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We address the problem of shape reconstruction from a sparse unorganized
collection of 3D curves, typically generated by increasingly popular 3D
curve sketching applications. Experimentally, we observe that human un-
derstanding of shape from connected 3D curves is largely consistent, and
informed by both topological connectivity and geometry of the curves. We
thus employ the flow complex, a structure that captures aspects of input
topology and geometry, in a novel algorithm to produce an intersection-free
3D triangulated shape that interpolates the input 3D curves. Our approach
is able to triangulate highly non-planar and concave curve cycles, providing
a robust 3D mesh and parametric embedding for challenging 3D curve in-
put. Our evaluation is four-fold: we show our algorithm to match designer
selected curve cycles for surfacing; we produce user acceptable shapes for
a wide range of curve inputs; we show our approach to be predictable and
robust to curve addition and deletion; we compare our results to prior art.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

Additional Key Words and Phrases: Sketch-based modeling, 3D Shape Re-
construction, Flow Complex

1. INTRODUCTION

Shape reconstruction is the general problem of creating an object
from a sampling of a real or imagined target object, that closely re-
sembles the target. Shape reconstruction from images, point-clouds
or cross-sections is an active area of ongoing research in computer
graphics, vision, and computational geometry [Dey 2011]. We con-
sider a relatively new variant of shape reconstruction, from a col-
lection of unorganized 3D curves (see Figures 1, 10). Curves are
ubiquitous in art and design, and such 3D curves are the output of
increasingly popular 3D sketching tools, such as ILoveSketch (ILS)
[Bae et al. 2008], analytic drawing [Schmidt et al. 2009], or other
3D curve modeling interfaces [Grossman et al. 2003].

A current drawback of these interactive tools is that 3D sketches
tend to visually clutter quickly and the intended object being
sketched becomes difficult to understand perceptually, even for the
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(a) (b) (c)

Fig. 1: Manual 3D surfacing: (a) curves (black to red) are edited to form
a connected network; (b) curve loops are annotated (red) and surfaced; (c)
complex loops are surfaced as simpler loops by adding curves (red).

designer. The ability to quickly and automatically infer a 3D model
from the collection of curves, to resolve curve visibility for bet-
ter viewing and further sketch exploration, is thus an important but
missing affordance. Such a 3D model is also a basis for rapid proto-
typing and downstream mesh processing [Singh 2006]. Currently,
the construction of a CAD surface model from 3D curve collections
is a three-step, tedious and manual post-process (see Figure 1):

—Curve intersections must be processed and additional curves cre-
ated as necessary to create a connected 3D curve network;

—Closed loops of connected curves that define the boundary of
intended surface elements must be annotated by the designer;

—Largely convex or planar loops can be surfaced using n-sided
patches or variational meshing. Complex loops and intersecting
surfaces must be manually simplified by adding input curves.

It is precisely this entire process that we seek to automate, enabling
a tighter coupling between 3D curve design and surface modeling.
We are inspired by the recent work of [Abbasinejad et al. 2011],
which is an admirable first attempt at this ambitious problem, but
fundamentally limited to inferring loops based on input curve con-
nectivity and local geometry (see Figure 6).

Our goal of recovering a designer intended shape from a sparse
collection of 3D curves deviates sharply from most shape recon-
struction literature: point samples representing the shape are both
sparse and anisotropically aligned along curves; the curves function
as a wire armature or scaffold over which the surface is locally and
often smoothly stretched; yet we must avoid general assumptions
on the target surface being manifold or smooth.

      alternate surfacings of
non-intersecting 3D curves

Fig. 2: ILS models surfaced by two designers with differences in red.
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1.1 Design experiments:

To gain insight into the problem, we performed two semi-formal
experiments. We first asked 3 designers to manually surface 9 ILS
curve networks (see Figure 2, 5). We noted disagreement in only
14 of 415 patches surfaced. The contentious patches were all either
perceived as semantically optional, such as an air vent, or were dif-
ferent surfacings of inconsistently crossing curves (see Figure 2).

We also asked 32 viewers to mark the visible surfaces they imag-
ined for two line drawings, randomly chosen from the four in Fig-
ure 3 (lines closer to the viewer are drawn thicker). Note that the
four drawings all have the same curve connectivity, and differ only
in the geometric size and placement of the circular cross-sections.
We noted complete agreement on the cylindrical surfaces and some
variance on whether the circular surfaces were capped with a gen-
eral preference (≈ 65%) for the interpretations shown in Figure 3.

(a) (b) (c) (d)
Fig. 3: Viewer-shaded visible surface patches, overlaid with color for clarity
(dominant alternatives are inset). The cylindrical surfaces are consistently
perceived, while the circular caps vary by geometric situation.

The strong agreement on the designer surfaces and perfect agree-
ment on the cylindrical surfaces suggests consistency in the shape
conveyed by design curve networks. All marked surfaces were
intersection-free but there was no clear tendency to close cavities
or keep surfaces manifold (Figure 3(a) is not closed, Figure 3(d)
is not manifold). The most ambiguous shapes were Figure 3(a),
(c) with their dominant alternatives shown inset, hinting at object
recognition possibly affecting the choice of surfaces (hat/table, cap-
sule/funnel). The differences in surface interpretation for curve net-
works with identical topology in Figure 3, suggest that approaches
to surfacing 3D curves should exploit both global geometry and
topology. The cycle basis approach of [Abbasinejad et al. 2011],
for example produces the topology of Figure 4(a), on all four in-
puts of Figure 3. Our approach (Figure 4(b)-(e)) consistently sur-
faces the cylindrical patches, and chooses intersection-free circular
loops based on an intuitive criterion described in Section 2.

(a) (b) (c) (d) (e)

Fig. 4: The curve networks of Figure 3 surfaced using [Abbasinejad et al.
2011] missing a cylindrical surface patch (a) and our approach (b)-(e).

1.2 Design goals:

We observe a few properties from the 9 manually surfaced models
that inform the goals of our surfacing algorithm.
Topology: Typically the 3D curves form a topologically connected
network. Occasional disconnected curves are embedded into other

surfaced curve loops as interpolated surface features or interior cy-
cles/holes (see Figure 5). The surfaced models comprise a small set
of connected manifolds, whose number can be user specified.
Geometry: Surface elements tend to interpolate proximal curve seg-
ments and result in globally intersection-free surfaces.

disconnected sidelight curves connect to car 
body as a surfaced hole within another surface.

Fig. 5: Designer surfaced car (left) and our algorithmic equivalent (right).

1.3 Previous work

3D shape reconstruction from discrete point-samples has been ap-
proached using various techniques: zero-sets of signed distance
functions [Hoppe et al. 1992], natural neighbour interpolation
[Boissonnat and Cazals 2002], moving least square (MLS) surfaces
[Alexa et al. 2001], support vector machines (SVMs) [Carr et al.
2001], and Delaunay-based techniques [Boissonnat 1984; Amenta
et al. 2001] to name a few. The line of work most relevant to our
work, however, employs flow-based methods [Edelsbrunner 2004;
Chaine 2003; Giesen and John 2002; 2003; Dey et al. 2005]. In
themselves these approaches are ill-suited to shape reconstruction
from a sparse collection of 3D curves.

Most work in the area of model reconstruction from sketched
curves addresses 2D sketch input [Shpitalni and Lipson 1996]. In
the space of 3D sketch-based modeling, one of two approaches may
be taken. The first sketches and surfaces models concurrently, by
incrementally sketching curves to refine a surface mesh built by
stroke inflation [Nealen et al. 2007; Olsen et al. 2009]. The second,
free-form sketching of 3D curves is better suited to conceptual de-
sign, but has little or no automated support for surfacing [Bae et al.
2008], barring the recent work of [Abbasinejad et al. 2011].

The choice of which curve loops to surface in [Abbasinejad et al.
2011] is based on a complete ordering of all cycles of the graph
induced by the curve network. The ordering is determined by cy-
cle size (smaller preferred), separability (non-separating preferred)
and volume of axis aligned bounding-box (smaller preferred). A
cycle basis is then built by greedily selecting cycles in order re-
sulting in a collection of connected non-closed manifolds. The ap-
proach is simple and reasonable, but being agnostic to the global
geometry of the curves, can make poor choices of curve loops to
surface. It will for example, pick the missing circular loop in Fig-
ure 3d, even though stretching a surface across this loop would in-
tersect other 3D curves. Since a cycle basis must be maintained by
the approach, incorrect loops chosen greedily, can impact subse-
quent choices (see Figure 6). Once the curve loops are chosen they
are patched using a variational mapping of a triangulated circle to
each curve loop independently [Mehra et al. 2009] or using n-sided
patches [Várady et al. 2011]. These approaches may fail for com-
plicated boundary curves and are best-suited to well-shaped convex
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curve cycles. Recently [Bessmeltsev et al. 2012] surface complex
curve loops by quadrangulating them into multiple 4-sided patches.
None of these approaches however, provide a complete solution to
the intersection-free surfacing of an unorganized set of 3D curves.

