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Outline of the talk

© Define comparator circuits

@ Define CC as the class of problems reducible to Ccv (the comparator
circuit value problem)

© Give interesting complete problems for CC

@ Introduce universal comparator circuits, with resulting robustness
properties of CC.

© Support the conjecture that CC and NC are incomparable using oracle
separations.



Comparator Circuits

@ Originally invented for sorting, e.g.,

» Batcher's (’)(Iog2 n)-depth sorting
networks ('68) Comparator gate

» Ajtai-Komlés-Szemerédi (AKS) p x—e— PpAQ

O(log n)-depth sorting networks ('83)
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@ Can also be considered as Boolean
circuits.
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© We introduce universal comparator circuits and use them to show
that the two definitions coincide.




Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.
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Comparator Circuit complexity class

© CC = {decision problems AC® many-one-reducible to Ccv}

@ Subramanian ['90] Defined CC using log space many-one reducibility

© We introduce universal comparator circuits and use them to show
that the two definitions coincide.

© Subramanian showed

NLCCCCP

v

NL is nondeterministic log space
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@ Recal NLC CCCP

@ Butalso NLCNCCP
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

@ NC contains all context-free languages, and matrix powering and
determinants over Z, Q etc.
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@ Recal NLC CCCP

@ Butalso NLCNCCP
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

@ NC contains all context-free languages, and matrix powering and
determinants over Z, Q etc.

Conjecture
NC and CC are incomparable. (So in particular CC C P.)

Intuitively, we think CC C P because each of the two comparator gate
outputs in a comparator circuit is limited to fan-out one. (More later. . .)

V.




Example Complete Problems for CC
e Cov

@ Stable Marriage Problem
@ Lexicographical first maximal matching
@ Telephone connection problem

@ Others ...
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Example Complete Problems for CC
e Cov

@ Stable Marriage Problem
@ Lexicographical first maximal matching
@ Telephone connection problem

@ Others ...

If our conjecture (that NC and CC are incomparable) is correct then none
of these complete problems has an efficient parallel algorithm.
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Stable Marriage Problem (search version) (Gale-Shapley '62)

@ Given n men and n women together with their preference lists
@ Find a stable marriage between men and women, i.e.,
© a perfect matching
@ satisfies the stability condition: no two people of the opposite sex like
each other more than their current partners
© A stable marriage always exists, but may not be unique.
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Stable Marriage Problem (search version) (Gale-Shapley '62)

@ Given n men and n women together with their preference lists
@ Find a stable marriage between men and women, i.e.,

© a perfect matching

@ satisfies the stability condition: no two people of the opposite sex like
each other more than their current partners

© A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m, w) in the man-optimal (woman-optimal) stable
marriage?

The Stable Marriage problem has been used to pair medical interns with
hospital residencies in the USA.
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Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a Kb\\
X y z w
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Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching
o Let G be a bipartite graph.
@ Successively match the bottom nodes x, y, z, ... to the least available

top node
a m
X y z w

Lex-first maximal matching decision problems

o Edge Is a given edge {u, v} in the lex-first maximal matching of G?

o Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

@ The problems are equivalent.




Reducing vertex lex-first maximal matching to Ccv
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Reducing Ccv to lex-first maximal matching

. 1.
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Reducing Ccv to lex-first maximal matching
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Reducing Ccv to lex-first maximal matching
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Reducing Ccv to lex-first maximal matching

q0 1 0 q1
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NL C CC

@ This result is due to Feder [1992].

@ Dai L& has a neat proof (See the
appendix to our recent arXiv paper.)
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NL C CC
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NL C CC
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This result is due to Feder [1992].

Dai L& has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN <A Cav.
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Notation

® x,y,z,...denote elements of N (presented in unary)
e X,Y,Z,... denote binary strings
@ |X| denotes the length of X.

@ A complexity class is a set of relations of the form R(X, X)
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Notation

X,¥,Z,... denote elements of N (presented in unary)

X,Y,Z,... denote binary strings

|X| denotes the length of X.

A complexity class is a set of relations of the form R(X, X)

@ AC® many-one reducibility
0 . . .
Ri(X) <A™ Ry(X) iff there exists an AC® function F(X) such that

Ri(X) < Ra(F(X))

Thus CC is the class of relations R(X, X) that are AC® many-one
reducible to Ccov.

12/28



Function Classes

@ Given a class C of relations, we associate a class FC of functions as
follows.

@ A function F taking strings to strings is in FC iff
Q |F(X)| = |X|°®M (p-bounded)
@ The bit graph Be(i, X) is in C

@ Here Bg(i, X) holds iff the ith bit of F(X) is 1.

13 /28



Is FCC closed under composition?

@ This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)
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Is FCC closed under composition?

