
The Complexity of the Comparator Circuit Value
Problem

Stephen Cook

Joint work with Yuval Filmus and Dai Tri Man Lê

Department of Computer Science
University of Toronto

Canada

Banff 2013

1 / 28

Outline of the talk

1 Define comparator circuits

2 Define CC as the class of problems reducible to Ccv (the comparator
circuit value problem)

3 Give interesting complete problems for CC

4 Introduce universal comparator circuits, with resulting robustness
properties of CC.

5 Support the conjecture that CC and NC are incomparable using oracle
separations.

2 / 28

Comparator Circuits

Originally invented for sorting, e.g.,
I Batcher’s O(log2 n)-depth sorting

networks (’68)
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

Can also be considered as Boolean
circuits.

Comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

3 / 28

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Comparator Circuit complexity class

1 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

2 Subramanian [’90] Defined CC using log space many-one reducibility

3 We introduce universal comparator circuits and use them to show
that the two definitions coincide.

4 Subramanian showed

NL ⊆ CC ⊆ P

NL is nondeterministic log space

4 / 28

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Comparator Circuit complexity class

1 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

2 Subramanian [’90] Defined CC using log space many-one reducibility

3 We introduce universal comparator circuits and use them to show
that the two definitions coincide.

4 Subramanian showed

NL ⊆ CC ⊆ P

NL is nondeterministic log space

4 / 28

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Comparator Circuit complexity class

1 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

2 Subramanian [’90] Defined CC using log space many-one reducibility

3 We introduce universal comparator circuits and use them to show
that the two definitions coincide.

4 Subramanian showed

NL ⊆ CC ⊆ P

NL is nondeterministic log space

4 / 28

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Comparator Circuit complexity class

1 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

2 Subramanian [’90] Defined CC using log space many-one reducibility

3 We introduce universal comparator circuits and use them to show
that the two definitions coincide.

4 Subramanian showed

NL ⊆ CC ⊆ P

NL is nondeterministic log space

4 / 28

Recall NL ⊆ CC ⊆ P

But also NL ⊆ NC ⊆ P
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

NC contains all context-free languages, and matrix powering and
determinants over Z,Q etc.

Conjecture

NC and CC are incomparable. (So in particular CC (P.)

Intuitively, we think CC (P because each of the two comparator gate
outputs in a comparator circuit is limited to fan-out one. (More later. . .)

5 / 28

Recall NL ⊆ CC ⊆ P

But also NL ⊆ NC ⊆ P
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

NC contains all context-free languages, and matrix powering and
determinants over Z,Q etc.

Conjecture

NC and CC are incomparable. (So in particular CC (P.)

Intuitively, we think CC (P because each of the two comparator gate
outputs in a comparator circuit is limited to fan-out one. (More later. . .)

5 / 28

Recall NL ⊆ CC ⊆ P

But also NL ⊆ NC ⊆ P
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

NC contains all context-free languages, and matrix powering and
determinants over Z,Q etc.

Conjecture

NC and CC are incomparable. (So in particular CC (P.)

Intuitively, we think CC (P because each of the two comparator gate
outputs in a comparator circuit is limited to fan-out one. (More later. . .)

5 / 28

Example Complete Problems for CC

Ccv

Stable Marriage Problem

Lexicographical first maximal matching

Telephone connection problem

Others . . .

If our conjecture (that NC and CC are incomparable) is correct then none
of these complete problems has an efficient parallel algorithm.

6 / 28

Example Complete Problems for CC

Ccv

Stable Marriage Problem

Lexicographical first maximal matching

Telephone connection problem

Others . . .

If our conjecture (that NC and CC are incomparable) is correct then none
of these complete problems has an efficient parallel algorithm.

6 / 28

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners
3 A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

The Stable Marriage problem has been used to pair medical interns with
hospital residencies in the USA.

7 / 28

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners
3 A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

The Stable Marriage problem has been used to pair medical interns with
hospital residencies in the USA.

7 / 28

Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners
3 A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

The Stable Marriage problem has been used to pair medical interns with
hospital residencies in the USA.

7 / 28

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Edge Is a given edge {u, v} in the lex-first maximal matching of G?

Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

The problems are equivalent.

8 / 28

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Edge Is a given edge {u, v} in the lex-first maximal matching of G?

Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

The problems are equivalent.

8 / 28

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Edge Is a given edge {u, v} in the lex-first maximal matching of G?

Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

The problems are equivalent.

8 / 28

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Edge Is a given edge {u, v} in the lex-first maximal matching of G?

Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

The problems are equivalent.

8 / 28

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Edge Is a given edge {u, v} in the lex-first maximal matching of G?

Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

The problems are equivalent.

8 / 28

Reducing vertex lex-first maximal matching to Ccv

a b c d

x y z

0 a N N 1
0 b N N 1
0 c N N 1
0 d N 0
1 x • • • • 0
1 y • • • • 0
1 z • • • • 0

9 / 28

Reducing Ccv to lex-first maximal matching

p0 N p1

q0 • q1

p0 q0 p1 q1

x y

10 / 28

Reducing Ccv to lex-first maximal matching

p0 1 N 1 p1

q0 1 • 1 q1

p0 q0 p1 q1

x y

p0 q0

10 / 28

Reducing Ccv to lex-first maximal matching

p0 1 N 1 p1

q0 1 • 1 q1

p0 q0 p1 q1

x y

p0 q0 p1 q1

10 / 28

Reducing Ccv to lex-first maximal matching

p0 0 N 1 p1

q0 1 • 0 q1

p0 q0 p1 q1

x y

q0

10 / 28

Reducing Ccv to lex-first maximal matching

p0 0 N 1 p1

q0 1 • 0 q1

p0 q0 p1 q1

x y

p0 q0 p1

10 / 28

NL ⊆ CC

u0

u2

u1

u3

u4

This result is due to Feder [1992].

Dai Lê has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN ≤AC0

m Ccv.

May assume that the given directed
graph G = (V ,E) has edges of the
form (ui , uj), where i < j .

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

11 / 28

NL ⊆ CC

u0

u2

u1

u3

u4

This result is due to Feder [1992].

Dai Lê has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN ≤AC0

m Ccv.

May assume that the given directed
graph G = (V ,E) has edges of the
form (ui , uj), where i < j .

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

11 / 28

NL ⊆ CC

u0

u2

u1

u3

u4

This result is due to Feder [1992].

Dai Lê has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN ≤AC0

m Ccv.

May assume that the given directed
graph G = (V ,E) has edges of the
form (ui , uj), where i < j .

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

11 / 28

NL ⊆ CC

u0

u2

u1

u3

u4

This result is due to Feder [1992].

Dai Lê has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN ≤AC0

m Ccv.

May assume that the given directed
graph G = (V ,E) has edges of the
form (ui , uj), where i < j .

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

11 / 28

Notation

x , y , z , . . . denote elements of N (presented in unary)

X ,Y ,Z , . . . denote binary strings

|X | denotes the length of X .

A complexity class is a set of relations of the form R(~x , ~X)

AC0 many-one reducibility
R1(X) ≤AC0

m R2(X) iff there exists an AC0 function F (X) such that

R1(X)↔ R2(F (X))

Thus CC is the class of relations R(~x , ~X) that are AC0 many-one
reducible to Ccv.

12 / 28

Notation

x , y , z , . . . denote elements of N (presented in unary)

X ,Y ,Z , . . . denote binary strings

|X | denotes the length of X .

A complexity class is a set of relations of the form R(~x , ~X)

AC0 many-one reducibility
R1(X) ≤AC0

m R2(X) iff there exists an AC0 function F (X) such that

R1(X)↔ R2(F (X))

Thus CC is the class of relations R(~x , ~X) that are AC0 many-one
reducible to Ccv.

12 / 28

Notation

x , y , z , . . . denote elements of N (presented in unary)

X ,Y ,Z , . . . denote binary strings

|X | denotes the length of X .

A complexity class is a set of relations of the form R(~x , ~X)

AC0 many-one reducibility
R1(X) ≤AC0

m R2(X) iff there exists an AC0 function F (X) such that

R1(X)↔ R2(F (X))

Thus CC is the class of relations R(~x , ~X) that are AC0 many-one
reducible to Ccv.