Fig. 6: Comparison of our approach (left) with [Abbasinejad et al. 2011]
(right) on a sphere, torus and pot: their greedy algorithm based on a cy-
cle ordering heuristic, incorrectly chooses the planar circular loops on the
sphere and torus, and avoids choosing the top and bottom loops of the pot
due to large cycle size, with undesirable consequences.

1.4 Contribution and Overview

We present arguably, the first fully automated solution to 3D sur-
face reconstruction from an unorganized collection of 3D design
curves. Motivated by the need to capture both geometry and topol-
ogy information of the input curves within a computational struc-
ture, we propose an algorithm based on the flow complex, a cell
complex that partitions space based on a flow induced by the dis-
tance from the input 3D curves. We sample our curves in such a way
to ensure that they are precisely embedded within the flow complex
of this discrete sample. The final output of our algorithm is a tri-
angulated surface that is a sub-complex of the flow complex that
interpolates the input curves and is embedded in R3 (does not self-
intersect). Our algorithm uses the theory of persistent homology to
pin down the topological structure of the reconstructed shape, in
a way that the number of connected components and voids in the
3D reconstruction can be precisely specified by the designer. We
optionally condition this triangulated shape further using morpho-
logical mesh operations. Figures 10, 14 illustrate the various steps
of our algorithm.

The rest of the paper is organized as follows. Section 2 reiter-
ates the surfacing goals underlying our choice of a flow complex
based algorithm, and a conceptual understanding of both the flow
complex and our surfacing algorithm. Section 3 formalizes termi-
nology pertaining to the flow complex, persistent homology, filtra-
tions, and other constructs, used by our algorithm in Section 4. We
present our results and evaluation in Section 5 and conclude in Sec-
tion 6. We further provide theoretical justifications of our algorithm
as an Appendix and a Glossary of mathematical terms used.

2. DESIGN RATIONALE: THE FLOW COMPLEX
AND PRISONERS IN A CAGE

We aim to reconstruct a 3D mesh model of controlled topology that
interpolates a set of input 3D curves, keeping in mind the design
goals from Section 1.2 (awareness of both input curve topology
and global geometry, and robustness to inaccurate sketch curve in-
put). Note that the determination of the curve loops to surface and
the self-intersection free surfacing of these loops are co-dependent
problems that should be solved simultaneously.

Many algorithms for shape reconstruction from unorganized
point-sets restrict their attention to the Delaunay complex, which
simultaneously offers geometric structure and a reduced choice of
surfacing elements that interpolate the input points. When recon-
structing a surface from a sparse collection of curves, as opposed

a b dc
a

drivers

Fig. 7: Distance function characterization on 7 input points (black): (a)
Voronoi boundaries (dashed lines) and drivers for grey points; (b) flow of a
magenta point under multiple drivers; (c) flow trajectories for four points;
(d) flow complex comprising input points 0-cells, Gabriel edges in blue 1-
cells, magenta and cyan polygons 2-cells. The critical points of these cells
are marked as minima 	, saddles �, and maxima ⊕.

to a dense collection of points, there is a shift in importance from
geometry towards the topology of the input curves. We thus utilise
a related cell complex, the flow complex (albeit applied to a point
sampling of curve input), that is more informative topologically.

2.1 Flow complex Overview

We begin with two mathematically equivalent characterizations of
the flow complex both of which aid in the understanding and imple-
mentation of our algorithm: distance function and point inflation.
We illustrate these characterizations using Figures 7, 8 respectively,
for a set of example 2D input points.

Distance function. An input point-set P defines a distance
function dP for all points in space. Given any point q, dP (q) =
minp∈P ‖q − p‖, or the closest Euclidean distance to the point-set
P . The familiar Voronoi boundaries of dP are shown as dashed
black lines in Figure 7. The function dP in turn induces a flow un-
der which points follow trajectories of steepest ascent of dP . For
a point q, Driver(q), defines this direction of steepest ascent as
(q − Driver(q)). Formally, Driver(q) = argmins∈S(‖q − s‖),
where S = ConvexHull(argminp∈P (‖q − p‖)). For points q not
on Voronoi boundaries, Driver(q) is a uniquely closest input point
p ∈ P , and the direction of steepest ascent q − p is the gradient of
the smooth function dP as expected. The Driver(q) for points q on
Voronoi boundaries is the closest point to q within the convex hull
of the multiple points in P that are closest to q. Figure 7(a) shows
the drivers as white points for three example grey points. The direc-
tion of steepest ascent vanishes for a finite number of points that are
coincident with their drivers. These points are called critical points
(see Figure 7(d)).

Any point thus flows along a linear trajectory, away from its
driver until it hits a Voronoi boundary, from where it flows under
a different driver until it hits another Voronoi boundary, finally es-
caping to infinity or ending in a critical point. Figure 7(b) illustrates
how the magenta point flows, pushed by multiple drivers shown in
white, until it coincides with its driver at a critical point. Figure 7(c)
shows the the flow of the magenta point and three other points. The
cyan point also ends in a critical point marked⊕ in Figure 7(d) and
the two grey points escape to infinity (considered a critical point).

The resulting flow complex is thus a subdivision of the plane
into a number of cells, where each cell comprises a critical point
and all the points whose trajectories flow into that critical point. As
shows in Figure 7(d) the 0-cells (marked 	) are the input points
themselves. The 1-cells are line segments connecting two 0-cells,
and 2-cells are regions of the plane separated from each other by
1-cells. The flow complex (like the Delaunay complex) provides an
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Fig. 8: Point inflation characterization on 7 input points (black): (a) formation of the first Gabriel edge; (b) more edges numbered in order of
creation; (c)(d) edges may enclose a region of space forming a polygon that is eventually filled (e)(f), the radius at which a polygon is created
is marked Thin and the radius when it collapses is marked Fat; (g) Gabriel edges are a subset of Delaunay edges in 2D.

intersection-free choice of surface elements based on the geometric
proximity, in keeping with our design goals (see Section 1.2).

Point Inflation. An alternate conceptualization of the flow
complex is to imagine inflating the input points or 0-cells with cir-
cles of uniformly increasing radii (roughly iso-curves of the dis-
tance function) as exemplified in Figure 8a. Eventually the cir-
cles around some two proximal points will touch at a critical point
shown in red (when the radius reaches half the edge length) creat-
ing a connected area represented by an edge (1-cell) connecting the
points. Such an edge, called a Gabriel edge, is equivalently charac-
terized by its diametric circle, shown in dashed blue, not containing
any other input points in Figure 8(a). In 2D while all Gabriel edges
are Delaunay edges, the reverse is not true (the green edges in Fig-
ure 8(g) are Delaunay but not Gabriel). One can observe that only
Delaunay edges that intersect their Voronoi dual are Gabriel edges
(see Figure 8(g)). As the points continue to inflate more edges are
created (Figure 8(b)) and further three or more created edges may
form a polygon Figure 8(c), the interior of which will eventually
collapse, into a single connected area or 2-cell, at a critical point
shown in red (see Figure 8(e)(f)). The index of a critical point is
the dimension of the cell it represents. These created edges and
regions along with the input point-set comprise the geometry of
the 2D flow complex, as already described using the distance func-
tion characterization. More importantly, the radius induced order
in which these elements are created and collapsed or destroyed (the
numbering in Figure 8) encodes the construction topology of the
complex. Using techniques from the theory of persistent homol-
ogy [Edelsbrunner et al. 2002a] our algorithm picks an appropriate
subset of these topological events and uses their corresponding sub-
complex of the flow complex as representative of the reconstructed
shape in Section 4.3.

In 3D, the input curves are inflated as generalized cylinder vol-
umes of uniformly increasing radii. Any closed curve loop in isola-
tion will appear toroidal (see Figure 9(left)), with the hole collaps-
ing at a large enough radius. This defines a face or 2-cell and collec-
tions of these faces can enclose a cavity or void, which eventually
collapses as well when the radius becomes large enough. While the
flow complex can be theoretically defined for continuous curves, no
algorithm to compute it is known, even for poly-lines. On the other
hand, computing the complex for a discrete set of points is well-
understood. Furthermore, by sampling the curves appropriately, we
can guarantee that the poly-line representation of the curve will be
embedded in the edges (1-cells) of the flow complex of its point
samples. Figure 9(right) shows a discrete point sampling of the
curves in Figure 9(left), where the curves are captured as 1-cells
or Gabriel edges. In 3D, 2-cells are piecewise triangular patches

Fig. 9: Inflation in 3D around curves (left), around a discrete set of points
that sample the curves, where each curve segment is a Gabriel edge (right).

whose boundary is composed of a closed chain of Gabriel edges.
In general, a 2-cell is not composed of Delaunay triangles but it is
possible for a 2-cell to coincide exactly with a Delaunay triangle.
These 2-cells separate 3D space into a number of volumes, voids,
3-cells or metaphorical prison cells. Given this flow complex, our
reconstruction algorithm, in essence, selects a subset of these prison
cells to represent the intended voids and outputs the collection of
triangles in 3D corresponding to 2-cells that bound disjoint prison
cells.

