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Inference Problem

Given a dataset D = {x1, ..., x,}:

Bayes Rule:
P(D|#)  Likelihood function of 6

P(0)  Prior probability of 6
P(0|D)  Posterior distribution over 6

D|0)P(0)
P(D)

po) = L

Computing posterior distribution is known as the inference problem.
But:

P(D) = / P(D,0)ds

This integral can be very high-dimensional and difficult to compute.



Prediction

P(D|#)  Likelihood function of 8
P(0)  Prior probability of 6
P(0|D)  Posterior distribution over 6

P(D|0)P(0)
P(D)

P(0|D) =

Prediction: Given D, computing conditional probability of z* requires
computing the following integral:

P(z*|D) = /P(x*\Q,D)P(HID)dH
Ep o) P(27]6, D)

which is sometimes called predictive distribution.

Computing predictive distribution requires posterior P(6|D).



Computational Challenges

e Computing marginal likelihoods often requires computing very high-
dimensional integrals.

e Computing posterior distributions (and hence predictive
distributions) is often analytically intractable.

e First, let us look at some examples.



Bayesian PMF
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We have N users, M movies, and integer rating values from 1 to K.

Let r;; be the rating of user i for movie j, and U € RP>*N vV € RP*M
be latent user and movie feature matrices:

R~U'V

Goal: Predict missing ratings. | _
Salakhutdinov and Mnih, NIPS 2008.



Bayesian PMF

Probabilistic linear model with Gaussian
observation noise. Likelihood:

p(rijlui, v, 0%) = N (15w v, 0?)

Gaussian Priors over parameters:

@@
\O-@

N
p(Ulpr, Av) = | [ NV (wila, Zu),

A

j=1,....M

i=1,...N M
p(Vipyv, Av) = [N (vil o, o).
1=1

Conjugate Gaussian-inverse-Wishart priors on the user and movie
hyperparameters Oy = {pty, 2o} and Oy = { iy, 20 }-

Hierarchical Prior.



Bayesian PMF

Predictive distribution: Consider predicting a rating r;; for user ¢
and query movie j:

p(ri|R) = / / p(r [us, 0;)p(U, V, O, Oy |R)A{U, V}d{Or, Oy}

Posterior over parameters and hyperparameters

Exact evaluation of this predictive distribution is analytically
intractable.

Posterior distribution p(U, V., ©y, Oy |R) is complicated and does not
have a closed form expression.

Need to approximate.



Undirected Models

X is a binary random vector with z; € {+1,—1}

p(x ——exp Z Ozj:c:vj—FZsz

(i,J)EE eV

where Z is known as partition function:

Z = Zexp ( Z Qija:ixj + Z (91562)

(i,5)€E eV

If x is 100-dimensional, need to sum over 299 terms.
The sum might decompose (e.g. junction tree). Otherwise we need

to approximate.

Remark: Compare to marginal likelihood.
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Inference

For most situations we will be interested

in evaluating the expectation:

— [ r@w(a)a:

p(z)
= -

We will use the following notation: p(z) =

We can evaluate p(z) pointwise, but cannot evaluate Z.

e Posterior distribution: P(0|D) = ( ) P(D|0)P(0)

e Markov random fields: P(z) = % p(—E(z))
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Laplace Approximation

Consider:

0.8
0.6
0.4F
Goal: Find a Gaussian approximation

q(z) which is centered on a mode
oL L~ of the distribution p(z).

-2 -1 0 1 2 3 4

02r

At a stationary point zy the gradient \/p(z) vanishes. Consider a
Taylor expansion of Inp(z):
. . 1
Inp(z) ~ Inp(zo) — §(Z —20)" A(z — 20)
where A is a Hessian matrix:

A=—-v Vmﬁ(zﬂzzzo
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Laplace Approximation

Consider:

0.8
0.6 ] p(Z) — Tz
0.4F
Goal: Find a Gaussian approximation

q(z) which is centered on a mode
oL L~ of the distribution p(z).

-2 -1 0 1 2 3 4

0.2¢

Exponentiating both sides:

pla) ~ o) exp ( -~ (s 20" A(z  20))

We get a multivariate Gaussian approximation:

1/2
q(z) = (‘21:‘)1)/2 exp ( — %(z —z0) Az — zo)>
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Laplace Approximation

_ B(2)
Z

Remember p(z) , where we approximate:

2= [ ez~ tao) [exp (= 502 20)" Az - 20) ) = a0} T ga

Bayesian Inference: P(0|D) = ﬁP(DW)P(@).

