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Outline of the talk

1 Define comparator circuits

2 Define CC as the class of problems reducible to Ccv (the comparator
circuit value problem)

3 Give interesting complete problems for CC

4 Introduce universal comparator circuits, with resulting robustness
properties of CC.

5 Introduce a theory VCC and a propositional proof system CCFrege for
CC.

6 Support the conjecture that CC and NC are incomparable using oracle
separations.
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Comparator Circuits

Originally invented for sorting, e.g.,
I Batcher’s O(log2 n)-depth sorting

networks (’68)
I Ajtai-Komlós-Szemerédi (AKS)
O(log n)-depth sorting networks (’83)

Can also be considered as Boolean
circuits.

Comparator gate
p x • p ∧ q

q y H p ∨ q

Example

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0
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Comparator Circuit Value (Ccv) Problem (decision)

Given a comparator circuit with specified
Boolean inputs, determine the output
value of a designated wire.

1 w0 • •
1 w1 • N
1 w2

0 w3 H • ?
0 w4 H
0 w5 H

Comparator Circuit complexity class

1 CC =
{

decision problems AC0 many-one-reducible to Ccv
}

2 Subramanian [’90] Defined CC using log space many-one reducibility

3 We introduce universal comparator circuits and use them to show
that the two definitions coincide.

4 Subramanian showed

NL ⊆ CC ⊆ P

NL is nondeterministic log space
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Recall NL ⊆ CC ⊆ P

But also NL ⊆ NC ⊆ P
where NC (the parallel class) contains the problems solvable by
uniform polysize polylog depth Boolean circuit families.

NC contains all context-free languages, and matrix powering and
determinants over Z,Q etc.

Conjecture

NC and CC are incomparable. (So in particular CC ( P.)

Intuitively, we think CC ( P because each of the two comparator gate
outputs in a comparator circuit is limited to fan-out one. (More later. . . )
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Example Complete Problems for CC

Ccv

Stable Marriage Problem

Lexicographical first maximal matching

Telephone connection problem

Others . . .
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Stable Marriage Problem (search version) (Gale-Shapley ’62)

Given n men and n women together with their preference lists

Find a stable marriage between men and women, i.e.,
1 a perfect matching
2 satisfies the stability condition: no two people of the opposite sex like

each other more than their current partners
3 A stable marriage always exists, but may not be unique.

Stable Marriage Problem (decision version)

Is a given pair of (m,w) in the man-optimal (woman-optimal) stable
marriage?

The Stable Marriage problem has been used to pair medical interns with
hospital residencies in the USA.
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Lex-first maximal matching problem (CC-Complete)

Lex-first maximal matching

Let G be a bipartite graph.

Successively match the bottom nodes x , y , z , . . . to the least available
top node

a b c

x y z w

Lex-first maximal matching decision problems

Edge Is a given edge {u, v} in the lex-first maximal matching of G?

Vertex Is a given (top) vertex v in the lex-first maximal matching of
G?

The problems are equivalent.
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Reducing vertex lex-first maximal matching to Ccv

a b c d

x y z

0 a N N 1
0 b N N 1
0 c N N 1
0 d N 0
1 x • • • • 0
1 y • • • • 0
1 z • • • • 0
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Reducing Ccv to lex-first maximal matching

p0 10 N 11 p1

q0 11 • 10 q1

p0 q0 p1 q1

x y

p0 q0 p1 q1p0 q0 p1

10 / 35



NL ⊆ CC

u0

u2

u1

u3

u4

This result is due to Feder [1992].

Dai Lê has a neat proof (See the
appendix to our recent arXiv paper.)

Show stCONN ≤AC0

m Ccv.

May assume that the given directed
graph G = (V ,E ) has edges of the
form (ui , uj), where i < j .

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1
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Two-Sorted Notation

x , y , z , . . . denote elements of N (presented in unary)

X ,Y ,Z , . . . denote binary strings

|X | denotes the length of X .

A complexity class is a set of relations of the form R(~x , ~X )

AC0 many-one reducibility
R1(X ) ≤AC0

m R2(X ) iff there exists an AC0 function F (X ) such that

R1(X )↔ R2(F (X ))

Thus CC is the class of relations R(~x , ~X ) that are AC0 many-one
reducible to Ccv.
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Function Classes

Given a class C of relations, we associate a class FC of functions as
follows.