12 / 28

Function Classes

Given a class C of relations, we associate a class FC of functions as
follows.

A function F taking strings to strings is in FC iff
1 |F (X)| = |X |O(1) (p-bounded)
2 The bit graph BF (i ,X) is in C

Here BF (i ,X) holds iff the ith bit of F (X) is 1.

13 / 28

Is FCC closed under composition?

This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F (X) = G (H(X)). Let Y = H(X).

The bit graph of G (Y) is AC0-reducible to Ccv.

Thus the circuit computing G (Y) is described by Y ′ = AC0(Y).

But Y = H(X) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y ′ as input,
to compute G (Y).

14 / 28

Is FCC closed under composition?

This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F (X) = G (H(X)). Let Y = H(X).

The bit graph of G (Y) is AC0-reducible to Ccv.

Thus the circuit computing G (Y) is described by Y ′ = AC0(Y).

But Y = H(X) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y ′ as input,
to compute G (Y).

14 / 28

Is FCC closed under composition?

This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F (X) = G (H(X)). Let Y = H(X).

The bit graph of G (Y) is AC0-reducible to Ccv.

Thus the circuit computing G (Y) is described by Y ′ = AC0(Y).

But Y = H(X) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y ′ as input,
to compute G (Y).

14 / 28

Is FCC closed under composition?

This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F (X) = G (H(X)). Let Y = H(X).

The bit graph of G (Y) is AC0-reducible to Ccv.

Thus the circuit computing G (Y) is described by Y ′ = AC0(Y).

But Y = H(X) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y ′ as input,
to compute G (Y).

14 / 28

Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x , y , depending on whether b is 0 or 1.

b • • • 0

x H x ′

y H • H y ′

b H 1

Operation of the gadget:

0 • 0 • 0 • 0 1 • y • x ∧ y • 0

x x H x x x x H x ∨ y x ∨ y

y H y • y H y y H 1 • 0 H x ∧ y

1 1 H 1 1 0 0 H 1 1

15 / 28

Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x , y , depending on whether b is 0 or 1.

b • • • 0

x H x ′

y H • H y ′

b H 1

Operation of the gadget:

0 • 0 • 0 • 0 1 • y • x ∧ y • 0

x x H x x x x H x ∨ y x ∨ y

y H y • y H y y H 1 • 0 H x ∧ y

1 1 H 1 1 0 0 H 1 1

15 / 28

Universal comparator circuits

In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m− 1) gadgets in a row, for the m(m− 1) possible
comparators.

Simulating n comparators requires m(m − 1)n gadgets.

Thus there is an AC0 function UNIV such that if m, n are arbitrary
parameters, then

U = UNIV(m, n) = 〈m′, n′,U ′〉

is a universal circuit with m′ wires and n′ gates which simulates all
comparator networks with at most m wires and at most n
comparators.

m′ = 2m(m − 1)n + m

n′ = 4m(m − 1)n

16 / 28

Universal comparator circuits

In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m− 1) gadgets in a row, for the m(m− 1) possible
comparators.

Simulating n comparators requires m(m − 1)n gadgets.

Thus there is an AC0 function UNIV such that if m, n are arbitrary
parameters, then

U = UNIV(m, n) = 〈m′, n′,U ′〉

is a universal circuit with m′ wires and n′ gates which simulates all
comparator networks with at most m wires and at most n
comparators.

m′ = 2m(m − 1)n + m

n′ = 4m(m − 1)n

16 / 28

Universal comparator circuits

In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m− 1) gadgets in a row, for the m(m− 1) possible
comparators.

Simulating n comparators requires m(m − 1)n gadgets.

Thus there is an AC0 function UNIV such that if m, n are arbitrary
parameters, then

U = UNIV(m, n) = 〈m′, n′,U ′〉

is a universal circuit with m′ wires and n′ gates which simulates all
comparator networks with at most m wires and at most n
comparators.

m′ = 2m(m − 1)n + m

n′ = 4m(m − 1)n

16 / 28

Applications of universal comparator circuits

FCC is closed under composition.

CC is closed under (many-one) log-space reducibility.

This is becasue NL ⊆ CC, so FCC includes all log space functions.
And FCC is closed under composition.

