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Machine Learning’s Successes

* Computer Vision:
— Image inpainting/denoising, segmentation
— object recognition/detection, scene understanding

* Information Retrieval / NLP:
— Text, audio, and image retrieval
— Parsing, machine translation, text analysis

» Speech processing:
— Speech recognition, voice identification

* Robotics:
— Autonomous car driving, planning, control

* Computational Biology

* Cognitive Science.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.
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Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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Deep Generative I\/Iodels that
support inferences and discover
structure at multiple levels. ——
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Mostly Unlabeled

* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Deep Boltzmann Machine

> 12,000 Latent
Variables

Model P(image)

images

| 96 by 96

24,000 Training Images
Stereo pair & &

Gaussian-Bernoulli Markov Random Field



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Sanskrit Model P(image)
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25,000 characters from 50
alphabets around the world.

* 3,000 hidden variables

e 784 observed variables
(28 by 28 images)

* Over 2 million parameters

Bernoulli Markov Random Field



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Conditional
Simulation

P(image | partial image) g 641l Markov Random Field



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Conditional
Simulation

Why so difficult?
28

3

928 X28 nossible images!

P(image | partial image) g 641l Markov Random Field



Deep Generative Model

(Hinton & Salakhutdinov, Science 2006)

Model P(document) Reuters dataset: 804,414
newswire stories: unsupervised
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* Introduction: Graphical Models.

* Restricted Boltzmann Machines:
Learning low-level features.

* Deep Belief Networks: Learning
Part-based Hierarchies.

* Deep Boltzmann Machines.
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Graphical Models

Graphical Models: Powerful framework for representing dependency
structure between random variables.

a * The joint probability distribution over a set of
b random variables.

* The graph contains a set of nodes (vertices) that
represent random variables, and a set of links

¢ (edges) that represent dependencies between
those random variables.

* The joint distribution over all random variables decomposes into a product
of factors, where each factor depends on a subset of the variables.

Two type of graphical models:
* Directed (Bayesian networks)
* Undirected (Markov random fields, Boltzmann machines)

Hybrid graphical models that combine directed and undirected models, such
as Deep Belief Networks, Hierarchical-Deep Models.



Directed Graphical Models

Directed graphs are useful for expressing causal relationships between
random variables.

* The joint distribution defined by the graph is given
by the product of a conditional distribution for each
node conditioned on its parents.

p(x) = | [ p(zxlpay)

* For example, the joint distribution over x1,..,x7
factorizes:

p(X) — p(xl)p($2)p($3)p($4|ﬂf17 L2, $3)p($5\$1, $3)p($6|$4)p($7|$4, 2175)

Directed acyclic graphs, or DAGs.



Directed Graphical Models

Example: Generative model of an image:

Object  Position Orientation * Object identity (discrete variable) and the
position and orientation (continuous variables)
have independent prior probabilities.

* The image has a probability distribution that
depends on the object identity, position, and

Image orientation (likelihood function).

The joint distribution:
P(Im,Ob, Po,Or) = P(Im|Ob, Po, Or)P(Ob)P(Po)P(Or)
N N J

Y Y
Likelihood Prior

Inference: Computing posterior:

P(Ob, Po,Or|Im) = P(Im|Ob, Po,Or)P(Ob)P(Po)P(Or)

P(Im)

Marginal likelihood: Often difficult to compute



Popular Models

Latent Dirichlet Allocation

Ol Pr(topic | doc)

@

320,
I Pr(word | topic)

* One of the popular models for
modeling word count vectors.
We will see this model later.

Probabilistic Matrix Factorization
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* One of the popular models for
collaborative filtering applications.
Part of the winning solution in the
Netflix contest.



Undirected Graphical Models

Directed graphs are useful for expressing causal relationships between
random variables, whereas undirected graphs are useful for expression soft
constraints between random variables

* The joint distribution defined by the graph is given

¢ by the product of non-negative potential functions

over the maximal cligues (connected subset of nodes).