A function F taking strings to strings is in FC iff
1 |F (X )| = |X |O(1) (p-bounded)
2 The bit graph BF (i ,X ) is in C

Here BF (i ,X ) holds iff the ith bit of F (X ) is 1.
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Is FCC closed under composition?

This question was left open in our earlier paper in CSL 2011 paper
(before Yuval Filmus joined our project)

Suppose F (X ) = G (H(X )). Let Y = H(X ).

The bit graph of G (Y ) is AC0-reducible to Ccv.

Thus the circuit computing G (Y ) is described by Y ′ = AC0(Y ).

But Y = H(X ) is the output of another comparator circuit.

So we need a universal comparator circuit, taking Y ′ as input,
to compute G (Y ).
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Universal comparator circuits [Filmus]

Here is a gadget which allows a conditional application of a comparator to
two of its inputs x , y , depending on whether b is 0 or 1.

b • • • 0

x H x ′

y H • H y ′

b H 1

Operation of the gadget:

0 • 0 • 0 • 0 1 • y • x ∧ y • 0

x x H x x x x H x ∨ y x ∨ y

y H y • y H y y H 1 • 0 H x ∧ y

1 1 H 1 1 0 0 H 1 1
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Universal comparator circuits

In order to simulate a single arbitrary comparator in a circuit with m
wires we put in m(m− 1) gadgets in a row, for the m(m− 1) possible
comparators.

Simulating n comparators requires m(m − 1)n gadgets.

Thus there is an AC0 function UNIV such that if m, n are arbitrary
parameters, then

U = UNIV(m, n) = 〈m′, n′,U ′〉

is a universal circuit with m′ wires and n′ gates which simulates all
comparator networks with at most m wires and at most n
comparators.

m′ = 2m(m − 1)n + m

n′ = 4m(m − 1)n
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Applications of universal comparator circuits

FCC is closed under composition.

CC is closed under (many-one) log-space reducibility.

This is becasue NL ⊆ CC, so FCC includes all log space functions.
And FCC is closed under composition.

If R(X )↔ Ccv(F (X )), where F is log-space computable, then

χR(X ) = χCcv(F (X ))

where χR is the characteristic function of R.
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Applications of universal comparator circuits Cont’d

R(X ) is in CC iff there is an AC0-uniform family {CR
k }k∈N of

comparator circuits, where Ck computes R(X ) for |X | = k .

The direction ⇐ is immediate.

Proof of direction ⇒: This is clear if R(X ) is in AC0. (An AC0 circuit
converts into a polysize tree circuit, which converts to a comparator
circuit.)

If R(X ) ∈ CC, then

R(X )↔ Ccv(F (X ))

for some AC0 function F (X ). Apply a universal circuit to the output
of F (X ).
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The circuit Ck computing R(X ) for |X | = k

R(X )

INPUT(CIRR(X ), INPR(X ))

Compute F (X )

F (X ) =

UNIV(mk , nk)

¬X (k − 1)

¬X (k − 1)

¬X (0)

¬X (0)

X (k − 1)

X (k − 1)

X (0)

X (0)

...

...

...

...

...

...

...

...

...

...

...

...
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Theory VCC for the class CC
Reference:
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Two-sorted language L2
A (Zambella ’96)

Vocabulary L2A =
[
0, 1,+, ·, | | ; ∈,≤,=1,=2

]
Standard model N2 = 〈N, finite subsets of N〉
0, 1,+, ·,≤,= have usual meaning over N
|X | = length of X

Set membership y ∈ X

Note

The natural inputs
for Turing machines
and circuits are
finite strings.

“number” variables x , y , z , . . . (range over N)

“string” variables X ,Y ,Z , . . . (range over finite subsets of N)

Number terms are built from x , y , z , . . . , 0, 1,+, · and |X |, |Y |, |Z |,. . .

The only string terms are variable X ,Y ,Z , . . .

