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“Reverse Mathematics” introduced in [Fr76],...

Subsystems of Second Order Arithmetic [Sim99]

Goal of Reverse Mathematics

“Given a theorem τ of ordinary mathematics, what is the weakest natural
subsystem S(τ) of Z2 in which τ is provable?”

However the weakest system in Simpson’s book is RCA0, in which all
primitive recursive functions are provably total.

“Finite Reverse Mathematics” from [Friedman 99,01] considers
weaker systems, but this has not been pursued.
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Our Goal

test Concentrate on theorems involving concepts of smaller complexity,
especially the polynomial hierarchy and below.

Our specific goal

Classify these theorems based on the computational complexity of the
concepts needed to prove them.

This is a fundamental question of Proof Complexity. Closely related to
propositional proof complexity.

Motivation

Should be clear to logicians

Shed light on complexity classes

Simplify Proofs
(Razborov greatly simplified the proof of Hastad’s Switching Lemma)

Propositional Proof Systems (PHP example)
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Theories for Polytime reasoning:

PV [Cook 1975] Equational theory with function symbols for all
polytime functions f : Nk → N. Inspired by Skolem’s Primitive
Recursive Arithmetic (1923).

PV functions introduced via Cobham’s 1963 characterization of
polytime functions: The least class containing initial functions and
closed under composition and limited recursion on notation. Rule:
Induction on notation

PV Nowadays refers to a first-order theory with polytime function
symbols as before, and universal axioms based on Cobham’s
theorem.

Theorem

PV proves the induction scheme for open formulas ϕ:

[ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x + 1))] ⊃ ∀yϕ(y)]

Proof: Use binary search.
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PV Witnessing Theorem:

If PV ` ∀~x∃yϕ(~x , y), where ϕ is open (i.e. expresses a polytime
predicate) then there is a polytime f such that

PV ` ∀~xϕ(~x , f (~x))

Proof.

Immediate from Herbrand Theorem.

S1
2 [Buss 86] Finitely axiomatizable first-order theory, including an

INDUCTION SCHEME for NP formulas.

Theorem:[Buss 86] PV and S1
2 prove the same ∀∃ϕ theorems, where

ϕ expresses a polytime predicate.

Theorem:[KPT91],[Buss95],[Zam96] If S1
2 ⊆ PV then the polynomial

hierarchy collapses.

V1-Horn [CoKol 03] A finitely-axiomatizable theory. PV is a
conservative extension.

VP,TV0 [Nguyen], [Cook] Different axiomatizations of V1-Horn.

PV is a ROBUST MINIMAL THEORY for P.
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Theses: (‘Polytime proof’ means PV proof.)

1 ‘Natural’ polytime algorithms usually have polytime correctness
proofs.

2 Combinatorial theorems of interest in computer science often have
polytime proofs.

I Kuratowski’s Theorem
I Hall’s Theorem
I Menger’s Theorem
I Linear Algebra (Cayley-Hamilton, determinant,...)
I Extended Euclidean Algorithm

Possible Counter-Example to 1): Primes in P. [AKS 04] Correctness:
¬Prime(n) ∧ n ≥ 2 ⊃ ∃d(1 < d < n ∧ d |n)
By Witnessing Theorem, provable in PV implies factoring in polytime.
(Applies to any polytime algorithm for Primes.)
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Possible counterexample to 2):
Fermat’s Little Theorem:

Prime(n) ∧ 1 ≤ a < n → an−1 ≡ 1(modn)

Contrapositive:

∀a, n∃d < n(an−1 6≡ 1(modn) → d 6= 1 ∧ d |n)

Thus if PV proves this then by the witnessing theorem d can be found
from a, n in time polynomial in |n|.
This leads to a probabilistic polytime algorithm for factoring.
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Some Complexity Classes

AC0 ⊂ AC0(2) ⊂ AC0(6) ⊆ TC0 ⊆
⊆ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP ⊆ PH

Embarrassing Complexity Question

AC0(6) = TC0 = . . . = P = NP = PH ??

This motivates studying (apparently) small complexity classes.

Proof Complexity (Reverse Math) Questions

(1) Given a theorem, what is the least complexity class containing enough
concepts to prove the theorem?