A B
1
px) = = [[ocze) 2=3 [[octre
C x C

where the normalizing constant Z is called a partition function.

D

* For example, the joint distribution factorizes:

p(A, B,C, D) = Z6(4,C)6(C, B)o(B, D) (4, D)

Often called pairwise Markov random field, as it factorizes over pairs of random
variables.

Markov random fields, Boltzmann machines.



Markov Random Fields
c p(x) = 3 [[ éc(ec)
C

A B  Each potential function is a mapping from joint
configurations of random variables in a clique to non-
negative real numbers.

* The choice of potential functions is not restricted to

D having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

— %Hqﬁo(xc) = —eXp ZE T.)) = —eXP( E(x))
C

\ J
Y
where E(x) is called an energy function. Boltzmann distribution

e Suppose x is a binary random vector with &; € {+1, —1} :
e If x is 100-dimensional, we need to sum over 2190 terms!

Computing Z is often very hard. This represents a major limitation of undirected models.



Markov Random Fields
c p(x) = 3 [[ éc(ec)
C

A B  Each potential function is a mapping from joint
configurations of random variables in a clique to non-
negative real numbers.

* The choice of potential functions is not restricted to

D having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

— %Hqﬁo(xc) = —eXp ZE T.)) = —eXP( E(x))
C

\ J
Y
where E(x) is called an energy function. Boltzmann distribution

Compare to computing posterior:
P(8|D) = pipyP(D|0)P(6) where P(D)

1’(9)

/ P(D,0)dd



Maximum Likelihood Learning

Consider binary pairwise MRF:

Py(x) = 229) exp ( Z rixil;; + szez)

ijEE =%

Given a set of i.i.d. training examples
D = {xW x@ .. xWN)1, we wantto learn
model parameters 6.

N
Maximize log-likelihood objective: L(6) = % Z log Pe(x(n))
n=1

Derivative of the log-likelihood:

oL(0) 1 (n) (n)
agij — N Z[xz «Tj ] - Z[sz%JPQ(X)] = EPdata[xixj] - Epe [xzajj]

mn X
1\ )
Y
Difficult to compute: exponentially many

configurations




MRFs with Latent Variables

For many interesting real-world problems, we need to introduce hidden
or latent variables.

* Our random variables will contain both visible
and hidden variables x=(v,h).

* Probability of observed input is given by
marginalizing out the states of hidden variables:

p(v) = = 3" exp(~E(v. b))

h

* In general computing both partition function
and summation over hiddens will be
intractable, except for special cases.

* Parameter learning becomes a very
challenging task.

Deep Networks have to deal with this intractability.
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Restricted Boltzmann Machines

hidden variables

Bipartite  Stochastic binary visible variables v € {0, 1}”
Structure  4re connected to stochastic binary hidden
variables h € {0,1}*.

DS
R
vV ';\

24\

N

Image visible variables

The energy of the joint configuration:

E(V,h; 9) = — ZWijvz’hj — szvz — Zajhj
1] 7

J

6 = {W,a,b} model parameters.

Probability of the joint configuration is given by the Boltzmann distribution:

1 1 ok T
Py(v,h) = Z(0) exp(—E(v,h;Q)) — %HGWW ihj Heb, lHe ik
J

i N~

Z(Q) _ Z exp ( . E(V, h; 9)) partition function potential functions
h,v

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

Bipartite
Structure

()
AN
AN

\

Image visible variables

Product of Experts formulation.