Definition (ΣB
0 formula)

1 All the number quantifiers are bounded.

2 No string quantifiers (free string variables are allowed)
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Two-sorted complexity classes

A two-sorted complexity class consists of relations R(~x , ~X ), where

~x are number arguments (in unary) and ~X are string arguments

Definition (Two-sorted AC0)

A relation R(~x , ~X ) is in AC0 iff some alternating Turing machine accepts
R in time O(log n) with a constant number of alternations.

ΣB
0 -Representation Theorem [from Immerman FO]

R(~x , ~X ) is in AC0 iff it is represented by a ΣB
0 -formula ϕ(~x , ~X ).

Useful consequences

1 Don’t need to work with uniform circuit families or alternating Turing
machines when defining AC0 functions or relations.

2 Useful when working with AC0-reductions

22 / 35



The theory V0 for AC0 reasoning

Theories developed using Cook-Nguyen method extend V0.

The axioms of V0

1 2-BASIC axioms: essentially the axioms of Robinson arithmetic plus
I the defining axioms for ≤ and the string length function | |
I the axiom of extensionality for finite sets (bit strings).

2 ΣB
0 -COMP (Comprehension): for every ΣB

0 -formula ϕ(z) without X ,

∃X ≤ y ∀z < y
(
X (z)↔ ϕ(z)

)
The ΣB

0 -IND scheme is provable in V0

1
[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x + 1)

)]
→ ∀xϕ(x), where ϕ ∈ ΣB

0 .

2 The provably total functions in V0 are precisely FAC0.
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The two-sorted theory VCC [using the Cook-Nguyen method]

VCC has vocabulary L2A
Axiom of VCC = Axiom of V0 + one additional axiom asserting the
existence of a solution to the Ccv problem.
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Asserting the existence of a solution to Ccv
1 w0 • •
1 w1 • N
1 w2

0 w3 H •
0 w4 H
0 w5 H

0 1 2 3 4

X encodes a comparator circuit with m wires and n gates
Y encodes the input sequence
Z is an (n + 1)×m matrix, where column i of Z encodes values layer i

The following ΣB
0 formula δCCV(m, n,X ,Y ,Z ) states that Z encodes the

correct values of all the layers of the Ccv instance encoded in X and Y :

∀k < m
(
Y (k)↔ Z (0, k)

)
∧ ∀i < n ∀x < m ∀y < m,

(X )i = 〈x , y〉 →

 Z (i + 1, x)↔
(
Z (i , x) ∧ Z (i , y)

)
∧ Z (i + 1, y)↔

(
Z (i , x) ∨ Z (i , y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z (i + 1, j)↔ Z (i , j)

)]


VCC = V0 + ∃Z ≤ 〈m, n + 1〉+ 1, δCCV(m, n,X ,Y ,Z )
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Properties of VCC

From long version of our CSL 2011 paper

The provably total functions of VCC comprise FCC.

VCC admits induction on CC concepts.

VCC extends VNC1. (Recall NC1 ⊆ CC.)

VCC proves that Lex-first Max Matching, and Stable Marriage, are
complete for CC.
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Associate proof system CFrege with VC
[Ch. 10, CN 2010]

Each ΣB
0 formula ϕ(X ) translates into a polysize family

{ϕ(X )[n]}n∈N of bounded depth propositional formulas.
I Here ϕ(X )[n] expresses ϕ(X ) for |X | = n, using atoms pXi for the bits

of X . (This method due to [Paris/Wilkie]).

If ϕ(X ) is true, then each translated formula ϕ(X )[n] is a tautology.

If C is a circuit class such as AC0,NC1,P then CFrege is
AC0-Frege,Frege,EFrege, respectively.

The lines in the CFrege-proof represent Boolean circuits of the
appropriate kind (bounded-depth, formulas, circuits) respectively.

A proof of ϕ(X ) in the theory VC translates into a polysize family of
CFrege proofs of the tautologies {ϕ(X )[n]}n∈N
The theory VC proves the soundness of CFrege.

