The Complexity of the Comparator Circuit Value
Problem

Stephen Cook

Joint work with Yuval Filmus and Dai Tri Man Lé

Department of Computer Science
University of Toronto
Canada

Banff 2013

/28

Outline of the talk

© Define comparator circuits

@ Define CC as the class of problems reducible to Ccv (the comparator
circuit value problem)

© Give interesting complete problems for CC

@ Introduce universal comparator circuits, with resulting robustness
properties of CC.

© Support the conjecture that CC and NC are incomparable using oracle
separations.

Comparator Circuits

@ Originally invented for sorting, e.g.,

» Batcher's (’)(Iog2 n)-depth sorting
networks ('68) Comparator gate

» Ajtai-Komlés-Szemerédi (AKS) p x—e— PpAQ

O(log n)-depth sorting networks ('83)

q y—w>— pVg

@ Can also be considered as Boolean
circuits.

Example

wo—e—(0 0
w1 0 A— 1
wo 1
w3—y—1 0
1
0

1z 1
Ws ¥—0

[N ool Sl S

Comparator Circuit Value (Ccv) Problem (decision)

1 Wo

w1
1%

Given a comparator circuit with specified

Boolean inputs, determine the output

value of a designated wire.

Wa
w4

1
1
0 w3
0
0

ws

/28

Comparator Circuit Value (Ccv) Problem (decision)

1 Wo
Given a comparator circuit with specified 1 wm
Boolean inputs, determine the output (1) m
value of a designated wire. 0w
0 ws

Comparator Circuit complexity class

© CC = {decision problems AC® many-one-reducible to Ccv}

Comparator Circuit Value (Ccv) Problem (decision)

1 Wo
Given a comparator circuit with specified 1 wm
Boolean inputs, determine the output (1) x) "
value of a designated wire. 0 ’
0 ws

Comparator Circuit complexity class
© CC = {decision problems AC® many-one-reducible to Ccv}
@ Subramanian ['90] Defined CC using log space many-one reducibility

© We introduce universal comparator circuits and use them to show
that the two definitions coincide.

Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 wo
1 wi

1 w;

0 w3 ?
0

0

Comparator Circuit complexity class

© CC = {decision problems AC® many-one-reducible to Ccv}

@ Subramanian ['90] Defined CC using log space many-one reducibility

© We introduce universal comparator circuits and use them to show
that the two definitions coincide.

© Subramanian showed

NLCCCCP

v

NL is nondeterministic log space

4/28

@ Recal NLC CCCP

@ Butalso NLCNCCP
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

@ NC contains all context-free languages, and matrix powering and
determinants over Z, Q etc.

5/28

@ Recal NLC CCCP

@ Butalso NLCNCCP
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

@ NC contains all context-free languages, and matrix powering and
determinants over Z, Q etc.

Conjecture
NC and CC are incomparable. (So in particular CC C P.)

5/28

@ Recal NLC CCCP

@ Butalso NLCNCCP
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

@ NC contains all context-free languages, and matrix powering and
determinants over Z, Q etc.

Conjecture
NC and CC are incomparable. (So in particular CC C P.)

Intuitively, we think CC C P because each of the two comparator gate
outputs in a comparator circuit is limited to fan-out one. (More later. . .)

V.

Example Complete Problems for CC
e Cov

@ Stable Marriage Problem
@ Lexicographical first maximal matching
@ Telephone connection problem

@ Others ...

/28

Example Complete Problems for CC
e Cov

@ Stable Marriage Problem
@ Lexicographical first maximal matching
@ Telephone connection problem

@ Others ...

If our conjecture (that NC and CC are incomparable) is correct then none
of these complete problems has an efficient parallel algorithm.

28

Stable Marriage Problem (search version) (Gale-Shapley '62)

@ Given n men and n women together with their preference lists
@ Find a stable marriage between men and women, i.e.,
© a perfect matching
@ satisfies the stability condition: no two people of the opposite sex like
each other more than their current partners
© A stable marriage always exists, but may not be unique.

