pdf
http://cache.freescale.com/files/32bit/doc/eng_bulletin/AN4686.pdf
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
http://windows.microsoft.com/en-us/windows7/products/features/bitlocker
http://windows.microsoft.com/en-us/windows7/products/features/bitlocker
http://windows.microsoft.com/en-us/windows7/products/features/bitlocker

[31] T. Müller and M. Spreitzenbarth. FROST - forensic recovery of
scrambled telephones. In Proc. of the International Conference on
Applied Cryptography and Network Security (ACNS), 2013.

[32] T. Müller, A. Dewald, and F. C. Freiling. AESSE: a cold-boot resistant
implementation of AES. In Proc. of the 3rd European Workshop on
System Security (EUROSEC), 2010.

[33] T. Müller, A. Dewald, and F. Freiling. TRESOR runs encryption se-
curely outside RAM. In Proc. of the 20th USENIX Security Sympo-
sium, 2011.

[34] NIST. Pub. 197 – advanced encryption standard (AES).
http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf, 2001.

[35] P. A. Peterson. Cryptkeeper: Improving security with encrypted RAM.
In Proc. of IEEE International Conference on Technologies for Home-
land Security, 2010.

[36] D. R. Piegdon. Hacking in physically addressable memory - a proof
of concept. Presentation to the Seminar of Advanced Exploitation
Techniques, 2006.

[37] H. Raj, D. Robinson, T. Tariq, P. England, S. Saroiu, and A. Wolman.
Credo: Trusted computing for guest VMs with a commodity hypervi-
sor. Technical Report MSR-TR-2011-130, 2011.

[38] Riff Box. http://www.riffbox.org/, 2014. Accessed: 2014-12-
10.

[39] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM TrustZone
to build a trusted language runtime for mobile applications. In Proc. of
19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2014.

[40] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus Authorization Logic
(NAL): Design Rationale and Applications. ACM Transactions on
Information and System Security, 14(1), 2011.

[41] P. Simmons. Security through amnesia: A software-based solution to
the cold boot attack on disk encryption. In Proc. of the 27th Annual
Computer Security Applications Conference (ACSAC), 2011.

[42] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: An authoriza-
tion architecture for trustworthy computing. In Proc. of 23rd ACM
Symposium on Operating Systems Principles (SOSP), 2011.

[43] S. Skorobogatov. Low temperature data remanence in static RAM.
Technical Report UCAM-CL-TR-536, University of Cambridge,
Computer Laboratory, 2002.

[44] J. Sorber, M. Shin, R. Peterson, and D. Kotz. Plug-n-Trust: Practical
trusted sensing for mHealth. In Proc. of the International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2012.

[45] U. Steinberg and B. Kauer. NOVA: A microhypervisor-based secure
virtualization architecture. In Proc. of European Conference on Com-
puter Systems (Eurosys), 2010.

[46] STMicroelectronics. STM32F205/215, STM32F207/217 Flash
programming manual. http://www.st.com/st-web-ui/static/
active/en/resource/technical/document/programming_
manual/CD00233952.pdf, 2013.

[47] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust
between applications and operati ng systems configurable. In Proc. of
the 7th Symposium on Operating System Design and Implementation
(OSDI), 2006.

[48] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambaşu, and
N. Sarda. CleanOS: Limiting mobile data exposure with idle eviction.
In Proc. of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012.

[49] C. Tarnovsky. Attacking hardware: Unsecuring [once] secure devices.
Black Hat USA Training Session, 2009.

[50] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attaks on AES,
and countermeasures. Journal of Cryptology, 23(1):37–31, 2010.

[51] TrueCrypt. Truecrypt – free open source disc encryption software.
http://www.truecrypt.org/. Accessed: 2014-04-01; Product and
website retired on: 2014-05-28.

[52] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested vir-
tualization. In Proc. of 23rd ACM Symposium on Operating Systems
Principles (SOSP), 2011.

189

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.riffbox.org/
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/programming_manual/CD00233952.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/programming_manual/CD00233952.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/programming_manual/CD00233952.pdf
http://www.truecrypt.org/

	Introduction
	Sentry
	Threat Model
	In-Scope Threats
	Out-of-Scope Threats

	On-SoC Storage
	Alternative #1: Internal RAM (iRAM)
	Alternative #2: Locked L2 Cache
	Security Analysis of Storage Options
	Trade-Offs
	Implementation

	Encrypted DRAM
	On-SoC Encryption
	An In-depth Analysis of AES's State
	AES_On_SoC Implementation

	Prototypes
	Evaluation
	Methodology
	Performance and Energy Overheads

	Related Work
	On Chip AES Schemes
	Other Forms of Defense
	Complementary Threat Models

	Discussion
	Conclusions