CFrege is the strongest proof system whose soundness is provable in
VC.
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Suggestion for proof system CCFrege

CCFrege is EFrege with restrictions on introduction of extension
variables.
Each extension variable is the value of some wire segment in a
comparator circuit whose inputs do not involve extension variables.
The extension variables are wij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the
comparator circuit has m wires and n gates.
wij is the value of the jth segment of wire i , where each wire gets a
new segment after every gate.
Let aj be the wire number corresponding to the AND of gate j , and
let oj be the wire number corresponding to the OR of gate j .
Thus aj 6= oj , and 0 ≤ aj , oj ≤ m

Defining formulas for the extension variables wij

wi0 ↔ Ai , 1 ≤ i ≤ m, where Ai has no extension variables.
wi ,j+1 ↔ wij if i 6= aj , i 6= oj
wi ,j+1 ↔ (wij ∧ woj ,j) if i = aj
wi ,j+1 ↔ (wij ∨ waj ,j) if i = oj
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Properties of CCFrege

Claim:

CCFrege corresponds to VCC:

1 A proof of a ΣB
0 -formula ϕ(X ) in the theory VCC translates into a

polysize family of CCFrege proofs of the tautologies {ϕ(X )[n]}n∈N
2 The theory VCC proves the soundness of CCFrege.

3 CCFrege is the strongest proof system whose soundness is provable in
VCC.

Proof of (2)

Given a CCFrege proof, VCC can evaluate the extension variables in
terms of the values for the input variables, using its axiom asserting
the existence of values for the wires of a comparator circuit.

VCC proves by induction that all formulas in the proof are true.
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Conjecture: NC and CC are incomparable

Lex-First Max Matching (Lfmm) is in CC.

Conjecture

Lfmm is not in NC.
(The obvious algorithm for Lfmm is sequential.)

The function A An (where A is an n× n integer matrix) is in NC2 ,
but we do not know how to put it in CC.
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Why do we think NC2 ( CC?

NC2-gates have multiple fan-out, but each end of a comparator gate
has fan-out one.

If either input of a comparator gate is ‘flipped’, then exactly one
output is flipped.
Thus comparator gates are 1-Lipschitz.

Flipping an input to a gate generates a unique flip-path in the circuit
from that gate to some output of the circuit.

But flipping an input to an NC2-gate can generate many parallel
flip-paths.
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Relativized CC and NC are incomparable

Oracle gates for comparator circuits

The oracle α : {0, 1}∗ → {0, 1}∗ is length preserving.

αn : {0, 1}n → {0, 1}n is the restriction of α to n.

An oracle gate αn can be inserted anywhere in a relativized
comparator circuit: select any n wires as inputs to the gate and any n
wires as outputs.

To make αn gates look more like comparator gates, we require that
αn have the 1-Lipschitz property.

We allow ¬ gates in relativized CC(α) circuits.
(We can allow them in comparator circuits without changing CC.)

Changing one input to one αn gate produces a unique flip path in the
circuit from that gate to the outputs of the circiut.
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Theorem

There is a relation R1(α) computable by a polysize family of comparator
oracle circuits by which cannot be computed by any NC(α) circuit family
(even when α is restricted to be 1-Lipschitz).

Proof Idea.

αk
n(~0) is easily computed by relativized comparator circuits, but

requires depth k circuits [ACN 07].

The hard part is proving the depth lower bound when α is 1-Lipschitz.
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Theorem

There is a relation R2(α) computable by an NC2(α) circuit family but not
computable by any polysize family of comparator oracle circuits (even
when α is restricted to be 1-Lipschitz).

Proof Idea.

Let αk
i : {0, 1}dn → {0, 1} be a Boolean oracle.

Define a function y = f [(α1
1, . . . , α

1
n), . . . , (αm

1 , . . . , α
m
n )] as follows:

xki = αk
i (

d times︷ ︸︸ ︷
xk+1
1 , . . . , xk+1

1 , . . . ,

d times︷ ︸︸ ︷
xk+1
n , . . . , xk+1

n ), k ∈ [m], i ∈ [n],

xm+1
i = 0, i ∈ [n],

y = x11 ⊕ · · · ⊕ x1n .
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Conclusion

The complexity class CC is interesting because

It is robust (closed under a variety of reductions).

It has interesting complete problems.

It appears to be a proper subset of P and incomparable with NC (and
SC).

It has a theory VCC which captures reasoning in CC and proves basic
properties of CC.

It has an associated propositional proof system CCFrege.
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