@ This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F(X) = G(H(X)). Let Y = H(X).
The bit graph of G(Y) is AC%reducible to Ccov.

Thus the circuit computing G(Y) is described by Y’ = ACO(Y).

@ But Y = H(X) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y’ as input,
to compute G(Y).
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Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x, y, depending on whether b is 0 or 1.

0

/

/

ol < X o

15/28



Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x, y, depending on whether b is 0 or 1.

ol < X o

Operation of the gadget:
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Universal comparator circuits

@ In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m — 1) gadgets in a row, for the m(m — 1) possible
comparators.
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Universal comparator circuits

@ In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m — 1) gadgets in a row, for the m(m — 1) possible

comparators.
@ Simulating n comparators requires m(m — 1)n gadgets.

@ Thus there is an AC® function UNIV such that if m, n are arbitrary
parameters, then

U =UNIV(m,n) = (m' ' U)

is a universal circuit with m’ wires and n’ gates which simulates all
comparator networks with at most m wires and at most n
comparators.

m = 2m(m—1)n+m

n = 4m(m—1)n

16
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Applications of universal comparator circuits
@ FCC is closed under composition.
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Applications of universal comparator circuits
@ FCC is closed under composition.
@ CC is closed under (many-one) log-space reducibility.

@ This is becasue NL C CC, so FCC includes all log space functions.
And FCC is closed under composition.

o If R(X) <» Ccv(F(X)), where F is log-space computable, then

XR(X) = XCCV(F(X))

where xr is the characteristic function of R.

17/28



Applications of universal comparator circuits Cont’d

@ R(X) is in CC iff there is an AC%-uniform family {CF}en of
comparator circuits, where C, computes R(X) for |X| = k.
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Applications of universal comparator circuits Cont’d
@ R(X) is in CC iff there is an AC%-uniform family {CF}en of
comparator circuits, where C, computes R(X) for |X| = k.
@ The direction < is immediate.

@ Proof of direction =: This is clear if R(X) is in AC®. (An AC circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

o If R(X) € CC, then

R(X) < Cov(F(X))

for some AC? function F(X). Apply a universal circuit to the output
of F(X).

18 /28



The circuit C, computing R(X) for |X| = k

Compute F(X)

F(X) =
INPUT(CIR®(X), INP?(X))

UNIV(mk, nk)

—R(X)

19/28



Conjecture: NC and CC are incomparable

o Lex-First Max Matching (LFMMm) is in CC.

Conjecture

LFMM is not in NC.
(The obvious algorithm for LFMM is sequential.)
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Conjecture: NC and CC are incomparable

o Lex-First Max Matching (LFMMm) is in CC.

Conjecture

LFMM is not in NC.
(The obvious algorithm for LFMM is sequential.)

@ The function A ~» A" (where A is an n x n integer matrix) is in NC? ,
but we do not know how to put it in CC.

20/28



Why do we think NC? C CC?

@ NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.
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Why do we think NC? C CC?

@ NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

@ If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

@ Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

@ But flipping an input to an NC2-gate can generate many parallel
flip-paths.

21/28



Relativized CC and NC are incomparable

Oracle gates for comparator circuits
@ The oracle o : {0,1}* — {0,1}* is length preserving.

@ ap: {0,1}" — {0,1}" is the restriction of « to n.

@ An oracle gate o, can be inserted anywhere in a relativized

comparator circuit: select any n wires as inputs to the gate and any n

wires as outputs.
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Relativized CC and NC are incomparable
Oracle gates for comparator circuits
@ The oracle o : {0,1}* — {0,1}* is length preserving.
@ ap: {0,1}" — {0,1}" is the restriction of « to n.

@ An oracle gate o, can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

@ To make «, gates look more like comparator gates, we require that
ap have the 1-Lipschitz property.

o We allow — gates in relativized CC(«) circuits.
(We can allow them in comparator circuits without changing CC.)

o Changing one input to one a, gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.

v




Theorem

There is a relation Ry(a) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(«) circuit family
(even when « is restricted to be 1-Lipschitz).

Proof ldea.

o oX(0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].
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Theorem

There is a relation Ry(«) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(«) circuit family
(even when « is restricted to be 1-Lipschitz).

Proof ldea.

o oX(0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].
@ The hard part is proving the depth lower bound when « is 1-Lipschitz.

Ol

v
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Theorem

There is a relation Ry(a) computable by an NC3(«a) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when « is restricted to be 1-Lipschitz).
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Theorem

There is a relation Ry(a) computable by an NC3(«a) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when « is restricted to be 1-Lipschitz).