2.2 Prisoners in a cage

Most of the reconstruction literature deals with dense and isotrop-
ically sampled point data, typically received from 3D data acqui-
sition equipment. It is relatively easy for such techniques to de-
fine geometric criteria relating to sampling accuracy, frequency,
and distribution, that the acquisition device must provide, in order
for these techniques to provide guarantees on the geometric and
topological fidelity of the reconstructed shape. Our problem is sig-
nificantly harder, since we deal with sparse human authored input.
It is both difficult, to convey geometric parameters such as sam-
pling frequency or distribution to a designer and also, unreasonable
to expect the designer to draw a collection of curves that conform
to those parameters. Despite this, successful surface reconstruction
from design sketches can benefit from a two-way understanding be-
tween designer and algorithm, given the inherent ambiguities that
can exist in the perception of 3D curve networks (see Figures 2, 3).

While we strive to capture designer intended shape from 3D
curve networks automatically, it is valuable if designers can con-
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ceptually understand the working of our reconstruction algorithm.
This allows designers to obtain desired surfaces by creating and
editing the curve network with predictable results. Our flow com-
plex approach supports such design intuition:

Imagine the desired shape as a collection of connected closed
manifolds with boundaries defined by the input curves: the en-
closed voids are prison cells, and the input curves are cage bars
to the prison cells. Essentially, we require that all designer desired
prison cells be sufficiently well-defined by the enclosing cage bars.

To elaborate on this idea, imagine the prisoner as
a ball placed, for example, within a cell whose input
curve cage is formed by edges of a unit cube (see in-
set). A solid ball of radius 1/2 < r <

√
2 centered

inside the cube, can both fit in the cage and cannot
escape it (at no point must the ball intersect the cage bars). Geo-
metrically, a ball of increasing size escaping through cage bars is
equivalent to inflating radii around cage bars in the flow complex
definition. We show these balls in 2D for the magenta and cyan
prison cells in Figure 8(c)-(f).

The designer’s idea of the target shape described by a curve net-
work, is the collection of surface patches or walls that would both
interpolate the curves, and separate space into a number of intended
voids or prison cells. The curves or cage bars thus need to provide
definition to the cells, in order to algorithmically infer the cells and
consequently the walls. A good cage, in terms of design intuition
and from our algorithmic perspective, is one that isolates the in-
tended cells well; the cage allows both free movement within and
prevents escape from each intended cell for a wide range of prison-
ers (balls of different radii).

Imagine thus, two prisoners Thin and Fat represented as balls,
imprisoned in an intended cell by its cage. Thin is the smallest pris-
oner that cannot escape the cage but roam freely within it and Fat is
the largest prisoner that can fit in the cage (Thin and Fat are 1/2 and√

2 in radius for the inset cube). Our algorithm will capture those
cells where Thin and Fat differ by a significant factor. Technically
this difference is tantamount to choosing persistent cells (ones with
significant difference between their creation and destruction radii)
in the flow complex. For example, the magenta cell in Figure 8 has a
larger difference between Thin and Fat radii, than the cyan cell. The
magenta cell is thus more persistent than the cyan cell and between
the two, considered more likely to represent a closed manifold.

In the next section we provide the technical formalism needed,
to describe our algorithm that finds surfaces that interpolate the in-
put curves and bound the most persistent prison cells. An informed
reader may skip to the proposed algorithm in Section 4, using the
Glossary of terms, if needed as a reference.

3. TECHNICAL FORMALISM

We now define key concepts and tools used by our algorithm: the
flow complex, homology, filtrations, persistence and cell collapses.
For further details see [Giesen and John 2003; Buchin et al. 2008].

Flow complex. The flow complex applies the classical notion
of a Morse complex to a generalized gradient of the distance func-
tion in place of a smooth vector field. It is a cell complex (a CW-
complex to be precise) induced by the point set P in which the
cells are in one-to-one correspondence with critical points of dP .
The cell or stable manifold of a critical point c consists of all points
x in space whose flow trajectories end at c. Generically, each i-cell

is homeomorphic to an i-dimensional open ball and excludes its
relative boundary in the complex, so that all cells together define a
partition of space.

Topological equivalence. Classically, topologi-
cal equivalence between two topological spaces is de-
fined as a homeomorphism between them, i.e. a con-
tinuous 1-to-1 map with a continuous inverse. Homo-
topy equivalence is a weaker notion of a homeomor-
phism that does not preserve dimensions. For exam-
ple, a disc with two holes and the figure eight are not homeomor-
phic but are homotopy equivalent. A still weaker version of ho-
motopy equivalence, but one that is computationally tractable, is
homology equivalence. Our algorithm uses a powerful technique
known as persistent homology to detect intended prison cells, or
volumes of space that are caged by the input curve network. We
briefly define homology groups and their associated concepts and
point readers to [Edelsbrunner et al. 2002b] for a thorough treat-
ment of the subject. We only use a special version of homology
known as simplicial homology under Z2.

Simplicial homology. Simplicial homology is defined over
simplicial complexes. The notions of homology and persistence we
discuss however, can be applied to the flow complex even though
its cells are not necessarily simplices. We thus use the term cell
instead of simplex in our discussion of homology below.

2D cell

1D cell

0D cellIf a cell σ is a subset of the relative closure of a cell
τ , then σ is called a face of τ (an edge that bounds a
polygon in the inset is a face of the polygon in this con-
text). We call a subset of i-cells of a cell complex K
an i-chain, for example a collection of edges of the in-
set complex form a 1-chain. The sum of two i-chains
comprises the i-cells that appear in only one of the two summands
(equivalent to algebraic addition in Z2). The boundary of an i-cell
is the (i − 1)-chain comprising its (i − 1)-faces (as expected, the
boundary of a polygon in the inset complex is its bounding edges).
The boundary of an i-chain is simply the sum of the boundaries
of its constituent i-cells. The boundary for the inset 2-chain of
polygons is as expected the 1-chain of edges around both polygons
since the common edge cancels out. Conversely, an i-boundary is
the boundary of some (i+1)-chain. Finally, an i-cycle is an i-chain
that has an empty boundary. The edges of a polygon in the inset thus
form a 1-cycle, since summing the 0-boundaries (incident points of
each edge), counts each point twice, i.e. an empty boundary.

The above terminology in place, we define two i-cycles in a com-
plex as homologous if their sum is an i-boundary. When two i-
cycles are homologous, one can be continuously deformed into the
other without leaving the complex; thus they represent, in topolog-
ical terms, the same cycle. This homologous relationship partitions
all i-cycles into equivalence homology classes (see Figure 8).

The i-th Betti number βi(K), is the num-
ber of homology classes that form the i-
homology group. Intuitively, βi(K) counts
the number of topologically distinct i-cycles
in K. In particular, for a 3D complex β0
counts the number of connected compo-
nents, β1 counts the number of holes and handles, and β2 counts
the number of enclosed voids or prison cells. For a closed orientable
surface of genus g, β0 = 1, β1 = 2g, and β2 = 1.

Homology groups are topological invariants and from our per-
spective a simple yet powerful designer directive to describe the
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overall topology of the intended 3D shape represented as a collec-
tion of 3D curves.

Filtrations and persistence. A filtration of a cell complex is
a total ordering of its cells, in which each cell appears later than
any of its faces, for example the numbering of flow complex ele-
ments in Figure 8. One can prove that in a cell complex filtration,
the homology groups change each time an i-cell is added to the par-
tially developed complex [Edelsbrunner et al. 2002b]: introducing
an i-cell, either creates a new class of i-cycles, incrementing βi, or
destroys a previously non-trivial class of (i − 1)-cycles by turning
them into i − 1-boundaries, decrementing βi−1. In Figure 8 edges
labeled 7, 8 when added, create new 1-cycles, while edges 1 − 6
when added, destroy 0-cycles by turning the two incident points
into a 0-boundary and decrementing the number of components.
Every cell can thus be labeled a creator or destroyer in a filtration.
Adding a 2-cell in 3D similarly, either creates a new 2-cycle by en-
closing a void, or destroys the 1-cycle that had been formed by its
boundary edges. Conversely, each i-D homology class is created by
some creator i-cell and later destroyed (if at all) by the arrival of a
destroyer (i + 1)-cell. If the creator cell is denoted by σ(i) and its
corresponding destroyer by τ (i+1), then the pair (σ(i), τ (i+1)) is
called a persistent pair. In Figure 8 for example, elements (7, 10)
and (8, 9) are persistent pairs. Persistent pairs can be determined
algorithmically and the interval between their creation and destruc-
tion provides a comparative measure of persistence of topological
features in the evolution of the cell complex with respect to the
given filtration. In our context, persistence is better quantified as a
function of the radii at which the elements are added to the evolving
complex than simply using their rank in the filtration.