If R(X)↔ Ccv(F (X)), where F is log-space computable, then

χR(X) = χCcv(F (X))

where χR is the characteristic function of R.

17 / 28

Applications of universal comparator circuits

FCC is closed under composition.

CC is closed under (many-one) log-space reducibility.

This is becasue NL ⊆ CC, so FCC includes all log space functions.
And FCC is closed under composition.

If R(X)↔ Ccv(F (X)), where F is log-space computable, then

χR(X) = χCcv(F (X))

where χR is the characteristic function of R.

17 / 28

Applications of universal comparator circuits

FCC is closed under composition.

CC is closed under (many-one) log-space reducibility.

This is becasue NL ⊆ CC, so FCC includes all log space functions.
And FCC is closed under composition.

If R(X)↔ Ccv(F (X)), where F is log-space computable, then

χR(X) = χCcv(F (X))

where χR is the characteristic function of R.

17 / 28

Applications of universal comparator circuits Cont’d

R(X) is in CC iff there is an AC0-uniform family {CR
k }k∈N of

comparator circuits, where Ck computes R(X) for |X | = k .

The direction ⇐ is immediate.

Proof of direction ⇒: This is clear if R(X) is in AC0. (An AC0 circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

If R(X) ∈ CC, then

R(X)↔ Ccv(F (X))

for some AC0 function F (X). Apply a universal circuit to the output
of F (X).

18 / 28

Applications of universal comparator circuits Cont’d

R(X) is in CC iff there is an AC0-uniform family {CR
k }k∈N of

comparator circuits, where Ck computes R(X) for |X | = k .

The direction ⇐ is immediate.

Proof of direction ⇒: This is clear if R(X) is in AC0. (An AC0 circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

If R(X) ∈ CC, then

R(X)↔ Ccv(F (X))

for some AC0 function F (X). Apply a universal circuit to the output
of F (X).

18 / 28

Applications of universal comparator circuits Cont’d

R(X) is in CC iff there is an AC0-uniform family {CR
k }k∈N of

comparator circuits, where Ck computes R(X) for |X | = k .

The direction ⇐ is immediate.

Proof of direction ⇒: This is clear if R(X) is in AC0. (An AC0 circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

If R(X) ∈ CC, then

R(X)↔ Ccv(F (X))

for some AC0 function F (X). Apply a universal circuit to the output
of F (X).

18 / 28

Applications of universal comparator circuits Cont’d

R(X) is in CC iff there is an AC0-uniform family {CR
k }k∈N of

comparator circuits, where Ck computes R(X) for |X | = k .

The direction ⇐ is immediate.

Proof of direction ⇒: This is clear if R(X) is in AC0. (An AC0 circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

If R(X) ∈ CC, then

R(X)↔ Ccv(F (X))

for some AC0 function F (X). Apply a universal circuit to the output
of F (X).

18 / 28

The circuit Ck computing R(X) for |X | = k

R(X)

INPUT(CIRR(X), INPR(X))

Compute F (X)

F (X) =

UNIV(mk , nk)

¬X (k − 1)

¬X (k − 1)

¬X (0)

¬X (0)

X (k − 1)

X (k − 1)

X (0)

X (0)

...

...

...

...

...

...

...

...

...

...

...

...

19 / 28

Conjecture: NC and CC are incomparable

Lex-First Max Matching (Lfmm) is in CC.

Conjecture

Lfmm is not in NC.
(The obvious algorithm for Lfmm is sequential.)

The function A An (where A is an n× n integer matrix) is in NC2 ,
but we do not know how to put it in CC.

20 / 28

Conjecture: NC and CC are incomparable

Lex-First Max Matching (Lfmm) is in CC.

Conjecture

Lfmm is not in NC.
(The obvious algorithm for Lfmm is sequential.)

The function A An (where A is an n× n integer matrix) is in NC2 ,
but we do not know how to put it in CC.

20 / 28

Why do we think NC2 (CC?

NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

But flipping an input to an NC2-gate can generate many parallel
flip-paths.

21 / 28

Why do we think NC2 (CC?

NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

But flipping an input to an NC2-gate can generate many parallel
flip-paths.