\dentify: 5(0|D) = P(D|)P(6) and Z = P(D):

e The posterior is approximately Gaussian around the MAP estimate O 4p

|A’1/2

p(0|D) ~ (27T)D/2

exp ( - %(9 — Orap) A(O - 9MAP)>
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Laplace Approximation

Remember p(z) = (%) \where we approximate:

2 = [ ple)dz~ i(ao) [ exp ( (o 2) Az - Zo)) = ﬁ(ZO)(iZillj:Q

Bayesian Inference: P(0|D) = P(D) P(D|0)P(0).
ldentify: p(0|D) = P(D|0)P(#) and Z = P(D):

e Can approximate Model Evidence:

P(D) = / P(D|0)P(6)d0

e Using Laplace approximation

D 1
In P(D) ~In P(D|0pap) +In P(Oprap) + Eln 21 — iln | A

Occam factor: penalize model complexity
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Bayesian Information Criterion

BIC can be obtained from the Laplace approximation:

D 1
In P(D) ~In P(D|0pjap) +In P(Oarap) + §1n 27 — §1n | A

by taking the large sample limit (N — oo) where N is the number of
data points:

1
IHP(D) ~ P(D|9MAP) — §D In N

e Quick, easy, does not depend on the prior.
e Can use maximum likelihood estimate of 6 instead of the MAP estimate
e D denotes the number of “well-determined parameters”

e Danger: Counting parameters can be tricky (e.g. infinite models)
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Variational Inference

Key Idea: Approximate intractable distribution p(6|D) with simpler, tractable
distribution ¢(8).

We can lower bound the marginal likelihood using Jensen's inequality:

Inp(D) = ln/p(D, 0)do = ln/q(ﬁ)Pé](DH’)H)dH

p(D.9) ., _ , Lot
> /q(@)ln 10) dﬁ—/q(ﬁ)l p(D,Q)d@—I—/q(Q)l q(H)de

Entropy functional

A\ 4

\ .

Variationaltower—Bound
= Inp(D) — KL(q(0)|[p(8| D)) = L(q)

where KL(q||p) is a Kullback—Leibler divergence — a non-symmetric measure of the

difference between two distributions ¢ and p: KL(¢||p) = [ ¢(6) In qgggdx

The goal of variational inference is to maximize the variational lower-bound
w.r.t. approximate ¢ distribution, or minimize KL(q||p).
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Mean-Field Approximation

Key lIdea: Approximate intractable distribution p(6|D) with simpler, tractable
distribution ¢(#) by minimizing KL(q(8)||p(8|D)).

We can choose a fully factorized distribution: ¢(0) = H?Zl qi;(0;), also known
as a mean-field approximation.

The variational lower-bound takes form:

L(q) /q(@) lnp(D,H)d9+/q(0) lnidﬁ

q(0)
o /qj (93) llnp(p, 9) H qz(ez)d&] dej -+ ; / qz(Hz) In q(lez)dez

17

A\ 4

Eiz;[Inp(D, 0)]

Suppose we keep {¢;+;} fixed and maximize £(q) w.r.t. all possible forms for the
distribution ¢;(6;).
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Mean-Field Approximation

1

08|
The plot shows the original distribution (yellow),
o1 along with the Laplace (red) and
041 ! variational (green) approximations.
02|
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By maximizing £(q) w.r.t. all possible forms for the distribution ¢;(6,) we obtain a
general expression:

_ exp(Eiz;|Inp(D, 0)))
J exp(Eix;[Inp(D, 0)])do;

Iterative Procedure: Initialize all ¢; and then iterate through the factors replacing
each in turn with a revised estimate.

q;(6;)

Convergence is guaranteed as the bound is convex w.r.t. each of the factors g; (see
Bishop, chapter 10).
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Other Variational Methods

Many other existing techniques:

e Loopy Belief Propagation.
e Expectation Propagation.

e Various other Message Passing algorithms.

We will see more of variational inference in tomorrow's lecture on
Deep Networks.
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