28

Stable Marriage Problem (search version) (Gale-Shapley '62)

@ Given n men and n women together with their preference lists
@ Find a stable marriage between men and women, i.e.,
© a perfect matching
@ satisfies the stability condition: no two people of the opposite sex like
each other more than their current partners
© A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m, w) in the man-optimal (woman-optimal) stable
marriage?

28

Stable Marriage Problem (search version) (Gale-Shapley '62)

@ Given n men and n women together with their preference lists
@ Find a stable marriage between men and women, i.e.,

© a perfect matching

@ satisfies the stability condition: no two people of the opposite sex like
each other more than their current partners

© A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m, w) in the man-optimal (woman-optimal) stable
marriage?

The Stable Marriage problem has been used to pair medical interns with
hospital residencies in the USA.

28

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a Kb\\
X y z w

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a Kb\\
X y z w

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a N
X y z w

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a N
X y z w

Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a m
X y z w

Lex-first maximal matching decision problems

o Edge Is a given edge {u, v} in the lex-first maximal matching of G?

o Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

@ The problems are equivalent.

Reducing vertex lex-first maximal matching to Ccv

b C/d
y z

a

X

= == O O0OO0OO
N < XQ oo o
OO OO MM

[]
[]

28

Reducing Ccv to lex-first maximal matching

. 1.
qo 0

10/28

Reducing Ccv to lex-first maximal matching

. 1.
qo 1 1 q1

10/28

Reducing Ccv to lex-first maximal matching

w1
qo0 1 1 q1

IS

10/28

Reducing Ccv to lex-first maximal matching

qo0 1 0 q1

10/28

Reducing Ccv to lex-first maximal matching

q0 1 0 q1

SN

10/28

NL C CC

@ This result is due to Feder [1992].

@ Dai L& has a neat proof (See the
appendix to our recent arXiv paper.)

11/28

NL C CC

@ This result is due to Feder [1992].

@ Dai L& has a neat proof (See the
appendix to our recent arXiv paper.)

e Show stCONN <A<’ Cov.

@ May assume that the given directed
graph G = (V, E) has edges of the
form (u;, uj), where i < j.

11/28

NL C CC

7

u2

VAN

Uo u3

/\

u

@ This result is due to Feder [1992].

@ Dai L& has a neat proof (See the
appendix to our recent arXiv paper.)

e Show stCONN <A<’ Cov.

@ May assume that the given directed
graph G = (V, E) has edges of the
form (u;, uj), where i < j.

11/28

NL C CC

[eNeloleNoll Al

Ug

u2

VAN

This result is due to Feder [1992].

Dai L& has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN <A Cav.

A
Up u3
\u @ May assume that the given directed
! graph G = (V, E) has edges of the
form (u;, uj), where i < j.
Lo
1
L
13
Ly ®
. 1
1% v
¥ v v v v
V4

HRHERHROOOOO

11/28

Notation

® x,y,z,...denote elements of N (presented in unary)
e X,Y,Z,... denote binary strings
@ |X| denotes the length of X.

@ A complexity class is a set of relations of the form R(X, X)

12/28

Notation

X,¥,Z,... denote elements of N (presented in unary)

e X,Y,Z,... denote binary strings

|X| denotes the length of X.

A complexity class is a set of relations of the form R(X, X)

@ AC® many-one reducibility
0 . . .
Ri(X) <A™ Ry(X) iff there exists an AC® function F(X) such that

Ri(X) < Ra(F(X))

12/28

Notation

X,¥,Z,... denote elements of N (presented in unary)

X,Y,Z,... denote binary strings

|X| denotes the length of X.

A complexity class is a set of relations of the form R(X, X)

@ AC® many-one reducibility
0 . . .
Ri(X) <A™ Ry(X) iff there exists an AC® function F(X) such that

Ri(X) < Ra(F(X))

Thus CC is the class of relations R(X, X) that are AC® many-one
reducible to Ccov.

12/28

Function Classes

@ Given a class C of relations, we associate a class FC of functions as
follows.

@ A function F taking strings to strings is in FC iff
Q |F(X)| = |X|°®M (p-bounded)
@ The bit graph Be(i, X) is in C

@ Here Bg(i, X) holds iff the ith bit of F(X) is 1.