Examples

pigeonhole principle (TC0, not AC0)
discrete Jordan curve theorem (AC0 or AC0(2))
matrix identities (P – what about NC?)
prime factorization theorem (S1

2 but not PV?)
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Circuit Complexity Classes

Problems are specified by a (uniform) poly-size family 〈Cn〉 of Boolean
circuits.
Cn solves problems with input length n.

AC0: bounded depth, unbounded fan-in ∧,∨.
Contains binary + but not parity or ×
AC0(2): allow unbounded fan-in parity gates.
Cannot count mod 3 [Raz 87],[Smo 87]

AC0(6): allow unbounded fan-in mod 6 gates.
Might be all of PH. (Contains ×??)

TC0: allow threshold gates.
Contains binary ×
NC1: circuits must be trees (formulas).
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Propositional Proof Systems
Definition

A prop proof system is a polytime function F from {0, 1}∗ onto tautologies.
If F (X ) = A then F is a proof of A.
We say F is poly-bounded if every tautology of length n has a proof of length
nO(1).

Easy Theorem

A poly-bounded prop proof system exists iff NP = coNP.

Example

Frege Systems (Hilbert systems)
Finiteley many axiom schemes and rule schemes.
Must be sound and implicationally complete.
All Frege systems are essentially equivalent.
Gentzen’s propositional LK is an example.

Embarrassing Fact

No nontrivial lower bounds known on proof lengths for Frege systems. (So maybe
Frege systems are poly-bounded??)
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Hard tautologies from combinatorial principles
Pigeonhole Principle

If n + 1 pigeons are placed in n holes, some hole has at least 2 pigeons.

Atoms pij (pigeon i placed in hole j)
1 ≤ i ≤ n + 1, 1 ≤ j ≤ n
¬PHPn+1

n is the conjunction of clauses:
(pi1 ∨ ... ∨ pin) (pigeon i placed in some hole) 1 ≤ i ≤ n + 1
(¬pik ∨ ¬pjk) (pigeons i , j not both in hole k)
1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n
¬PHPn+1

n is unsatisfiable: O(n3) clauses

Theorem (Buss)

PHPn+1
n has polysize Frege proofs.

[NC1 can count pigeons and holes.]

Theorem (Ajtai)

PHPn+1
n does not have polysize AC0-Frege proofs.

[AC0 cannot count.]
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Thus the Pigeonhole Principle can be proved using NC1 concepts,
but not using AC0 concepts.

This motivates finding theories for the complexity classes NC1 and
AC0.

These should correspond to the propositional proof systems Frege and
AC0-Frege.
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Theories for Small Complexity Classes

Two-Sorted Theories

(“Second Order Arithmetic”) [Zambella 96]

“number” variables x , y , z ... (range over N)

“string” variables X ,Y ,Z ... (range over finite subsets of N)
(arbitrary subsets of N for analysis)

Language L2A = [0, 1,+, ·, | |;∈,≤,=1,=2]

Standard model N2 = 〈N, finite(N)〉
0, 1,+, ·,≤,= usual meaning over N

|X | =

{
1 + sup(X ) if X 6= ∅
0 if X = ∅

y ∈ X (set membership) (Write X (y))

number terms s, t, u... defined as usual

only string terms are variables X ,Y ,Z , ...
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Notation: X (t) ≡ t ∈ X , t a term

Definition

ΣB
0 formula: All number quantifiers bounded.

No string quantifiers. (Free string variables allowed.)

ΣB
1 formula has the form

∃Y1 ≤ t1...∃Yk ≤ tk ϕ

k ≥ 0, ϕ is ΣB
0 .

∃X ≤ t ϕ stands for ∃X (|X | ≤ t ∧ ϕ), where t does not involve X .

Σ1
1 is the class of formulas

∃~Yϕ ϕ ∈ ΣB
0

ΣB
i formulas begin with at most i blocks of bounded string quantifiers
∃∀∃... followed by a ΣB

0 formula.

Note: ΣB
i corresponds to strict Σ1,b

i .
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Two-Sorted Complexity Classes

In general, number inputs x , y , z ... are presented in unary.
String inputs X ,Y ,Z , ... are presented as bit strings.