21 / 28

Why do we think NC2 (CC?

NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

But flipping an input to an NC2-gate can generate many parallel
flip-paths.

21 / 28

Why do we think NC2 (CC?

NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

But flipping an input to an NC2-gate can generate many parallel
flip-paths.

21 / 28

Relativized CC and NC are incomparable

Oracle gates for comparator circuits

The oracle α : {0, 1}∗ → {0, 1}∗ is length preserving.

αn : {0, 1}n → {0, 1}n is the restriction of α to n.

An oracle gate αn can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

To make αn gates look more like comparator gates, we require that
αn have the 1-Lipschitz property.

We allow ¬ gates in relativized CC(α) circuits.
(We can allow them in comparator circuits without changing CC.)

Changing one input to one αn gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.

22 / 28

Relativized CC and NC are incomparable

Oracle gates for comparator circuits

The oracle α : {0, 1}∗ → {0, 1}∗ is length preserving.

αn : {0, 1}n → {0, 1}n is the restriction of α to n.

An oracle gate αn can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

To make αn gates look more like comparator gates, we require that
αn have the 1-Lipschitz property.

We allow ¬ gates in relativized CC(α) circuits.
(We can allow them in comparator circuits without changing CC.)

Changing one input to one αn gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.

22 / 28

Relativized CC and NC are incomparable

Oracle gates for comparator circuits

The oracle α : {0, 1}∗ → {0, 1}∗ is length preserving.

αn : {0, 1}n → {0, 1}n is the restriction of α to n.

An oracle gate αn can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

To make αn gates look more like comparator gates, we require that
αn have the 1-Lipschitz property.

We allow ¬ gates in relativized CC(α) circuits.
(We can allow them in comparator circuits without changing CC.)

Changing one input to one αn gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.

22 / 28

Relativized CC and NC are incomparable

Oracle gates for comparator circuits

The oracle α : {0, 1}∗ → {0, 1}∗ is length preserving.

αn : {0, 1}n → {0, 1}n is the restriction of α to n.

An oracle gate αn can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

To make αn gates look more like comparator gates, we require that
αn have the 1-Lipschitz property.

We allow ¬ gates in relativized CC(α) circuits.
(We can allow them in comparator circuits without changing CC.)

Changing one input to one αn gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.

22 / 28

Theorem

There is a relation R1(α) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(α) circuit family
(even when α is restricted to be 1-Lipschitz).

Proof Idea.

αk
n(~0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].

The hard part is proving the depth lower bound when α is 1-Lipschitz.

23 / 28

Theorem

There is a relation R1(α) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(α) circuit family
(even when α is restricted to be 1-Lipschitz).

Proof Idea.

αk
n(~0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].

The hard part is proving the depth lower bound when α is 1-Lipschitz.

23 / 28

Theorem

There is a relation R2(α) computable by an NC3(α) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when α is restricted to be 1-Lipschitz).

Proof Idea where α is weakly 1-Lipschitz

(At most one output bit flips when one input bit flips.)

Let aki : {0, 1}dn → {0, 1} be a Boolean oracle.

Let Ak = (ak1 , . . . , a
k
n)

Define a function y = f [A1, . . . ,Am] as follows:

xki = aki (

d times︷ ︸︸ ︷
xk+1
1 , . . . , xk+1

1 , . . . ,

d times︷ ︸︸ ︷
xk+1
n , . . . , xk+1

n), k ∈ [m], i ∈ [n],

xm+1
i = 0, i ∈ [n],

y = x11 ⊕ · · · ⊕ x1n .

24 / 28

Theorem

There is a relation R2(α) computable by an NC3(α) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when α is restricted to be 1-Lipschitz).

Proof Idea where α is weakly 1-Lipschitz

(At most one output bit flips when one input bit flips.)

Let aki : {0, 1}dn → {0, 1} be a Boolean oracle.

Let Ak = (ak1 , . . . , a
k
n)

Define a function y = f [A1, . . . ,Am] as follows:

xki = aki (

d times︷ ︸︸ ︷
xk+1
1 , . . . , xk+1

1 , . . . ,

d times︷ ︸︸ ︷
xk+1
n , . . . , xk+1

n), k ∈ [m], i ∈ [n],

xm+1
i = 0, i ∈ [n],

y = x11 ⊕ · · · ⊕ x1n .