13 /28

Is FCC closed under composition?

@ This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

14 /28

Is FCC closed under composition?

@ This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

@ Suppose F(X) = G(H(X)). Let Y = H(X).
@ The bit graph of G(Y) is AC%reducible to Ccov.
@ Thus the circuit computing G(Y) is described by Y’ = ACO(Y).

14 /28

Is FCC closed under composition?

@ This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F(X) = G(H(X)). Let Y = H(X).
The bit graph of G(Y) is AC%reducible to Ccov.

Thus the circuit computing G(Y) is described by Y’ = ACO(Y).

@ But Y = H(X) is the output of another comparator circuit.

14 /28

Is FCC closed under composition?

@ This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F(X) = G(H(X)). Let Y = H(X).
The bit graph of G(Y) is AC%reducible to Ccov.

Thus the circuit computing G(Y) is described by Y’ = ACO(Y).

@ But Y = H(X) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y’ as input,
to compute G(Y).

14 /28

Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x, y, depending on whether b is 0 or 1.

0

/

/

ol < X o

15/28

Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x, y, depending on whether b is 0 or 1.

ol < X o

Operation of the gadget:

R < X O

—

—

—(—
—X—Y
—y—

——1—%

—(—
—X—
p—Y—N

0

/

/

r—1——

= < X O

O <K X B

——)—1¢

— 1 x—¥

—¥—1—1

—X /\ y—4
r—xVy—
——0—
r—1

xVy
XNy

15/28

Universal comparator circuits

@ In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m — 1) gadgets in a row, for the m(m — 1) possible
comparators.

16 /28

Universal comparator circuits

@ In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m — 1) gadgets in a row, for the m(m — 1) possible
comparators.

@ Simulating n comparators requires m(m — 1)n gadgets.

16 /28

Universal comparator circuits

@ In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m — 1) gadgets in a row, for the m(m — 1) possible

comparators.
@ Simulating n comparators requires m(m — 1)n gadgets.

@ Thus there is an AC® function UNIV such that if m, n are arbitrary
parameters, then

U =UNIV(m,n) = (m' ' U)

is a universal circuit with m’ wires and n’ gates which simulates all
comparator networks with at most m wires and at most n
comparators.

m = 2m(m—1)n+m

n = 4m(m—1)n

16

28

Applications of universal comparator circuits
@ FCC is closed under composition.

17 /28

Applications of universal comparator circuits
@ FCC is closed under composition.

@ CC is closed under (many-one) log-space reducibility.

17 /28

Applications of universal comparator circuits
@ FCC is closed under composition.
@ CC is closed under (many-one) log-space reducibility.

@ This is becasue NL C CC, so FCC includes all log space functions.
And FCC is closed under composition.

o If R(X) <» Ccv(F(X)), where F is log-space computable, then

XR(X) = XCCV(F(X))

where xr is the characteristic function of R.

17/28

Applications of universal comparator circuits Cont’d

@ R(X) is in CC iff there is an AC%-uniform family {CF}en of
comparator circuits, where C, computes R(X) for |X| = k.

18/28

Applications of universal comparator circuits Cont’d

@ R(X) is in CC iff there is an AC%-uniform family {CF}en of
comparator circuits, where C, computes R(X) for |X| = k.

@ The direction < is immediate.

18/28

Applications of universal comparator circuits Cont’d
@ R(X) is in CC iff there is an AC%-uniform family {CF}en of
comparator circuits, where C, computes R(X) for |X| = k.
@ The direction < is immediate.

@ Proof of direction =: This is clear if R(X) is in AC®. (An AC circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

18/28

Applications of universal comparator circuits Cont’d
@ R(X) is in CC iff there is an AC%-uniform family {CF}en of
comparator circuits, where C, computes R(X) for |X| = k.
@ The direction < is immediate.

@ Proof of direction =: This is clear if R(X) is in AC®. (An AC circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

o If R(X) € CC, then

R(X) < Cov(F(X))

for some AC? function F(X). Apply a universal circuit to the output
of F(X).