Definition

A relation R(~x , ~X ) is in AC0 iff some ATM (alternating Turing machine)
accepts R in time O(log n) with a constant number of alternations.

Representation Theorem [BIS,I,Wrathall]

1 The ΣB
0 formulas ϕ(~x , ~X ) represent precisely the relations R(~x , ~X ) in

AC0.

2 The ΣB
1 formulas represent precisely the NP relations.

3 The ΣB
i formulas, i ≥ 1, represent precisely the Σp

i relations.
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Function Classes and Bit Graphs

Definition

If C is a class of relations, then the function class FC contains

1 All p-bounded number-valued functions f (~x , ~X ) s.t. its graph

Gf (y ,~x , ~X ) ≡ (y = f (~x , ~X ))

is in C.

2 All p-bounded string-valued functions F (~x , ~X ) such that its bit graph

BF (i ,~x , ~X ) ≡ F (~x , ~X )(i)

is in C.

p-bounded means for some polynomial q(~x , ~X ):
f (~x , ~X ) ≤ q(~x , |~X |)
|F (~x , ~X )| ≤ q(~x , |~X |)
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All functions in FAC0 must have graphs (or bit graphs) representable by
ΣB
0 formulas

Example

Plus(X ,Y ) = X + Y (binary +), Plus ∈ FAC0

Plus(X ,Y )(i) ≡ X (i)⊕ Y (i)⊕ Carry(X ,Y , i)

Carry(i ,X ,Y ) ≡ ∃j < i [X (j) ∧ Y (j) ∧ ∀k < i(j < k ⊃ (X (k) ∨ Y (k))]

NON-Examples

X · Y (binary multiplication) NOT in FAC0.

Parity(X ) ≡ X has an odd number of ones.
Parity /∈ AC0 (Ajtai, FSS)
Parity(X ) NOT representable by a ΣB

0 formula.

Hierarchy of Theories V0 ⊂ V1 ⊆ V2 ⊆ ...
All have underlying vocabulary L2A
For i ≥ 1, Vi is “RSUV” isomorphic to Si

2.
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2-BASIC Axioms for Vi , i ≥ 0 [Zam96]
B1. x + 1 6= 0
B2. x + 1 = y + 1 ⊃ x = y
B3. x + 0 = x
B4. x + (y + 1) = (x + y) + 1
B5. x · 0 = 0
B6. x · (y + 1) = (x · y) + x
B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B8. x ≤ x + y
B9. 0 ≤ x
B10. x ≤ y ∨ y ≤ x
B11. x ≤ y ↔ x < y + 1
B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X (y) ⊃ y < |X |
L2. y + 1 = |X | ⊃ X (y)
SE. [|X | = |Y | ∧ ∀i < |X |(X (i)↔ Y (i))] ⊃ X = Y
Also Vi needs ΣB

i -COMP (Comprehension)

∃Z ≤ y∀j < y [Z (j)↔ ϕ(j ,~x , ~X )]

where ϕ(j ,~x , ~X ) is a ΣB
i formula without Z .
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Theorem

V0 proves (because |X | = 1+ largest element of X ...)

X -MIN: 0 < |X | ⊃ ∃x < |X |(X (x) ∧ ∀y < x ¬X (y))

X -IND: [X (0) ∧ ∀y < z(X (y) ⊃ X (y + 1))] ⊃ X (z)

Therefore for i = 0, 1, 2, ..., Vi proves (using ΣB
i -COMP)

ΣB
i -IND: [ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x + 1))] ⊃ ∀zϕ(z)

ΣB
i -MIN: ∃xϕ(x) ⊃ ∃x [ϕ(x) ∧ ¬∃y(y < x ∧ ϕ(y))]

where ϕ(x) is any ΣB
i -formula (with parameters).

Fact

V0 is a conservative extension of I∆0. Thus V0 proves all the usual
properties of x + y , x · y , |x |, Bit(i , x).

Vi is finitely axiomatizable (i ≥ 0).
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Propositional Translations of ΣB
0 -formulas

(See [C 75, PW 87])

For each n ∈ N, ϕ(X )[n] is propositional formula expressing ϕ(X )
when |X | = n.