Persistence captures our design intuition of well caged and
roomy prison cells. In 2D, the radius at which a 1-cycle is created,
marked Thin in Figure 8, is the smallest prisoner that cannot escape
the 1-cycle. The radius at which this 1-cycle is destroyed, marked
Fat, is the largest prisoner that can fit within the cell, without inter-
secting any of its input points. If our intended 2D shape is to have
only 1-cycle, we will thus choose the more persistent magenta cell
over the cyan cell. Generally homology classes with small persis-
tence can be regarded as topological noise while those with large
persistence mark substantive topological features that the designer
intends to convey using the set of input 3D curves.

Filtration by distance value. Our algorithm uses a filtration
of the flow complex in which all 0-cells and 1-cells, appear before
any of the 2-cells and 3-cells, which themselves appear in increas-
ing order of the value of the distance function at their corresponding
critical points. Under this filtration we mark 2-cells as destroyer or
creator. We further use the logarithm of the distance function in
computing the persistence of creator 2-cells (or the 3-cells paired
with them). The persistence of a creator 2-cell σ paired with a 3-
cell τ is thus log dP (τ) − log dP (σ) = log dP (τ)

dP (σ)
. This choice is

justified in the Appendix.

Collapses. A generic tool used by our algorithm is the collapse
operation. Given a sub-complex K of the flow complex, a free cell
in K is any i-cell σ that is incident to exactly one (i+ 1)-cell τ in
K. Collapsing the free cell σ removes from K both σ and τ . The
resulting subcomplex, denoted byK ↓σ, is homotopy equivalent to
K (they have the same Betti numbers).

0-collapse

1-collapseInset, as an illustration of a 1-collapse, re-
moving the free 1-cell (red edge) also removes
its incident 2-cell (blue triangle). An example
0-collapse of the free red point is also shown.
In our algorithm we use 1- and 2-collapses to
remove elements of the flow complex that are
undesirable for our reconstructed surface (see
Figure 10(b), (c)).

We say that a sub-complex K ′ is a 1-collapse of a subcomplex
K, or equivalently K 1-collapses to K ′, if K ′ is obtained from
K through an arbitrary sequence of 1-collapses. We also define a
restricted 1-collapse, called a 1res-collapse, where free 1-cells or
edges that correspond to segments of the discretized input curves
are not collapsed. A 1res-collapse ensures that all curve segment
edges retain at least one incident surface (2-cell) after the collapse
operation, preserving a surface that interpolates the input curves.

Armed with concepts and tools our approach uses, we now detail
our algorithm that captures the intuition described in Section 2.2.

4. ALGORITHM

The input to our algorithm is a curve collection Γ = γ1 ∪ . . . γn
where each γi is a 3D curve. We assume thatΓ samples, and is con-
tained in a target shape Σ for which each connected component of
Σ−Γ , called a target patch, is homeomorphic to an open disk from
which zero or more closed disks are removed (a patch can have
holes). Each connected component of R3−Σ is called a target void
or prison cell, whose number is the second Betti number β∗2 of the
target shape Σ. Generally the number of disjoint voids or volumes
β∗2, of the intended shape is inherent to the design and best defined
as a user parameter. Alternatively, as we shall see, our algorithm
allows β∗2 to be automatically determined based on a user-defined
persistence threshold, or interactively varied by the designer while
browsing the resulting output shape.

Our algorithm first uses a feature size ε to create a discrete point-
set P representative of the input curves Γ in Section 4.1. The flow
complex FP of this point-set P is then computed using [Giesen
and John 2003] in Section 4.2. We then pick a sub-complex of FP
that matches the intended shape topology using the β∗2 most per-
sistent prison cells and ensure that all 2-cells are bounded by input
curves, in Section 4.3. This reconstruction, while topologically cor-
rect often has geometric inaccuracies, such as cut-off corners and
crevices; regions filled by small voids of low persistence that are
not chosen by our topological reconstruction. We solve these prob-
lems by thickening the reconstruction based on a threshold t, to in-
corporate more voids in Section 4.4 and finally prune the thickened
reconstruction in Section 4.5 to better conform the output shape to
the input curves. Our algorithm thus has precisely three user con-
trollable parameters ε, β∗2 and t with automatically computed de-
faults and the final output of our algorithm is a sub-complex of FP
that interpolates the input curves Γ (see Figure 10).

4.1 Discretizing the input

Input curves from sketches often have im-
precise intersections. We correct these, since
faithfully interpolating such curves will cre-
ate small, undesirable geometric bridges between these curves.
Thus, if the closest points on two curves are within a small distance
as shown inset, we snap them to their mid-point and smoothly de-
form the curves in the neighbourhood of the intersection.
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(a)

(b)

(c)

(d)

(e)

(f)

collapse

boat hull

deck

Fig. 10: Algorithm stages: (a) input curves; (b) exploded view of the flow complex of the sampled curves, a cross-section revealing 3-cells
in red; (c) the topological reconstruction correctly captures the boat hull void and collapses any surface patches not bounded by input curves,
but surfaces the back of the boat deck leaving the windshield open (yellow highlight); (d) the topology preserving thickening of (c), adds
surfaces, such as the windshield, and 3-cells shown in red; (e) the added 3-cells are removed along with potentially different surfaces, such
as the back of the deck (yellow highlight) for a better geometric interpolation of the input than (c); (f) a rendered result with conformally
parameterized surfaces, the windshield shows both the flow complex triangulation (right) and the result of morphological remeshing (left).

Now, given that flow complex algorithms are currently only
known for point-sets, we sample each input curve as a poly-line,
turning Γ into a polygonal network whose vertices are the dis-
cretized input point-set P . There are two considerations in ensuring
that the flow complex of P is an adequate representation of the flow
complex of Γ (see Figure 9). One, the point sampling along curves
needs to be dense enough that the points are a good proxy for curves
as cage bars, traded-off against algorithmic efficiency. Two, we re-
quire that each poly-line curve be embedded within the edges of
the flow complex, since our output surface is a subset of the flow
complex, in other words, each segment of an input poly-line curve,
must be Gabriel (see Section 2.1).

Our initial sampling of the curves is regular and arc-length based.
A reasonable sampling distance for a curve is based on the mini-
mum Hausdorff distance to all other curves in Γ (in practice we
use half this distance). This aims to ensure that a Thin prisoner
caged by the continuous curves cannot simply escape between two
point samples along a curve. Our sampling distance must also be no
more than a given feature size ε, to ensure a geometrically accept-
able sampling of Γ . The parameter ε can be user defined or based
on a error tolerance of deviation between the input curve and its
poly-line equivalent.

We then “Gabrielize” this initial poly-line network of curves by
iteratively subdividing non-Gabriel segments until each resulting
sub-segment becomes Gabriel. A segment pq, where p and q are
adjacent points along a poly-line curve, is Gabriel if no third point
r encroaches upon it, i.e. lies in the interior of the ball of diameter
pq. Observe that for a vertex r encroaching upon a segment pq,
if s is the projection of r onto pq, then r does not encroach upon
either of ps or sq. Subdividing segment pq by inserting point s thus
makes the segments ps and sq Gabriel, at least with respect to point
r. In principle such an iterative subdivision of any remaining non-
Gabriel segments can be used to produce a Gabriel poly-line curve
network in a finite number of steps.

We note however, that successive projection of encroaching
points to affected segments is numerically unstable, particularly
where two curves approach each other at a small angle (see Fig-
ure 11(a)). Numerically inaccurate projections do not eliminate en-
croaching and can lead to indefinite subdivision near the joining
vertex v, yet addressing this using an exact arithmetic approach
is unnecessarily expensive. One practical solution is to eliminate

α
v

β
v v

(a) (b) (c)

Fig. 11: Avoiding numerical issues in Gabrielizing two curve segments
incident to a vertex v at a small angle α (a), by dragging one of the incident
curves to a neighbour of v to enlarge the angle to β (b), or subdividing the
segments at a small equal distance from v (c).

curve segments that meet at very small angles by dragging one of
curves along the other curve until the resulting angle reaches a suit-
able threshold (Figre 11 (a), (b)). Another solution is to subdivide
curve segments incident to the joining vertex v by intersecting them
with a small ball centered around v (see Figure 11 (c)). We can then
numerically search for a radius small enough that the new segments
incident to v are Gabriel (by construction these segments will not
be affected by subsequent subdivisions).

The set of points P of the Gabriel poly-line curve network com-
puted as above, is now used to compute its flow complex, a subset
of which will constitute our final surface output.

4.2 Computing the Flow Complex

The Flow Complex is computed exactly as described in [Giesen
and John 2003]. Briefly, the flow complex FP of a point-set P is
constructed using its Voronoi and Delaunay complex as:
0-cells: The input point-set P .
1-cells: Gabriel edges, i.e. Delaunay edges that intersect their dual
Voronoi facet.
2-cells: Triangulated surface patches bounded by Gabriel edges,
computed by tracing flow back from each 2-cell’s critical point.
3-cells: Volumes enclosed by 2-cells.