18 /28

The circuit C, computing R(X) for |X| = k

Compute F(X)

F(X) =
INPUT(CIR®(X), INP?(X))

UNIV(mk, nk)

—R(X)

19/28

Conjecture: NC and CC are incomparable

o Lex-First Max Matching (LFMMm) is in CC.

Conjecture

LFMM is not in NC.
(The obvious algorithm for LFMM is sequential.)

20/28

Conjecture: NC and CC are incomparable

o Lex-First Max Matching (LFMMm) is in CC.

Conjecture

LFMM is not in NC.
(The obvious algorithm for LFMM is sequential.)

@ The function A ~» A" (where A is an n x n integer matrix) is in NC? ,
but we do not know how to put it in CC.

20/28

Why do we think NC? C CC?

@ NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

21/28

Why do we think NC? C CC?

@ NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

@ If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

21/28

Why do we think NC? C CC?

@ NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

@ If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

@ Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

21/28

Why do we think NC? C CC?

@ NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

@ If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

@ Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

@ But flipping an input to an NC2-gate can generate many parallel
flip-paths.

21/28

Relativized CC and NC are incomparable

Oracle gates for comparator circuits
@ The oracle o : {0,1}* — {0,1}* is length preserving.

@ ap: {0,1}" — {0,1}" is the restriction of « to n.

@ An oracle gate o, can be inserted anywhere in a relativized

comparator circuit: select any n wires as inputs to the gate and any n

wires as outputs.

Relativized CC and NC are incomparable
Oracle gates for comparator circuits
@ The oracle o : {0,1}* — {0,1}* is length preserving.
@ ap: {0,1}" — {0,1}" is the restriction of « to n.

@ An oracle gate o, can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

@ To make «, gates look more like comparator gates, we require that
ap have the 1-Lipschitz property.

Relativized CC and NC are incomparable

Oracle gates for comparator circuits

The oracle a: {0,1}* — {0,1}* is length preserving.
ap: {0,1}" — {0,1}" is the restriction of « to n.

An oracle gate «, can be inserted anywhere in a relativized

comparator circuit: select any n wires as inputs to the gate and any n

wires as outputs.

To make «, gates look more like comparator gates, we require that

ap have the 1-Lipschitz property.

We allow — gates in relativized CC(«) circuits.
(We can allow them in comparator circuits without changing CC.)

Relativized CC and NC are incomparable
Oracle gates for comparator circuits
@ The oracle o : {0,1}* — {0,1}* is length preserving.
@ ap: {0,1}" — {0,1}" is the restriction of « to n.

@ An oracle gate o, can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

@ To make «, gates look more like comparator gates, we require that
ap have the 1-Lipschitz property.

o We allow — gates in relativized CC(«) circuits.
(We can allow them in comparator circuits without changing CC.)

o Changing one input to one a, gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.

v

Theorem

There is a relation Ry(a) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(«) circuit family
(even when « is restricted to be 1-Lipschitz).

Proof ldea.

o oX(0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].

23 /28

Theorem

There is a relation Ry(«) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(«) circuit family
(even when « is restricted to be 1-Lipschitz).

Proof ldea.

o oX(0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].
@ The hard part is proving the depth lower bound when « is 1-Lipschitz.

Ol

v

23 /28

Theorem

There is a relation Ry(a) computable by an NC3(«a) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when « is restricted to be 1-Lipschitz).

24 /28

Theorem

There is a relation Ry(a) computable by an NC3(«a) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when « is restricted to be 1-Lipschitz).

Proof Idea where « is weakly 1-Lipschitz

(At most one output bit flips when one input bit flips.)

o Let a¥:{0,1}9" — {0,1} be a Boolean oracle.
o Let Ak = (ak ... ak)
@ Define a function y = f[AL, ... A™] as follows:
d times d times
k _ k(k+1 k41 k+1 k41 .
xt=afq o T e XY, ke [m], i€ [n),
X" =0, i€ [n],
_ 1 1

24 /28

d times d times

k: Ik(X]I_(+1 7"'?XI'I)(+1)?

k+1 k+1
X7 T, X,

g ey .y

a,’.‘ has dn inputs and one output.