The propositional variables of ϕ(X )[n] are pX
0 , . . . , p

X
n−1

Example

Pal(X ) says “X is a palindrome”.

∀y < |X |(X (y)↔ X (|X | −· y −· 1))

Then Pal(X )[4] is

(pX
0 ↔ pX

3 ) ∧ (pX
1 ↔ pX

2 ) ∧ (pX
2 ↔ pX

1 ) ∧ (pX
3 ↔ pX

0 )

Theorem

1 If ϕ(X ) is true then 〈ϕ(X )[n]〉 is a poly-size family of tautologies.

2 If V 0 ` ϕ(X ) then 〈ϕ(X )[n]〉 has polysize AC0-Frege proofs.

21 / 32



Pairing Function:

〈x , y〉 is a term of L2A.

〈x , y〉 =def (x + y)(x + y + 1) + 2y

V0 proves (x , y) 7→ 〈x , y〉 is one-one N× N→ N.

A two-dimensional array is represented by a string X . Define

X (i , j) = X (〈i , j〉)

Then X [i ] is row i of the array X . We bit-define the string function X [i ] by

X [i ](j)↔ j < |X | ∧ X (i , j)

Example: PHP(y ,X ) (Pigeonhole Principle). This is a ΣB
0 formula.

Think X (i , j) means pigeon i −→ hole j .

∀i ≤ y∃j < yX (i , j) ⊃
∃i ≤ y∃j ≤ y∃k < y(i < j ∧ X (i , k) ∧ X (j , k))

PHP(n,X )[〈n + 1, n〉] is very close to the Pigeonhole tautologies PHPn+1
n

Since these tautologies do not have polysize AC0-Frege proofs (Ajtai) it
follows that V0 does not prove PHP(y ,X ).
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V0: A universal conservative extension of V0

(In the spirit of PV.)

The vocabulary LFAC0 of V0 has function symbols for all (and only)
functions in FAC0.

The axioms of V0 consist entirely of universal formulas, and comprise
a version of 2-BASIC axioms of V0 together with the defining axioms
for all new function symbols.

Theorem

V0 is a conservative extension of V0.

Claim

V0 is a minimal theory for AC0, just as PV is a minimal theory for P.
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Witnessing (Finding Skolem functions)

Definition: Functions ~F witness ∃~Yφ(~x , ~X , ~Y ) in T if

T (~F ) ` φ(~x , ~X , ~F (~x , ~X ))

Theorem: (Witnessing) Suppose T is a universal theory which extends
V0, and is defined over a language L and suppose that for every open
formula α(i ,~x , ~X ) and term t(~x , ~X ) over L there is a function symbol F in
L such that

T ` F (~x , ~X )(i)↔ i < t ∧ α(i ,~x , ~X )

Then every theorem of T of the form ∃~Yα(~x , ~X , ~Y ), where α is open, is
witnessed in T by functions in L.
Proof: Follows from the Herbrand Theorem.
Corollary: Every Σ1

1 theorem of V0 (and V0) is witnessed in V0 by
functions in LFAC0 .
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Program: (with Phuong Nguyen: Book, Chapter 9)

Introduce a minimal canonical theory VC for each complexity class C.

VC has vocabulary L2A.

VC = V0 + {one axiom} (finitely axiomatizable) [Nguyen: see
Chapter 9]

The ΣB
1 -definable functions in VC are those in FC.

VC has a universal convervative extension VC in the style of PV.

class AC0 ⊂ AC0(2) ⊂ TC0 ⊆ NC1

theory V0 ⊂ V0(2) ⊂ VTC0 ⊆ VNC1

class L ⊆ NL ⊆ NC ⊆ P
theory VL ⊆ VNL ⊆ VNC ⊆ VP = TV0
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Theories VC for other classes C
Recall VC = V0 + AxiomC

where AxiomC = (CompleteC has a solution)

class theory CompleteC

AC0 V0 none
AC0(2) V0(2) Parity(X )

TC0 VTC0 numones(X )
NC1 VNC1 tree-MCVP

L VL UniConn(z , a,E )
NL VNL Conn(z , a,E )
⊕L V ⊕ L DET (2)
#L V#L DET
P VP MCVP