Figure 12 illustrates 2-cell construction by reverse flow tracing.
The point of intersection of any Delaunay triangle e∗ that intersects
its dual Voronoi edge e is the critical point of a 2-cell. The three
Voronoi facets incident to Voronoi edge e are dual to edges of the
Delaunay triangle e∗, and we trace the flow backward recursively
along each of the three faces. Consider one such Voronoi face f
and its dual Delaunay edge f ∗. Let e′ be the second Voronoi edge
incident to f that intersects the plane of triangle e∗. Either e and
e′ straddle Delaunay edge f ∗ i.e. f intersects f ∗, or e and e′ lie
within the the Delaunay triangle e∗. In the first case f ∗ is a Gabriel
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e

e’

ef

f* e*
ef

(a) (c)(b) e’

f

f*
f*

Fig. 12: 2-cell construction by reverse tracing flow into its critical point:
(a) the intersection of a Voronoi edge e and its Delaunay dual e∗; the flow
is traced back along the green Voronoi face f in (b) and (c); (b) either f
intersects its Delaunay dual f∗ and f∗ is a bounding Gabriel edge and the
darkened triangle part of the 2-cell; (c) or f does not intersect f∗, and the
darkened chevron is added to the 2-cell and the flow recursively traced along
other Voronoi faces incident to edge e’.

edge that marks part of the boundary of the 2-cell and the triangle
formed by this edge and the critical point is added to its 2-cell. In
the second case the chevron of two triangles, each defined by one
incident vertex of f ∗, the critical point and the intersection point of
e′ with triangle e∗, are added to the 2-cell. In this case the reverse
flow recursively continues along the other Voronoi facets incident
to Voronoi edge e′. Note that the reverse flow at each step is toward
the driver for the current Voronoi face, which is the mid-point of
its dual Delaunay edge. In its simplest form a 2-cell can be a single
Delaunay triangle with 3 Gabriel edges.

Given the elements of the flow complex, the distance function
for a 2-cell (or 3-cell) is simply the minimum distance from its crit-
ical point to an input-point on its boundary. Conceptually, as 2-cells
are added in order of their distance function, 2-cells whose arrival
encloses a void are marked as creators and all others as destroyers.
Algorithmically, we use the connectivity in the dual graph deter-
mined by the 2- and 3-cells, to define persistent pairs of creators
and destroyers [Buchin et al. 2008]. We also order the 2-cells to be
in increasing order of their distance function but where all destroyer
cells appear before all creator 2-cells.

Input: Flow complex FP and the persistent paring of its maxima,
the desired second Betti number β∗2 of the output

Output: Topological reconstruction as a subcomplex Ktop of FP

TOPOLOGICALRECONSTRUCTION(β∗2)

1 D ← { destroyer 2-cells of FP }
2 C ← {σ+

1 , . . . , σ
+
β∗2

: σ+
i is the i-th most persistent creator 2-cell}

3 K0 ← subcomplex of FP induced by cells in D ∪C
4 K1 ← 1res-collapse of K0

5 K2 ← 1-collapse of K1

6 for each 2-cell σ in K2 in the decreasing order of dP :
7 if σ is incident to the same void of K2 on both sides:
8 K1 ← 1res-collapse of K1 − σ
9 goto line 5

10 return Ktop = K1 as the topological reconstruction

Fig. 13: Topological reconstruction

4.3 Topological Reconstruction

Our algorithm now finds a sub-complex of FP that best captures
the intended topology the target shape (see Figure 13, 14), as de-
scribed by the prisoners in a cage metaphor in Section 2.2. The Betti
numbers (see Section 3) capture various aspects of shape topology.
The number of connected components can be readily determined
from input curve connectivity or easily provided by the user. As

each component can be reconstructed independently, we assume
here that the input forms a single connected component β∗0 = 1.
Now, given the intended number of closed regions or voids β∗2, let
D be the set of destroyer 2-cells and let C be the β∗2 creator 2-cells
with the highest persistence among all creator 2-cells. The subcom-
plex K0 of FP induced by cells in C and D evidently has β∗2 voids
(β2(K0) = β∗2). We then ensure that all 2-cells in our reconstruc-
tion are completely bounded by edges from the input collection of
curves, by computing K1 as a 1res-collapse of K0 (see Section 3).
Figure 10(b), (c) shows an example unwanted 2-cell removed as a
1res-collapse. K1 has the same homology as K0, since a collape
operation is homotopy invarint.

Fins

Including all destroyer 2-cells in
the construction K0 implies a shape
without topological holes or handles
since no 1-cycle in K0 (and there-
fore K1) can be non-trivial. Intended
shapes such as the torus in Figure 14
can indeed have holes (β∗1 > 0) and
we must remove one or more de-
stroyer 2-cells fromK1 to achieve this. As illustrated inset, we must
be careful not to remove 2-cells that separate distinct voids since we
have already settled on the desired number of voids β∗2. We must
also be careful not to remove 2-cells incident to the same void on
both sides that represent fins (2-cells removed by a 1-collapse but
protected by a 1res-collapse). Thus we repeatedly delete cells (in
decreasing order of distance function) that are incident to the same
void on both sides provided that they would survive a 1-collapse.
Removing these destroyer 2-cells opens up holes and handles in the
output shape while interpolating the input curves and preserving the
number of voids. The resulting sub-complexKtop is returned as the
topological reconstruction.

4.4 Thickening the Reconstruction

While the topological reconstruction Ktop is successful in largely
capturing the intended prison cells or voids, nooks and crannys that
should be part of the larger void tend to get cut-off, since these
tight corners form their own small, low-persistence voids in the
flow complex. Figure 15 illustrates this problem in 2D. The in-
tended closed shape for the input points in Figure 15(a) is Fig-
ure 15(d). Figure 15(b) in contrast is the result of Ktop, with all
the destroyer edges in black and the red edge that creates the re-
gion of largest persistence. While Ktop has a single closed region
as desired in Figure 15(d), a corner is cut and its locality captured
as a fin. Further, obtaining Figure 15(d) from Figure 15(b) cannot
be achieved by manipulating destroyer cells alone, and requires the
addition of the blue creator edge in Figure 15(c). Simply adding
this edge to Ktop however, changes its homology incrementing β1.
We thus “thicken” Ktop to Kthick by adding both the blue edge
and its persistent pair (the blue region), which leaves the shape ho-
mology unchanged. Subsequently, we will use geometric criteria to
remove the blue region along with the destroyer black edge in the
interior of the shape to produce Figure 15(d), using a 1-collapse.

In 3D, thickening the reconstruction entails adding a number of
creator 2-cells (and their paired 3-cells) other than the β∗2 creator
2-cells chosen by Ktop, in a manner that leaves homology of the
thickened sub-complex Kthickunchanged. We control thickening
using a distance threshold t that bounds the distance function of
any cell added as a result of the thickening. Kthick is a superset of
Ktop, algorithmically constructed by first adding all creator 2-cells
and all 3-cells with distance function dP < t, that are not already
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(b) (c) (d)(a)

(f) (g) (h)(e)

Fig. 14: Topological reconstruction: (a) torus curves sampling; (b) all destroyer 2-cells with the highest persistence creator 2-cell in magenta;
(c) destroyers from (b) that trivialize 1D homology (block the hole and handle) shown in blue and green; (d) the topological reconstruction
Ktop. The bottom row (e)-(h) shows stages of FP as elements are added in order of dP . (e) a few destroyers in grey; (f) more destroyers and
a few low persistence creators in red; (g) more elements including the creator with highest persistence; (h) complete flow complex FP .

(a) (b) (c) (d)
Fig. 15: Thickening in 2D: The input points in (a) result in the topological
reconstruction (b) with black destroyer edges and a single red creator edge.
We thicken the reconstruction (b) by adding the blue creator edge and its
paired blue region (c) and then prune it based on geometric criteria to obtain
the desired reconstruction (d), always preserving the topology of (b).

present in Ktop. We then iteratively remove some of these added
cells to ensure a homology invariant thickening: added 2-cells miss-
ing their paired 3-cells are removed; added 3-cells missing any of
their boundary 2-cells are removed. Kthick thus provably has the
same homology groups as Ktop by construction.

A small threshold t generally thickens by adding 3-cells that are
both small in size and of low persistence, since both the creator
2-cell and its paired 3-cell have dP < t. Thickened reconstruc-
tions resemble the accumulation of dirt in models, initially jam-
ming small 3-cells into tight corners and adding larger 3-cells with
increasing threshold (see Figure 16). From our experiments, a good
default threshold for t is the distance function associated with the
creator 2-cell with the largest persistence. This threshold captures
the size of the largest 2-cell that bounds the most persistent prison
cell and it is reasonable to expect that candidate creator 2-cells that
might improve the geometric quality of our reconstruction have a
similar or smaller size. Once the flow complex and distance func-
tion filtrations have been computed it is also possible for a user to
control the amount of thickening in real-time by interactively ma-
nipulating t.

4.5 Pruning the Thickened Reconstruction

A thickened reconstruction may on its own be sufficient or even
preferable for certain applications such as hidden surface re-
moval. Nevertheless, for many applications a strict surface output is

Fig. 16: Thickened reconstructions by increasing distance threshold (de-
fault middle) viewed as cross-sections with added 3-cells shown in green.