The joint distribution is given by:

1
Po(v,h) = o5 exp (Y Wijuihy + 3 bivi + > ajhy)
ij i J

where the undirected edges in the graphical model represent {Ww}

Marginalizing over the states of hidden variables:

P@(V) = Z PQ(V, h) = % H exp(bivi) H (1 + eXp(CLj + Z szvz)>
h 0 J \ g y
Y

Product of experts

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

Bipartite . . _
structure  Restricted: No interaction between

hidden variables

/

Inferring the distribution over the
hidden variables is easy:

P(alv) = [[ P(hilv) P(h; =1}v) = :
X J

Image visible variables

1 + exp(— Zz Wij’Uz' — CLj)

Factorizes: Easy to compute
Similarly:

P(vih) = [] P(oib) P(w: = 1]h) = 1

1+ exp(— Zj Wz’jhj — bz)

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Most hidden
New Image: p(h7 = 1|v) variables are off

| |
m = 0(0.99 X i + 0.97 x - + 0.82 xn )

1 Logistic Function: Suitable for
Itexp(=z)  modeling binary images

as P(h|v) =10, 0, 0.82, 0, 0, 0.99, 0,0 ... |

o(x) =

Represent:




Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

e

Most hidden
New Image: P(h7 =1Jv) p(hag = 1|v) variables are off

! )
m = J(O.QQXH + 0.97 x - +| Easy to compute }

1 Logistic Function: Suitable for
Itexp(=z)  modeling binary images

as P(h|v) =10, 0, 0.82, 0, 0, 0.99, 0,0 ... |

o(x) =

Represent:



Model Learning

1
Py(v) = Z00) Z exp [VTWh +a'h+b'v
h

hidden variables

h \. C )
N\
\\/,/’A\\' Given a set of i.i.d. training examples
W \ K
/@%Q"A‘Q D = {v) v®@ v, wewanttolearn
/‘g” ’/“q model parameters § = {W, a, b}.

\

Image visible variables

Maximize (penalized) log-likelihood objective:

N
1 A
L(9) = N E log Py (v ))—NHWH%

n=1
Derivative of the log-likelihood: Regularization
L) 1 <~ 0 G, 2\
= — 1 M TWh4a h+b v™] |- log Z(0)—==W;;
W N;5’Wij og(gh:exp v Wh+a'h+b' v™] I og Z(0) NVVL7
2
= Epuualvihy] = Bry[vih] = Wi

Difficult to compute: exponentially many

Piata(v,h;0) = P(h[v;0) Piata(V) configurations

1
Piata(V) = + > S(v—v™)



Model Learning

1
Py(v) = Z00) Z exp [VTWh +a'h+b'v
h

hidden variables

Given a set of i.i.d. training examples
D = {v) v®@ v, wewanttolearn
model parameters § = {W, a, b}.

Maximize (penalized) log-likelihood objective:

N
1 A
L(9) = N E log Py (v ))—NHWH%

Image visible variables
n=1
Derivative of the log-likelihood:
OL(0) 2
S, = EPaaa[Viltj] = Br,[vihy] — = Wi
i
Approximate maximum likelihood learning:
Contrastive Divergence (Hinton 2000) Pseudo Likelihood (Besag 1977)
MCMC-MLE estimator (Geyer 1991) Composite Likelihoods (Lindsay, 1988; Varin 2008)
Tempered MCMC Adaptive MCMC

(Salakhutdinov, NIPS 2009) (Salakhutdinov, ICML 2010)



Contrastive Divergence

Run Markov chain for a few steps (e.g. one step):

P(h|v)

hOO OO OO

v OOO OOO OOO

Data Reconstructed Data (V‘h
1
hiv) = \v) P(h: =1 —
( ‘ ) ‘_j__ ( J‘ ) ( ] ‘V) 1—|—€Xp(— Zz Wz’jvi_aj)
1
P(vh) = [] P(vilh) P(v; = 1]h) =

1+ exp(—>_; Wijh; — b;)

Update model parameters:
AWi;j = Ep,,,,[vik;] — Ep [vih;]



RBMs for Images

(Salakhutdinov & Hinton, NIPS 2007)

Gaussian-Bernoulli RBM: 1
Pg(V,h) = Z(@)

exp(—E(v, h; 0))

Define energy functions for
various data modalities:

L0\ — (vi — b;)? ZW Uj
Image  visible variables E’(V’ h’ 9> o Z 202 o ijhj o o 2 :ajhj
( ’l] (/

i J
1 (il?—bZ—O'ZZWZh)Q
P(v; = z|/h) = Noro exp <— 552 77 Gaussian
1 .
P(h; =1]v) = — ‘ Bernoulli