Robustness Theorems
VTC0 ' ∆B

1 -CR [JP] (proved in [Nguyen])
VNC1 ' AID [Arai] (proved in [CM])
VNC1 ' ALV ' ALV ′ [Clote] (proved by [Nguyen])
VL = ΣB

0 -Rec [Zam97]
VNL = V-Krom [Kolokolova]
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Discrete Jordan Curve Theorem
[Nguyen/Cook LICS 07]
Original statement

A simple closed curve divides the plane into exactly two connected
components. (Hales gave a computer-verified proof involving 44,000 proof
steps. His proof started with a discrete version.)

Discrete Setting

The curve consists of edges connecting grid points in the plane.
Case I: The curve is given as a set of edges such that every grid point has
degree 0 or 2.
(Then there may be more than 2 connected components.)

Theorem

V0(2) proves the following: If B is a set of edges forming a curve and
p1, p2 are two points on different sides of B, and R is a set of edges that
connects p1 and p2, then B and R intersect.
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Jordan Curve Cont’d

Theorem [Buss]

V0 cannot prove the previous version of JCT.

Case II: The curve is given as a sequence of edges.

Theorem

V0 proves that a curve given by a sequence of edges divides the plane into
exactly two connected components.

Lemma (Provable in V0)

For each column in the planar grid, the edges of a closed curve alternate in
direction.

(The proof is difficult in V0, since no counting is allowed, even mod 2.)
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The quantifier complexity of theorems

Simplest: ∀ΣB
0 : ∀~x∀~Xφ where φ is ΣB

0 .
Examples:
• pigeonhole principle
• first part of JCT (at least two components) • matrix identities:
AB = I ⇒ BA = I
∀ΣB

0 facts translate into polysize tautology
families. (Do they have polysize proofs???)
Next case: ∀ΣB

1 : ∀~x∀~X∃~Y ≤ ~tϕ where ϕ is ΣB
0 .

Examples:
• second part of JCT (at most two components)
• existence of function values Parity(X ) etc.
• correctness of any prime recognition algorithm

∀X∃Y ,Z [(¬Prime(X ) ∧ X 6= 1)→ X = Y · Z ∧ X ,Y 6= 1]

(So by Witnessing, correctness cannot be proved in VP unless factoring
has a polytime algorithm.)
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Theorems of higher quantifier complexity

∀ΣB
2 : ∀~x∀~X∃~Y ≤ ~t∀~Z ≤ ~uφ where φ is ΣB

0 .
Example:
• induction axiom (or length max principle) for ΣB

1 formulas
• Prime Factorization Theorem for N
Prime Factorization can be proved in V1 (i.e. S1

2) by the ΣB
1 length max

principle [Jerabek]
Prime Factorization cannot be proved in VPV (i.e. PV), unless products
of two primes can be factored in random polytime (KPT witnessing)

Robustness of Theories

Many theories (first and second order) have been proposed for different
complexity classes C. For a given C, they all have essentially the same
∀ΣB

0 and ∀ΣB
1 theorems. But they may not have the same ∀ΣB

2 theorems.
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Bounded Reverse Analysis

Ferreira [88,94,00,05,06] introduced a two-sorted system BTFA (Base
Theory for Feasible Analysis) in which the functions definable on the
first sort ({0, 1}∗) are polytime.

BTFA together with various versions of Weak Konig’s Lemma can
prove the Heine-Borel Theorem for [0,1], and the max principle for
continuous functions on [0,1].

Work to do: Tie in these theories more closely with the complexity
theory of real functions [Friedman, Ko, Weirauch, Braverman,
Kawamura, ...]
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Conclusion and Open Questions

It should be easier to separate theories than complexity classes. For
example, if we can’t show

AC0(6) 6= P

maybe we can show
V0(6) 6= VP

Classify basic theorems graph theory, linear algebra, number theory,
calculus according to the complexity of the concepts needed for their
proof:
Hall’s Theorem, Menger’s Theorem, Kuratowski’s Theorem,
Cayley-Hamilton Theorem, Fermat’s Little Theorem, Fundamental
Theorem of Algebra, Fundamental Theorem of Calculus, ...
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