Proof Idea where « is weakly 1-Lipschitz

(At most one output bit flips when one input bit flips.)

o Let a¥:{0,1}9" — {0,1} be a Boolean oracle.
o Let Ak = (ak ... ak)
@ Define a function y = f[AL, ... A™] as follows:
d times d times
k _ k( k+1 k41 k+1 k41 .
xt=afq o T e XY, ke [m], i€ [n),
X" =0, i€ [n],
_ 1 1
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d times d times

k: Ik(X]I_(+1 7"'?XI'I)(+1)?

k+1 k+1
X7 T, X,

g ey .y

a,’.‘ has dn inputs and one output.

Add dn — 1 zeros as extra outputs for each af(.
Each af.‘ computes a weakly 1-Lipschitz function.
Let Xk = (xK,...,xK) Ak = (ak ... ak)

y = flAL, ... AM]

k € [m], i€ [n],
i€ [n],
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d times d times

k _ k(X{(+1

—_—
k+1 k+1 k+1
= a; X; Xy Xy )

ey ,  ke[m]ie€][n]
mtl — 0, i€ [n],

°

a,’.‘ has dn inputs and one output.

Add dn — 1 zeros as extra outputs for each af(.
Each af-‘ computes a weakly 1-Lipschitz function.
Let Xk = (xK,...,xK) Ak = (ak ... ak)
y = f[AL, ..., A™]

Set m = log?n and d = 4

Then a depth log? n NC3 oracle circuit computes f
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d times d times

a,’-‘ has dn inputs and one output.

Add dn — 1 zeros as extra outputs for each af(.
Each af-‘ computes a weakly 1-Lipschitz function.
Let Xk = (xK,...,xK) Ak = (ak ... ak)
y = f[AL, ..., A™]

Set m = log?n and d = 4

Then a depth log? n NC3 oracle circuit computes f

Claim: Every oracle comparator circuit computing f[A?

gee ey

at least min(2", (d — 2)™1) gates. (Superpolynomial size)

— —
XK = ak (X XKL XY ke [m), i€ [n],

mtl — 0, i€ [n],

A™] has

25 /28



Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af( is regular if it has the form
(b1)? -+ (bn)?.
We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.
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Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af( is regular if it has the form
(b1)? - (bn)?.
We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.
@ Let g be the total number of any of the gates af-‘ in C.
Given an assignment to the oracles, we say a particular gate af-‘ is
active if its input is correct.

@ Let gy be the expected total number of active gates a’l‘, ...,akin C

under a uniformly random regular setting of all oracles.

@ g1 > n(because y = x} @ --- @ x})
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Proof outline of Claim:

Every oracle comparator circuit computing f[AL, ..., A™] has at least
min(2", (d — 2)™~1) gates.
Fix an oracle comparator circuit C computing y = f[AL, ... A™]

@ Def'n: An input to an oracle af( is regular if it has the form

(b1)? - (bn).

We say oracle a¥ is regular if a%(Z) = 0 for all irregular inputs Z.
@ Let g be the total number of any of the gates af-‘ in C.

Given an assignment to the oracles, we say a particular gate af-‘ is

active if its input is correct.
K

@ Let gi be the expected total number of active gates af, ..., akin C

under a uniformly random regular setting of all oracles.
@ g1 > n(because y = x} @ --- @ x})
o It suffices to show gx11 > (d — 2)(gx — g/2")

26
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Proof idea of final Claim:
8k+1 > (d —2)(gk — g/2")
o Consequence of weakly 1-Lipschitz: If we change the definition of
some gate a,’-‘ at its current input in C, this generates a unique

flip-path which may end at some copy of some other gate, in which
case we say that the latter gate consumes the flip-path.

27 /28



Proof idea of final Claim:
gk+1 > (d —2)(gk — g/2")

o Consequence of weakly 1-Lipschitz: If we change the definition of
some gate a,’-‘ at its current input in C, this generates a unique
flip-path which may end at some copy of some other gate, in which
case we say that the latter gate consumes the flip-path.

@ Let Gi,..., Gon be a Gray code listing all strings in {0,1}", starting
at G; = Xi,1. We change the definition of the output of AK*! (at its
active input) successively from G; to Gy and count the number of
flip paths generated.

@ The Claim follows because every time a particular af-‘ gate is updated
from one active input to the next, it will absorb as least d — 2 flip
paths.




Conclusion

The complexity class CC is interesting because

@ It is robust: It has several alternative characterizations.
@ It has interesting complete problems.

@ It appears to be a proper subset of P and incomparable with NC (and

SC).
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Conclusion

The complexity class CC is interesting because

@ It is robust: It has several alternative characterizations.
@ It has interesting complete problems.

@ It appears to be a proper subset of P and incomparable with NC (and
SQ).

Open Problems:
Are any of the following problems in in CC?

Integer matrix powering?

All context free languages?

maximum matching in graphs?
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