RBMs for Images and Text

(Salakhutdinov & Hinton SIGIR 2007, NIPS 2010)

Images: Gaussian-Bernoulli RBM

4 million

3
WIKIPEDIA
The Free Encyclopedia

unlabelled images

REUTERS P
AP Associated Press

Reuters dataset:
804,414 unlabeled )
newswire stories

Bag-of-Words

russian
russia
MOoSCoOwW
yeltsin
soviet

Learned features:

clinton
house
president
bill
congress

computer
system
product
software
develop

Learned features (out of 10,000)

“topics”’

trade
country
import
world
economy

stock
wall
street
point
dow



Collaborative Filtering

* Natural Images

* Text/Documents

 Collaborative Filtering/ NETIELTX
Product Recommendation

movielens
helping you find the right movies

amazon

Learned bases: ""genre”’

. Fahrenheit 9/11 Independence Day
Netflix dataset: Bowling for Columbine The Day After Tomorrow
480,189 users :> The People vs. Larry Flynt Con Air
17 .770 movies Canadian Bacon Men in Black Il

! La Dolce Vita Men in Black

Over 100 million ratings
& Friday the 13th

The Texas Chainsaw Massacre

State-of-the-art performance Children of the Corn
Child's Play

on the Netflix dataset. The Return of Michael Myers
Part of the wining solution in the Netflix contest.

Relates to Probabilistic Matrix Factorization
(Salakhutdinov & Mnih, NIPS 2008) Salakhutdinov, Mnih, & Hinton, ICML 2007



Multiple Application Domains

Natural Images
Text/Documents

Collaborative Filtering / Matrix Factorization

= Salakhutdinov & Mnih, NIPS 2008, ICML 2008;
= Salakhutdinov & Srebro, NIPS 2011
= Sutskever, Salakhutdinov, and Tenenbaum, NIPS 2010

Video (Langford, Salakhutdinov and Zhang, ICML 2009)

Motion Capture (Taylor et.al. NIPS 2007)
Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!
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Deep Belief Network
(

Hinton et.al. Neural Computation 2006)

Low-level features:
Edges

N

y
o/
,/f&\';!h Q’/

Built from unlabeled inputs.

Input: Pixels




Deep Belief Network
(

Hinton et.al. Neural Computation 2006)

Internal representations capture
higher-order statistical structure

Higher-level features:
Combination of edges

Low-level features:
Edges

N\
'(I}/‘Q' N/
(/

Built from unlabeled inputs.

Yo

alisN

@

Input: Pixels
Unsupervised feature learning.




Deep Belief Network

The joint probability

Deep Belief Network
P 5€ll W distribution factorizes:

| .‘\4.}/‘. o P(v;h' b h?)

AV VAN

SIS = P(v[h')P(h![h*) P(h? h°)
i QePel
| XTOKOX (w2 | Layerwise Pretraining:

N ™S AN Sigmoid . t
I‘A\.’A.,’! Belief Learn and freeze 15 layer RBM

NS Network Treat inferred values P(h1 V)
M"\‘ as the data for training 2"d-
O O

layer RBM.

* Learn and freeze 2" layer RBM.

, _ * Proceed to the next layer.
Unsupervised Feature Learning.



Deep Belief Network

The joint probability

Deep Belief Network
P 5€ll W distribution factorizes:

CogegPe
&éto{‘ VR

7 N
QP er)
_ w2 |

= P(vih')P(h'|h?)P(h* h°)

N . L
- XX Layerwise Pretraining:

N ™S AN Sigmoid . t
I.A\.,A.,,! Belief Learn and freeze 15 layer RBM

}":;‘( Network e« Treatinferred values P(h'|v)
ac thao data far traini nd
O O 0O | |

Layerwise pretraining
improves variational
Unsupervised Feature Learning. dower bound y




DBNSs for Classification

(Hmton and Salakhutdinov, Science 2006)

— —
I |
| 500 | RBM Softmax Output
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ] ]
| 500 | T wr T wlie,
f w o T
,,,,, L0 | rem s L
777777777777777777777777777777777777777777 T Wg T W2+82
| 500 | ; 500 500
I W, T Wl T Wl +&1
77777777777777777777777777777777777 R BM . .
Pretraining Unrolling Fine—tuning

* After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.