Add dn — 1 zeros as extra outputs for each af(.
Each af.‘ computes a weakly 1-Lipschitz function.
Let Xk = (xK,...,xK) Ak = (ak ... ak)

y = flAL, ... AM]

k € [m], i€ [n],
i€ [n],

25 /28

d times d times

k _ k(X{(+1

—_—
k+1 k+1 k+1
= a; X; Xy Xy)

ey , ke[m]ie€][n]
mtl — 0, i€ [n],

°

a,’.‘ has dn inputs and one output.

Add dn — 1 zeros as extra outputs for each af(.
Each af-‘ computes a weakly 1-Lipschitz function.
Let Xk = (xK,...,xK) Ak = (ak ... ak)
y = f[AL, ..., A™]

Set m = log?n and d = 4

Then a depth log? n NC3 oracle circuit computes f

25 /28

d times d times

a,’-‘ has dn inputs and one output.

Add dn — 1 zeros as extra outputs for each af(.
Each af-‘ computes a weakly 1-Lipschitz function.
Let Xk = (xK,...,xK) Ak = (ak ... ak)
y = f[AL, ..., A™]

Set m = log?n and d = 4

Then a depth log? n NC3 oracle circuit computes f

Claim: Every oracle comparator circuit computing f[A?

gee ey

at least min(2", (d — 2)™1) gates. (Superpolynomial size)

— —
XK = ak (X XKL XY ke [m), i€ [n],

mtl — 0, i€ [n],

A™] has

25 /28

Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af(is regular if it has the form
(b1)? -+ (bn)?.
We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.

26 /28

Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af(is regular if it has the form

(br)? - (bn)°.
We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.

@ Let g be the total number of any of the gates af-‘ in C.
Given an assignment to the oracles, we say a particular gate af-‘ is
active if its input is correct.

26 /28

Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af(is regular if it has the form
(b1)? - (bn)?.
We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.
@ Let g be the total number of any of the gates af-‘ in C.
Given an assignment to the oracles, we say a particular gate af-‘ is
active if its input is correct.

@ Let gy be the expected total number of active gates a’l‘, ...,akin C

under a uniformly random regular setting of all oracles.

@ g1 > n(because y = x} @ --- @ x})

26

28

Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af(is regular if it has the form

(b1)? - (bn).

We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.
@ Let g be the total number of any of the gates af-‘ in C.

Given an assignment to the oracles, we say a particular gate af-‘ is

active if its input is correct.
K

@ Let gi be the expected total number of active gates af, ..., akin C

under a uniformly random regular setting of all oracles.
@ g1 > n(because y = x} @ --- @ x})
o It suffices to show gx11 > (d — 2)(gx — g/2")

26

28

Proof idea of final Claim:
8k+1 > (d —2)(gk — g/2")
o Consequence of weakly 1-Lipschitz: If we change the definition of
some gate a,’-‘ at its current input in C, this generates a unique

flip-path which may end at some copy of some other gate, in which
case we say that the latter gate consumes the flip-path.

27 /28

Proof idea of final Claim:
gk+1 > (d —2)(gk — g/2")

o Consequence of weakly 1-Lipschitz: If we change the definition of
some gate a,’-‘ at its current input in C, this generates a unique
flip-path which may end at some copy of some other gate, in which
case we say that the latter gate consumes the flip-path.

@ Let Gi,..., Gon be a Gray code listing all strings in {0,1}", starting
at G; = Xi,1. We change the definition of the output of AK*! (at its
active input) successively from G; to Gy and count the number of
flip paths generated.

@ The Claim follows because every time a particular af-‘ gate is updated
from one active input to the next, it will absorb as least d — 2 flip
paths.

Conclusion

The complexity class CC is interesting because

@ It is robust: It has several alternative characterizations.
@ It has interesting complete problems.

@ It appears to be a proper subset of P and incomparable with NC (and

SC).

28 /28

Conclusion

The complexity class CC is interesting because

@ It is robust: It has several alternative characterizations.
@ It has interesting complete problems.

@ It appears to be a proper subset of P and incomparable with NC (and
SQ).

Open Problems:
Are any of the following problems in in CC?

Integer matrix powering?

All context free languages?

maximum matching in graphs?

28 /28