Input: Flow complex FP and the topological reconstruction Ktop
Thickening threshold t

Output: Thickened reconstruction as a subcomplex Kthick of FP

THICKENRECONSTRUCTION(Ktop, t)

1 K ← Ktop ∪ {σ ∈ FP : σ is a 3-cell or creator 2-cell with dP (σ) < t}
2 repeat
3 K ← K − {σ(2) ∈ K −Ktop :

(σ, τ (3)) is a persistent pair and τ 6∈ K}
4 K ← K − {τ (3) ∈ K : τ is incident to a 2-cellσ(2) 6∈ K}
5 until nothing else can be deleted from K

6 return Kthick = K

Fig. 17: Thickening the initial reconstruction

sought, devoid of any 3-cells. We achieve this through 2-collapses
(removing a free 2-cell and its incident 3-cell), leaving the homol-
ogy unchanged. Determining which 2-cell σ to collapse employs
a feasability function f(σ) that is based on the geometry of the
cell, the input curves or other application specific criteria. Cells are
then removed greedily from a priority queue in order of increasing
feasability so that the final reconstructed surface is largely com-
prised of the most feasible 2-cells. Each collapse may turn some
new 2-cells free (by removing one of their two incident 3-cells) or
block the future collapse of some previously free 2-cells (by re-
moving their only incident 3-cell). We thus ensure that the head of
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the queue about to be collapsed is still a free 2-cell, and insert any
newly freed cells into the queue after each collapse.

The collapse of a 2-cell often frees one or more 1-cells. Once all
3-cells have been pruned by 2-collapses, these free edges and their
associated 2-cells can be removed by a 1res-collapse. Conceptually
however, the cascade of 2-cells associated with collapsing free 1-
cells initiated by a collapsed 2-cell, are best processed together, as
a larger surface patch whose boundary is strictly comprised of the
input curves. Grouping the 2-cells into these surface patches and
then treating each group of 2-cells collectively provides a larger
context over which to compute the feasability function.

We settled on a simple yet effective prun-
ing feasibility function, based on the obser-
vation that a representative surface normal
of a feasible surface patch tends to be or-
thogonal to the tangent direction of the in-
put curves that bound it. We implement this idea for feasability
of a 2-cell σ, as a measure of the angle between the normal n
of the Delaunay triangle that contains the critical point of σ, and
the input curve tangents ti at the triangle vertices. Specifically,
f(σ) = 3 −

∑3
i=1 |n.ti|. For a vertex with more than one inci-

dent input curve, we pick the curve that minimizes |n.ti|. We also
experimented with other feasability heuristics, such as favouring
surface patches with low total mean curvature (designers typically
utilize more curves in high curvature regions of shape, resulting in
relatively flat surface patches) that were less successful in practice.

5. RESULTS AND EVALUATIONS

Implementation. We implemented the algorithm using CGAL
Lazy-Exact kernel. Our naive implementation of the clean-up and
discretization of input curves (Section 4.1) takes about the same
amount of time, as the subsequent computation of the Flow com-
plex (Section 4.2). The complexity of finding all critical points of
the distance function of a point-set in R3 is linear in terms of the
Delaunay complex of that point-set, i.e.O(n2) for a set of n points.
The algorithm of [Giesen and John 2003] for computing the flow
complex runs in linear time in terms of the total number of triangles
comprising the 2-cells of the flow complex. A loose bound on the
algorithm is O(n4), for n input points, but to our knowledge, no
point-set is known to have a flow complex with more than O(n2)
triangles. The flow complex algorithm on a MacBook Pro laptop
with a 2.3GHz intel Core i5 processor takes between 20 seconds
and 1 minute for curve network examples in Figure 23 approxi-
mated by around 4000 points. Once the flow complex and filtrations
are computed, the rest of the algorithm (Section 4.3-4.5) takes a few
seconds to compute, and vary parameters like β∗2 or the thickening
threshold t.

Testing. The algorithm was tested on a variety of both syn-
thesized and real-sketch input (see Figure 23). We first tested the
model on 6 analytic primitives represented as curve networks, such
as the torus and trebol shown in Figure 23(top). In each case it re-
constructed the surfaces as expected. Compared to our 9 manually
surfaced ILoveSketch models, it further produced results consistent
with designer created surfaces. We also tested the algorithm’s bal-
ance between geometry and topology in surfacing the topologically
identical tubular structures shown in Figures 3, and 23 (rows 2 and
3). The cylindrical surfaces were consistently surfaced. The top cir-
cular cap depends on the configuration of the geometric cage and
are either closed (row 2 left, row 3 right) or open in (row 2 right,

removing curves

adding curves

Fig. 18: Impact of adding or removing curves from the input.

Fig. 19: Impact of adding noise to the input curves.

row 3 left), in keeping with the intuition of a cage that is roomy
but prevents escape. We also ran our algorithm on the ILoveSketch
curve benchmark, as well as examples generated by the analytical
sketching tool of [Schmidt et al. 2009]. We acknowledge imperfect
results in about 10% of the models but broadly, the results are quite
expressive of the intended objects (see Figure 23(middle, bottom)).

Robustness. We also tested our algorithm’s resilience to the ad-
dition or removal of curves as well the addition of noise to the in-
put curve geometry. Figure 18 shows how our surfacing algorithm
is impacted by succesively adding (red ticks) and removing (red
crosses) input curves to the top of the spacecraft (zoomed in). De-
spite the successive removal of 5 significant curves (shown as three
stages in the top row), our algorithm correctly surfaces the top of
the spacecraft to enclose the fuselage void. Eventually however, a
lack of cage bars will cause other lower persistence prison cells to
be chosen and the overall surface structure to change. Similarly,
input curves added to reaffirm a successfully reconstructed model
(two stages in the bottom row), reinforce the prison cells with addi-
tional cage bars. This both preserves the topological structure and
improves the geometric quality of the reconstruction (interpolating
the added curves near the nose-tip reduces its otherwise pinched
appearance). It is also important that our approach be robust to ge-
ometric noise that can result from sketching or scanning inaccura-
cies. While large amounts of noise can alter the global structure of
the Delaunay and flow complex and our surfaced output as a re-
sult, Figure 19 shows our approach to be robust to uniform noise
(of magnitude upto 10% of the model’s bounding box diagonal)
applied to the input points. Note that the input curve network may
have to be resampled after the addition of noise to ensure that all
curve segments are Gabriel (see Section 4.1).

Comparison. A variety of prior art addresses different aspects
of our problem: processing a collection of input curves, determin-
ing which cycles to surface for an intended shape topology and cre-
ating an intersection-free surface that interpolates the input curves.
One advantage of our approach is that we do not require a pre-
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Fig. 20: Complex closed curves patched and morphologically remeshed:
(a) rocker (β∗2 = 0, 1); (b) bat-wing (two views); (c) folded curve (not
knotted); (d) linked circles; (e) trefoil knot (two views).

cisely connected network of input curves, but can handle an ar-
bitrary collection including unconnected curves representing sur-
face holes (see Figure 5), feature lines, or even additional points
(see Figure 21) to be interpolated. In contrast approaches strongly
driven by the topological connectivity of curves [Abbasinejad et al.
2011][Bessmeltsev et al. 2012] are sensitive to how well the input
curves are processed into a single curve network (see Section 4.1)
and have no way of incorporating floating curves and points into
the resulting surface.

The determination of which curve cycles to surface as addressed
by [Abbasinejad et al. 2011] is based on a heuristic algorithm that
can fail with global impact on the curve cycles chosen (see Fig-
ure 4, 6). We view [Abbasinejad et al. 2011] as complementary
to our approach: once our topological reconstruction over the re-
duced space of flow complex elements has defined the voids (their
approach assumes a collection of open manifolds), their heuristics
can help define our feasbility metric for pruning the thickened re-
construction in Section 4.5.

Work focused on surfacing designer curve cycles already identi-
fied for surfacing, such as [Bessmeltsev et al. 2012], works well
for many designer curve cycles but unlike our approach, is not
intersection-free and fails for more complex or arbitray curve cy-
cles like Figure 20, 21.

Mesh conditioning and parameterization. The mesh result-
ing from the flow complex as shown in Figure 10(f) tends to have
many sliver triangles. However, this output is amenable to condi-
tioning using edge flips and collapses [Botsch et al. 2010] as can
also been seen in Figures 10(f), 20. The output of our algorithm
also guarantees intersection-free surfacing of challenging 3D curve
input (see Figures 20, 21), which is invaluable in the subsequent
paramterization of the surface boundaries. We show the result of a
conformal paramterization on our surfaced output in Figure 10(f)
that is inherently superior to those produced with a 3D curve alone,
or by mapping it to circle [Mehra et al. 2009]. Our approach thus
has potential applications in hole filling and other mesh repair tasks.

Limitations. We clearly cannot surface all closed curves with
a single intersection-free manifold (see Figure 20). For any closed
curve, we produce a small collection of intersection-free manifolds
that together interpolate the curve boundary but may share non-
manifold edges, even for unknotted curves such as Figure 20(c).