DBNs for Regression

(Salakhutdinov and Hinton, NIPS 2007)

Predicting the orientation of a face patch

Training Data
-22.07 3299 -41.15 6638 27.49

LIRSS " AR TR e

Training Data: 1000 face patches of Test Data: 1000 face patches of
30 training people. 10 new people.

Test Data

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE
(root mean squared error) of 16.33 degree.



DBNs for Regression

(Salakhutdinov and Hinton, NIPS 2007)

Training Data
-22.07 3299 -41.15 6638 2749 Unlabeled

sE ™ T e L,
Pkt A AR

Additional Unlabeled Training Data: 12000 face patches from 30
training people.

* Pretrain a stack of RBMs: 784-1000-1000-1000.

* Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22

GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42

Standard GP without using DBNs: RMSE: 16.33



Deep Autoencoders

(Hinton and Salakhutdinov, Science 2006)

Decoder |

Encoder

Pretraining Unrolling Fine-tuning




Information Retrieval

(Hinton and Salakhutdinov, Science 2006)

European Community ) _
Interbank Markets Monetary/Economic 2-D LSA Space

4

Y-+ 57 Disasters and
s idt U se Accidents
23823500 %ogs S %

Leading
Economic
Indicators

[}
“e

: o Government
Accounts/ - «¥% )
E;(r:r?il:\gt; ?{&’; Borrowings

* The Reuters Corpus Volume Il contains 804,414 neWswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the training set.



Information Retrieval

Reuters Dataset

Precision (%)
w
o

N
o

== Deep Generative Model
-©-Latent Sematic Analysis |
—B-Latent Dirichlet Allocation

0.1

0.4

1.6

6.4 25 100
Recall (%)

Reuters dataset: 804,414
newswire stories.

Deep generative model significantly
outperforms LSA and LDA topic models



Semantic Hashing

(Salakhutdinov and Hinton, SIGIR 2007)

(¢]
European Community f0090 o
H ©]
Monetary/Economic LT o c%®%%@7 0@

Address Space Disasters and

Accidents

o s Semantically
\ Similar
Documents

Semantic v
Hashing Government
Function Borrowing
X
£
X
Document Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.

* Retrieve similar documents stored at the nearby addresses with no
search at all.



Learning Similarity Measures
(Salakhutdinov and Hinton, Al and Statistics 2007)

Learning Similarity Metric

D[y ¥’ 1

 Learn a nonlinear transformation of the input space.

* Optimize to make KNN perform well in the low-dimensional feature
space



Compare to Other Approaches

(Salakhutdinov and Hinton, Al and Statistics 2007)

Learning Similarity Metric

DIy" ¥ ]

Neighborhood Component  Linear Discriminant
Analysis Analysis
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DBNs vs. DBMs

Deep Belief Network Deep Boltzmann Machine

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.

Introduce a new class of models called Deep Boltzmann Machines.



Mathematical Formulation

P*(v) 1 Trrrl11 1T /21,2 2T 11,313
P, = = —— W-h h- W-<h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V — +

Deep Boltzmann Machine 0 = {W', W= W} model parameters

 Dependencies between hidden variables.

* All connections are undirected.

e Bottom-up and Top-down:

W2

) P(h3 = 1|h', h?) = a<ZW,§jh2 + Zwﬁljh}n)
w! k/7 N ™~

Top-down Bottom-up

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)



Mathematical Formulation

P*(v) 1 [T 11.1 1T /21,2 2T 11,313
= —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V) =

Neural Network

Deep Boltzmann Machine Deep Belief Network

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

p* 1
Vo1 S e [valhl +h!' W2h? 4 hQTW3h3]

Fp(v) = zO)  Z(0) h!,h? h3

Neural Network

Deep Boltzmann Machine Deep Belief Network

9JU9a.d9jul -




Mathematical Formulation

P*(v) 1 [T 1.1 1T /21,2 2T 11,313
= = —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V)

Deep Boltzmann Machine O = {I/Vl7 W27 W3} model parameters
 Dependencies between hidden variables.