24 / 28

xki = aki (

d times︷ ︸︸ ︷
xk+1
1 , . . . , xk+1

1 , . . . ,

d times︷ ︸︸ ︷
xk+1
n , . . . , xk+1

n), k ∈ [m], i ∈ [n],

xm+1
i = 0, i ∈ [n],

y = x11 ⊕ · · · ⊕ x1n .

aki has dn inputs and one output.

Add dn − 1 zeros as extra outputs for each aki .

Each aki computes a weakly 1-Lipschitz function.

Let X k = (xk1 , . . . , x
k
n) Ak = (ak1 , . . . , a

k
n)

y = f [A1, . . . ,Am]

Set m = log2 n and d = 4

Then a depth log2 n NC3 oracle circuit computes f

Claim: Every oracle comparator circuit computing f [A1, . . . ,Am] has
at least min(2n, (d − 2)m−1) gates. (Superpolynomial size)

25 / 28

xki = aki (

d times︷ ︸︸ ︷
xk+1
1 , . . . , xk+1

1 , . . . ,

d times︷ ︸︸ ︷
xk+1
n , . . . , xk+1

n), k ∈ [m], i ∈ [n],

xm+1
i = 0, i ∈ [n],

y = x11 ⊕ · · · ⊕ x1n .

aki has dn inputs and one output.

Add dn − 1 zeros as extra outputs for each aki .

Each aki computes a weakly 1-Lipschitz function.

Let X k = (xk1 , . . . , x
k
n) Ak = (ak1 , . . . , a

k
n)

y = f [A1, . . . ,Am]

Set m = log2 n and d = 4

Then a depth log2 n NC3 oracle circuit computes f

Claim: Every oracle comparator circuit computing f [A1, . . . ,Am] has
at least min(2n, (d − 2)m−1) gates. (Superpolynomial size)

25 / 28

xki = aki (

d times︷ ︸︸ ︷
xk+1
1 , . . . , xk+1

1 , . . . ,

d times︷ ︸︸ ︷
xk+1
n , . . . , xk+1

n), k ∈ [m], i ∈ [n],

xm+1
i = 0, i ∈ [n],

y = x11 ⊕ · · · ⊕ x1n .

aki has dn inputs and one output.

Add dn − 1 zeros as extra outputs for each aki .

Each aki computes a weakly 1-Lipschitz function.

Let X k = (xk1 , . . . , x
k
n) Ak = (ak1 , . . . , a

k
n)

y = f [A1, . . . ,Am]

Set m = log2 n and d = 4

Then a depth log2 n NC3 oracle circuit computes f

Claim: Every oracle comparator circuit computing f [A1, . . . ,Am] has
at least min(2n, (d − 2)m−1) gates. (Superpolynomial size)

25 / 28

Proof outline of Claim:

Every oracle comparator circuit computing f [A1, . . . ,Am] has at least
min(2n, (d − 2)m−1) gates.
Fix an oracle comparator circuit C computing y = f [A1, . . . ,Am]

Def’n: An input to an oracle aik is regular if it has the form
(b1)d · · · (bn)d .
We say oracle aki is regular if aki (Z) = 0 for all irregular inputs Z .

Let g be the total number of any of the gates aki in C .
Given an assignment to the oracles, we say a particular gate aki is
active if its input is correct.

Let gk be the expected total number of active gates ak1 , . . . , a
k
n in C

under a uniformly random regular setting of all oracles.

g1 ≥ n (because y = x11 ⊕ · · · ⊕ x1n)

It suffices to show gk+1 ≥ (d − 2)(gk − g/2n)

26 / 28

Proof outline of Claim:

Every oracle comparator circuit computing f [A1, . . . ,Am] has at least
min(2n, (d − 2)m−1) gates.
Fix an oracle comparator circuit C computing y = f [A1, . . . ,Am]

Def’n: An input to an oracle aik is regular if it has the form
(b1)d · · · (bn)d .
We say oracle aki is regular if aki (Z) = 0 for all irregular inputs Z .