There are also downsides to using the flow complex. Condition-
ing the curve network for use in our algorithm can be difficult in
the presence of nooks and crannies. It can be relatively expen-
sive to compute the flow complex using exact constructions for a
fully reliable cell-structure [Cazals et al. 2008], though we have

Fig. 21: Surfacing a challenging closed curve (left), with an additional point
(right). Yellow lines depict the intersection of the Voronoi complex ofP and
the surface, visualizing flow from the boundary into index-2 critical points.

not found this necessary in practiice. A more visible shortcoming
is that the flow complex may be geometrically sparser than the De-
launay complex, exemplified in 2D by Figure 22. The blue Gabriel
edges in Figure 22(left) are a subset of the grey Delaunay edges.
Our algorithm can at best reconstruct the shape in the middle us-
ing only Gabriel edges, as opposed to the more suitable construc-
tion on the right using Delaunay edges. Pinched corners like Fig-
ure 22(middle), where the desired surface element is not even part
of the flow complex cannot be addressed by thickening. A hybrid
approach that geometrically improves the flow complex based re-
construction using Delaunay elements, is subject to future work.

Finally, while motivated by perceptual observations, our ap-
proach is purely based on geometry and toplogy. Even though our
surfaces match viewer perception well, we make no claim to model
the surface loops humans perceive. Instead, we provide guidelines
aiding users to provide 3D curve networks that our algorithm will
successfully reconstruct. We encountered around 10% failures on
sketch-based 3D curve input that did not conform to our guide-
lines, but note that this was easily remedied by adding curves to the
sketch or “bars to the cages”.

Fig. 22: Gabriel edges in blue are a subset of Delaunay edges in light grey
for the given 2D point-set (left). The best flow-complex based shape recon-
struction must employ only Gabriel edges (middle). Allowing non-Gabriel
Delaunay edges can result in a better shape reconstruction (right).

6. CONCLUSION

We have introduced a a fully automated flow complex based algo-
rithm for the reconstruction of shape from an input collection of
3D curves. The algorithm allows the user to control the number of
voids in the output and attempts to capture the remaining topol-
ogy to the best extent possible. It generates non-self-intersecting
meshes that can be used downstream to generate higher quality out-
put. We are also able to surface non-manifold knotted shapes from
boundary curves (see Figure 20(d)-(e)). Other aspects of our algo-
rithm, such as the yellow medial-axis like curve on surface shown
in Figure 21, are also likely to prove useful for surface parameter-
ization or as handles for shape deformation. We hope that various
aspects of the techniques presented in this paper will inspire future
work in curve based shape modeling.
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Fig. 23: Reconstruction results: (top row) simple concept curve networks with reconstruction followed by outlines of the patched cycles
displayed in different colours; (middle row) examples from the ILoveSketch [Bae et al. 2008] curve network collection, with two different
view of each model shown; (bottom row) examples from the analytic drawing tool of [Schmidt et al. 2009].
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APPENDIX

Theoretical Justification of Algorithm

We elaborate here on the theoretical bases behind our algorithm.
We describe conditions over the input curves which, if satisfied,
provably ensure that our algorithm succeeds in reconstructing cer-
tain aspects of the target shape. Unlike traditional reconstruction
algorithms, which explicitly tie sampling density to various mea-
sures of feature size in the target, our characterization of a suitable
input is intended to be intuitive and understandable to a designer.
We thus continue to phrase the wording of our conditions in terms
of the cage and prisoners metaphor, introduced in Section 2.

Given the input curve network Γ and the target shape Σ, we call
each connected component ofΣ−Γ , i.e. each piece obtained by cut-
ting the target shape along the curves of the network, a target patch.
The boundary of a target patch is a curve cycle inΓ , potentially with
inner cycles representing holes (see Figure 5). As all surface detail
must be represented by input curves, it is reasonable to assume that
a target patch has simple topology, homeomorphic to an open disk,
possibly with holes [Bessmeltsev et al. 2012]. Although our algo-
rithm uses a point-set P representation of the curvesΓ , we base the
following discussion and the proposed sampling conditions on Γ
itself and not on P . This is subsequently reconciled using a result
on the stability of persistence. We thus employ distance function
dΓ for any point in space to be the distance to the nearest point in
Γ . Further, for any r ≥ 0, let Γr denote the set of points within
distance r or less from Γ , i.e. Γr :=

⋃
x∈Γ B(x, r), where B(x, r)

is the closed ball of radius r centred at x (see Figure 9(left)).

Empty Balls as Prisoners. An empty ball is an open ball that
does not intersect the curve networkΓ . Consider an empty ballB =
B(x, r) of centre x and radius r, centred in a target void U . B is
empty if x 6∈ Γr by definition. In Section 2 terminology, we say that
prisonerB can escape prison cell U , if we can moveB along some
path until its centre lies outside U without the ball ever intersecting
the prison cage Γ . Equivalently, the connected component of Γr

that includes x, also includes a point that is not in U . An empty
ball B that cannot escape a target void U is caged in U . Let R(U)
be the radius of the largest empty ball centred in U (prisoner Fat),
and r(U) the radius of the largest empty ball centred in U that can
escape it (prisoner Thin). U is caging if R(u) > r(u). Note that
while U may cage a prisoner of size smaller than r(U), it cannot
cage all prisoners of that size. We call an empty ball B(x, r) safely
caged in U if x ∈ U and r > r(U). The set of centres of safely-
caged balls in a target void U is called its safe region.

Our algorithm identifies target voids that must not only be caging
but where the range of sizes of safely caged prisoners is large. For-
mally we say a target shape is (ξ, λ)-caging, for constants ξ, λwith
1 < ξ <

√
λ, if for every bounded target void U :

(1) R(U) > λr(U).
(2) For any two empty balls B1 = (x1, r) and B2 = (x2, r) with

x1, x2 ∈ U and ξr(U) < r < R(U)/ξ, B1 can be moved
along a path to B2 without intersecting Γ .

(3) For any empty ball B(x, r) with x ∈ U and r ≤ r(U),
B(x, r/ξ) can be moved along a path inside some safely caged
ball (not necessarily in U ) without intersecting Γ .

The first condition requires that prisoner Fat be at least a factor λ
larger than prisoner Thin inU . The second states that the prison cell

should be connected for prisoners more than a factor ξ in-between
the extreme sizes accommodated. The third condition says that any
prisoner too small to be safely caged, can shift its centre to the safe
region of some target void, if shrunk by a factor of 1/ξ.

Note that the definitions of caging curves is scale-invariant. As
a sampling condition thus, being (λ, ξ)-caging is an adaptive mea-
sure and not a uniform one. We can now state a key claim relating
to our algorithmic result, when the input curvesΓ are (ξ, λ)-caging
for the target shape.

LEMMA 1. If input curvesΓ are (ξ, λ)-caging for target shape
Σ, then the logarithmic distance function induced by Γ has pre-
cisely one local maximum of persistence greater than log λ inside
each target void. All other maxima have persistences below log ξ.

The proof sketch of the above statement provided below uses the
notion of Poincaré-Lefschetz duality, see e.g. [Cohen-Steiner et al.
2009], which relates topological changes that take place in Γr as r
passes a critical value to those that happen to its complement, i.e.
R3 − Γr . When r is varied from zero to ∞, each time r passes
the value of a local maximum of dΓ , a connected component of
R3 −Γr disappears (is destroyed). It can be shown that as r passes
the value of the creator 2-cell that pairs up with this maximum, a
connected component of the R3 −Γr is split into two distinct new
components. In the dual setting, r is reduced from∞ down to zero.
A new connected component is created in R3 − Γr , as r passes
the function value of the maximum in question, and two connected
components merge into one (and therefore one is destroyed) as r
passes the function value of the primal creator 2-cell. This turns the
primal maximum into a dual minimum and the primal creator 2-cell
into a dual destroyer 1-cell.

PROOF. (sketch of Lemma 1) For a bounded void U , the defini-
tions of r(U) andR(U) imply there must be at least one maximum
m in U with dΓ(m) ≥ R(U). This is because there is a ball of
radius of R(U) caged in U and one can follow the flow trajectory
from the centre of this ball to a maximum that has to also be in U
since dΓ along the trajectory only grows. Let m be the local maxi-
mum inU with the largest distance function value. It can be verified
using the duality discussed above that m is paired with the 2-cell
at which a connected component of R3 −Γr joins the unbounded
connected component as r decreases. Satisfying condition (1) in the
definition of (ξ, λ)-caging, is equivalent to saying that at r = r(U),
the component A of R3 −Γr that includes m is still disjoint from
the unbounded one. This ensures that the persistence ofm is at least
logR(U)− log r(u) ≥ log λ. Condition (2) ensures that any con-
nected component subsequently separated from A ends up either
with a maximum of the distance function at r < ξr(U) and thus
has persistence at most log ξ < log λ or is split at r > R(U)/ξ,
which again limits the persistence of the maximum in the compo-
nent to be no more than log ξ. Finally, condition (3) ensures that
any maximum contained in U at distance smaller than r(U) to Γ
also ends up with persistence below log ξ. Thus m is going to be
the only maximum in U that ends up with a persistence greater than
or equal to log λ.