Maximum likelihood learning:

0log Py(v)

oW1 [Vth] — Ep, [Vhl—r]

— Ep

data

Problem: Both expectations are
intractable!

Learning rule for undirected graphical models:
MRFs, CRFs, Factor graphs.



Previous Work

Many approaches for learning Boltzmann machines have been
proposed over the last 20 years:

* Hinton and Sejnowski (1983),

* Peterson and Anderson (1987) . _
* Galland (1991) Real-world applications — thousands

* Kappen and Rodriguez (1998) of hidden and observed variables

* Lawrence, Bishop, and Jordan (1998) ith milli f t
« Tanaka (1998) witn miliions or parameters.

* Welling and Hinton (2002)
* Zhu and Liu (2002)

* Welling and Teh (2003)

* Yasuda and Tanaka (2009)

Many of the previous approaches were not successful for learning
general Boltzmann machines with hidden variables.

Algorithms based on Contrastive Divergence, Score Matching, Pseudo-
Likelihood, Composite Likelihood, MCMC-MLE, Piecewise Learning, cannot
handle multiple layers of hidden variables.



New Learning Algorithm

(Salakhutdinov, 2008; NIPS 2009)

Posterior Inference Simulate from the Model

Unconditional

Approximate Approximate the m
conditional joint distribution

Pdata(h|v) Pmodel(ha V)




New Learning Algorithm

(Salakhutdinov, 2008; NIPS 2009)

Posterior Inference Simulate from the Model

Approximate Approximate the
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

T
EPdata [Vh—r] Epmodel [Vh
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New Learning Algorithm

(Salakhutdinov, 2008; NIPS 2009)

Posterior Inference Simulate from the Model
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.I; Key Idea of Our Approach:

Data-dependent: Variational Inference, mean-field theory
Data-independent: Stochastic Approximation, MCMC based
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Stochastic Approximation

Time t=1 t=2 t=3

h2

Update 05

) — @ )

Update 6,
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X1 T91 (X1 %Xo) Xo v ng (X2 %Xl) X3 v T93 (X3 %Xg)
Update 6, and x; sequentially, where x = {v,h', h?}
* Generate x; ~ Ty, (Xt <—Xt_1) by simulating from a Markov chain

that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 0; by replacing intractable Ep, [VhT] with a point
estimate [Vth;r]

In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1957
L. Younes, Probability Theory 1989



Stochastic Approximation

Update rule decomposes:

M
1 m m T
bevs = O+ (Br 0T <, 0] ) (B, b= D v )

m=1
\ J L _J

Y Y
True gradient Noise term €¢

Almost sure convergence guarantees as learning rate o;; — 0

Problem: High-dimensional data: (" n13rkov Chain
the energy landscape is highly

, Monte Carlo
multimodal .

Key insight: The transition operator can be
Salakhutdinov, any valid transition operator — Tempered
ICML 2010 Transitions, Parallel/Simulated Tempering.

Connections to the theory of stochastic approximation and adaptive MCMLC.



Variational Inference

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)

Approximate intractable distribution Py(h|v) with simpler, tractable
distribution @, (h|v):
Po(h, v)

log Py(v 10gZP9hV logZQ'u h|v) 0, (b[v)
7

Posteri ference
Py(h,v)
> Q. (h|v)log
[Te8 Z «(B1v) Qu(h[v)

Mean-Field 1
— E Q. (h|v)log Py (h,v) —log Z(6) + E Q(h|v)log
h |\ ~ J h QM<h|V)

E . vIWh! + h! ' W2h? + h? ' W3h3 )
Y

Variational Lower Bound

— log Py(v) — KL(Q,.(h[v)||P(h[v))

Q(z)

Pa) dx

KL(QIIP) = [ @o)log

Minimize KL between approximating and true
distributions with respect to variational parameters 1 .