Let g be the total number of any of the gates aki in C .
Given an assignment to the oracles, we say a particular gate aki is
active if its input is correct.

Let gk be the expected total number of active gates ak1 , . . . , a
k
n in C

under a uniformly random regular setting of all oracles.

g1 ≥ n (because y = x11 ⊕ · · · ⊕ x1n)

It suffices to show gk+1 ≥ (d − 2)(gk − g/2n)

26 / 28

Proof outline of Claim:

Every oracle comparator circuit computing f [A1, . . . ,Am] has at least
min(2n, (d − 2)m−1) gates.
Fix an oracle comparator circuit C computing y = f [A1, . . . ,Am]

Def’n: An input to an oracle aik is regular if it has the form
(b1)d · · · (bn)d .
We say oracle aki is regular if aki (Z) = 0 for all irregular inputs Z .

Let g be the total number of any of the gates aki in C .
Given an assignment to the oracles, we say a particular gate aki is
active if its input is correct.

Let gk be the expected total number of active gates ak1 , . . . , a
k
n in C

under a uniformly random regular setting of all oracles.

g1 ≥ n (because y = x11 ⊕ · · · ⊕ x1n)

It suffices to show gk+1 ≥ (d − 2)(gk − g/2n)

26 / 28

Proof outline of Claim:

Every oracle comparator circuit computing f [A1, . . . ,Am] has at least
min(2n, (d − 2)m−1) gates.
Fix an oracle comparator circuit C computing y = f [A1, . . . ,Am]

Def’n: An input to an oracle aik is regular if it has the form
(b1)d · · · (bn)d .
We say oracle aki is regular if aki (Z) = 0 for all irregular inputs Z .

Let g be the total number of any of the gates aki in C .
Given an assignment to the oracles, we say a particular gate aki is
active if its input is correct.

Let gk be the expected total number of active gates ak1 , . . . , a
k
n in C

under a uniformly random regular setting of all oracles.

g1 ≥ n (because y = x11 ⊕ · · · ⊕ x1n)

It suffices to show gk+1 ≥ (d − 2)(gk − g/2n)

26 / 28

Proof idea of final Claim:

gk+1 ≥ (d − 2)(gk − g/2n)

Consequence of weakly 1-Lipschitz: If we change the definition of
some gate aki at its current input in C , this generates a unique
flip-path which may end at some copy of some other gate, in which
case we say that the latter gate consumes the flip-path.

Let G1, . . . ,G2n be a Gray code listing all strings in {0, 1}n, starting
at G1 = Xk+1. We change the definition of the output of Ak+1 (at its
active input) successively from G1 to G2n and count the number of
flip paths generated.

The Claim follows because every time a particular aki gate is updated
from one active input to the next, it will absorb as least d − 2 flip
paths.

27 / 28

Proof idea of final Claim:

gk+1 ≥ (d − 2)(gk − g/2n)

Consequence of weakly 1-Lipschitz: If we change the definition of
some gate aki at its current input in C , this generates a unique
flip-path which may end at some copy of some other gate, in which
case we say that the latter gate consumes the flip-path.

Let G1, . . . ,G2n be a Gray code listing all strings in {0, 1}n, starting
at G1 = Xk+1. We change the definition of the output of Ak+1 (at its
active input) successively from G1 to G2n and count the number of
flip paths generated.

The Claim follows because every time a particular aki gate is updated
from one active input to the next, it will absorb as least d − 2 flip
paths.

27 / 28

Conclusion
The complexity class CC is interesting because

It is robust: It has several alternative characterizations.

It has interesting complete problems.

It appears to be a proper subset of P and incomparable with NC (and
SC).

Open Problems:

Are any of the following problems in in CC?

:
Integer matrix powering?

All context free languages?

maximum matching in graphs?

28 / 28

Conclusion
The complexity class CC is interesting because

It is robust: It has several alternative characterizations.

It has interesting complete problems.

It appears to be a proper subset of P and incomparable with NC (and
SC).

Open Problems:

Are any of the following problems in in CC?

:
Integer matrix powering?

All context free languages?

maximum matching in graphs?

28 / 28