The above Lemma explains the rationale behind our picking the
β∗2 maxima with the highest persistences and creating correspond-
ing voids for them in our reconstruction by including their creator
2-cells.

Substituting Γ with P . Although P densely samples Γ , the
sequence of topological changes that occur in P r as r increases
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can be vastly different from that of Γr . An important result of
[Cohen-Steiner et al. 2007] however, proves that events (critical
points) with persistence values greater than a threshold determined
by the largest disparity between log dP and log dΓ are essentially
in one-to-one correspondence. More precisely, for two real-valued
functions f and g over a space X , critical points of f can be put
in correspondence with those of g in such a way that if x is a crit-
ical point of f and y its matching critical point in g, then both the
difference between f(x) and g(y) and the difference between the
persistence values of x (under f ) and y (under g) are no more than
‖f − g‖∞ = supx |f(x)− g(x)|.

In our case, f(x) = log dP (x) and g(x) = log dΓ(x). It can be
easily observed that if X is taken as the whole of R3, then ‖f −
g‖∞ will be infinite and of no use for us. However, if we exclude
from X points within a suitably small distance from Γ , and ensure
that P samples Γ sufficiently finely, then a bound can be placed on
‖f − g‖∞ as described by the following lemma.

LEMMA 2. Let X be R3 −Γε for some ε > 0. Let P sampleΓ
in such a way that each point of Γ has a point of P within distance
δ. Then ifΓ is (λ, ξ)-caging for the target shape Σ, each target void
of Σ will include precisely one maximum of f of persistence larger
than log

√
λξ inside X provided that (1 + δ/ε) <

√
λ/ξ.

PROOF. Under the assumed sampling density, for each point
x ∈ X one has: dΓ(x) ≤ dP (x) ≤ dΓ(x) + δ, from which, to-
gether with the fact that dΓ(x) > ε we get

dP (x) ≤
(

1 +
δ

ε

)
dΓ(x),

or equivalently f(x) − g(x) ≤ log
(
1 + δ

ε

)
. Since f(x) ≥ g(x)

for any x, we conclude that ‖f − g‖∞ ≤ log
(
1 + δ

ε

)
.

Thus if 1 + δ/ε <
√
λ/ξ we get ‖f − g‖∞ < log

√
λ/ξ. By

the above-mentioned stability result, when Γ is (ξ, λ)-caging, if
‖f−g‖∞ ≤ 1

2
(log λ−log ξ) = log

√
λ/ξ overX , then the persis-

tence of a critical point of f differs by no more than log
√
λ/ξ from

the persistence of its matching critical point of g. Consequently,
the separation between persistence values of the largest persistence
maximum of each void (greater than log λ) and those of other max-
ima in that void (no greater than log ξ) demonstrated by Lemma 1
would imply a separation for the critical points of P by which each
target void of Σ would have precisely one maximum of persistence
greater than log λ− log

√
λ/ξ = log

√
λξ.

In essence, the parameter ε used in the statement of the above
lemma sets a hard lower-bound on the smallest size of a prisoner
for all target voids: The definition of a (λ, ξ)-caging curve network
Γ is scale-invariant but if Γ is to be approximated by a discrete
sample P that is at a Hausdorff distance of δ from Γ , then one can
not afford to cage target voids whose largest caged prisoner has size
smaller than ε as determined by the above Lemma.

From the argument in the proof of Lemma 1, we can further see
that for any target void U , any point x ∈ U with dΓ(x) > r(U),
i.e. the centre of an empty ball of radius r(U) safely caged in U ,
will have to be contained in the reconstructed void Û that corre-
sponds to U . This is because these points are contained in the same
connected component of R3−Γr(U) as the highest persistence max-
imum in U and thus all flow into critical points in this set, which is
not further subdivided by the algorithm since all creator 2-cells that
can subdivide it have persistence lower than the required threshold

to be considered. Taking the sampling of Γ by P into account, we
can further provide the following additional guarantee statement,
which essentially states that except for points very close the cage,
reconstructed voids agree with target voids:
Let Γ be (λ, ξ)-caging for the target shape Σ and let P and δ be
as defined in Lemma 2, then for any target void U , the subset of U
consisting of points x with dP (x) > r(U)+δ, are contained in the
reconstruction Û produced by TOPOLOGICALRECONSTRUCTION.

Handling undersampling. When Γ is under-sampled, it is
possible to get tiny prison cells with higher persistence than the
desired target voids, resulting in wrong set of target voids in the
reconstruction. Algorithmic efficiency notwithstanding, it is thus
important to sample the input curve densely and increase the sam-
pling density if the reconstruction seems to fail. Additionally, when
selecting the β∗2 creator 2-cells with the highest persistence, one
might ignore those with distance function values smaller than a
threshold determined by the sampling density of the curves. Inter-
active user selection from a set of candidate voids is also a viable
option, given the typically small number of target voids.

First Betti Number. Unlike β∗0 and β∗2 that we prefer to be de-
signer specified, we attempt to infer β∗1 automatically from the flow
complex, given the other Betti numbers. We use the insight that
voids in target 3D models are typically disjoint in that they are not
bounded in part by a common surface. This removes any internal
walls that might block handles from forming. Similarly, while fins
that interpolate input curves are common in design objects, a de-
sired surface patch that blocks a topological tunnel or hole is rare.
We thus attempt in Section 4.3 to maximize β∗1 by unblocking as
many holes and handles as possible, while preserving β∗2,

Let us consider first the case where a target void U has no input
curves in its interior. Let m be the maximum with highest persis-
tence in U and let c be its creator 2-cell in the reconstruction; thus
dP (c) ≤ r(U). The introduction of c to the filtration splits a previ-
ous void into two, one of which contains m. Let us call this void at
this stage Ũ . Topologically, Ũ is identical to the connected compo-
nent of R3 −Γr(U) containing m. As the filtration progresses, this
component may shrink with the arrival of cells contained in Ũ :
An arriving creator 2-cell in U break it into distinct voids. Since
we discard any such creator due to low persistence from our recon-
struction, we can assume Ũ stays connected for the rest of the fil-
tration. An arriving destroyer 2-cell in U blocks a tunnel but keeps
the void connected. Thus at the end of line 3 of the TOPOLOGI-
CALRECONSTRUCTION algorithm, K0 comprises the void Ũ with
some of its tunnels blocked by destroyer 2-cells. Deleting all these
destroyers, reopens all the tunnels of Ũ .

Now consider a target shape with input curves in-
terior to a target void. As described above we expect
such design curves to represent internal fins rather
than walls that block tunnels. Imagine such interior
curves attached to the inside of a void along the in-
set rectangular boundary. We show at least two dif-
ferent ways to create holes while keeping all curve
segments incident to at least one 2-cell (a fin). We
protect such destroyer 2-cells that will surface internal fins, by only
considering those that survive a 1-collapse for removal (remember
that a 1-collapse removes all fins). Among the destroyer 2-cells that
can be removed we repeatedly remove the one with the largest dP
unblocking the tunnel that closed last in the filtration.
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Glossary of Terms

We provide here a quick reference to terms used by our algorithm
in Section 4. The description below is informal and specific to this
paper, with pointers to more accurate and complete definitions.

—i-cell: An i-D cell of a cell complex. For a 3D flow complex an
i-cell is a point, a Gabriel edge, a triangulated surface patch, and
a connected volume bounded by 2-cells, for i = 0, 1, 2, 3 respec-
tively (see Section 2.1). See also Section 3 (simplicial homology)
for definitions of i-boundary, i-chain and i-cycle.

—1-collapse: A “free” edge is incident to a single 2-cell in a cell
complex, and the removal of both constitutes a 1-collapse opera-
tion. A 1-collapse of a cell complex is the successive removal of
all free edges and their incident 2-cells from the complex untill
no free edges remain. A 2-collapse similarly removes “free” 2-
cells along with their adjacent 3-cells (see Section 3(collapses)).

—1res-collapse: A 1-collapse where edges representing input
curve segments are not collapsed (see Section 3(collapses)).

—Betti numbers: Topological descriptors of a cell complex. In 3D,
β0, β1, and β2 count the number of connected components, holes
and tunnels, and cavities of a shape, respectively.(see Section
3(simplicial homology)).

—Creators and Destroyers: Every 2-cell when added to the flow
complex either destroys its 1-cycle of bounding edges or creates
a new 2-cycle by enclosing a void. Every i-cell is similarly a
destroyer or a creator (see Section 3(filtrations and persistence)).

—Filtration: A total ordering of cells in a complex where cells ap-
pear after all their faces, such as ordering flow complex elements
by distance function (see Section 3(filtrations and persistence)).

—Gabriel edge: An edge in a cell complex whose diametric ball
contains no points (see Section 2.1(point inflation)).

—Persistence: Interval between the creation and destruction of cell
complex elements (see Section 3(filtrations and persistence)).
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