Variational Inference

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(x)

Pa) dx

KL(QIP) = [ Qo) log
log Py(v) > log Pp(v) — KL(Q,(h[v)[|Py(h[v))

1\ J
: Y
Poster ference o
/ﬁ Variational Lower Bound
@ - 1. . e
. Mean-Field: Choose a fully factorized distribution:
Mean-Field F
Qu(hv) = [ a(hslv) with g(h; =1|v) =
j=1
E Variational Inference: Maximize the lower bound w.r.t.

Variational parameters f¢.
(1) _ 1
Nonlinear fixed- (ZW Vit Z btk )
point equations: Mk :U(Z 2kM§1>+ZWmM53))

Mgg) =0 ( Z kaN(Q))




Variational Inference

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(x)

KL(Q||P) = /Q(az) log P(w)dm
log Pa(v) = log Pa(v) — KL (Qu(h[v)] [P (hlv))

N\ J
. Y
Posterior Inference L
Variational Lower Bound Unconditional Simulation
' .
ield o o Markov Chain
Mean-Fie 1. Variational Inference: Maximize the lower
. Monte Carlo
bound w.r.t. variational parameters
2. MCMC: Apply stochastic approximation
E to update model parameters

Almost sure convergence guarantees to an asymptotically
stable point.



Variational Inference

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(x)

KL(Q||P) = /Q(az) log P(:z;)dx
log Pa(v) = log Pa(v) — KL (Qu(h[v)] [P (hlv))

(& J
Y

Variational Lower Bound Unconditional Simulation

Posterior Inference

23
Mean-Field

1.V or Markov Chain
b;,u[ Fast Inference }” Monte Carlo

2. . N
w{ Learning can scale to

_ millions of examples |

Almost sure convergence guarantees to an asymptotically
stable point.




Good Generative Model?

Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters
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Good Generative Model?

MNIST Handwritten Digit Dataset




Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Generative Model of 3-D Objects

\ = £
%® ||
e\ |8
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24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D Object Recognition

Learning Algorithm Error
Logistic regression 22.5%
K-NN (LeCun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%
Deep Belief Net (Nair & 9.0%
Hinton 2009)

DBM 7.2%

Pattern Completion

Permutation-invariant version.




Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure - | roream
in Features: edges, combination il
of edges. “

* Performs well in many application domains
e Combines bottom and top-down

* Fast Inference: fraction of a second

* Learning scales to millions of examples

Many examples, few categories

Next: Few examples, many categories — One-Shot Learning



Model Selection

How to choose the number of layers and the number of hidden units?

More generally, how can we choose between models?

7 ¢
»
2
o

Mixture of Bernoulli’s
Goal: Compare P(v) on the validation P(v) = P(v)*/Z

Need an estimate of Partition Function Z



Model Selection

(Salakhutdinov & Murray, ICML 2008, Salakhutdinov 2008)

We have developed an MCMC-based algorithm based on Annealed
Importance Sampling to estimate partition function of a DBM model.

1

- (1-5)
Po(v; ) = (5)]30( V) m(v)

B=0.5

Z(1)  Z(B1) Z2(B2) Z(B3) Z(Bg) Z2(1)

Z(0)  Z2(0) Z(B1) Z(B2) Z(Bs) Z(Ba)

Annealing, or Tempering: 1/8 = “temperature”




Model Selection

(Salakhutdinov & Murray, ICML 2008, Salakhutdinov 2008)
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Mixture of Bernoulli’s

MoB, test log-probability: -137.64 nats/digit
DBM, test log-probability: -85.97 nats/digit

Difference of over 50 nats is striking!



Thank you

Code for learning RBMs, DBNs, and DBMs is available at:
http://www.utstat.toronto.edu/~rsalakhu/



