
DEEP BELIEF NETWORKS

Ruslan Salakhutdinov and Geoffrey Hinton
University of Toronto, Machine Learning Group

The Snowbird Workshop

March 22, 2007

1

Talk outline

• Deep Belief Nets as stacks of Restricted Boltzmann Machines.

– Nonlinear Dimensionality Reduction.
– Discriminative Fine-tuning for Regression and Classification.

• Deep Belief Nets as Generative Models.

– A Generative Model of Simple Shapes.

• Another Application of Deep Belief Nets (if time permits).

– Semantic Hashing for Ultra Fast Document Retrieval.

2

Restricted Boltzmann Machines

i

j

W

v

h

bias

• We can model an ensemble of binary images
using Restricted Boltzmann Machines (RBM).

• RBM is a two-layer network in which
visible, binary stochastic pixels v are connected
to hidden binary stochastic feature detectors h.

• A joint configuration (v,h) has an energy:

E(v,h) = −
∑

i∈pixels

bivi −
∑

j∈features

bjhj −
∑

i,j

vihjWij

• The probability that the model assigns to v is

p(v) =
∑

h∈H

p(v,h) =
∑

h∈H

exp(−E(v,h))∑
u,g exp(−E(u,g))

3

Inference and Learning

i i

j

i

j

data
1

<v h >i

j

j <v h >i j <v h >i j inf

data reconstruction fantasy

• Conditional distributions over hidden and visible units are given by
logistic function:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i viWij)

p(vi = 1|h) =
1

1 + exp(−bi −
∑

j hjWji)

• Maximum Likelihood learning:

∆Wij = ǫ(< vihj >data − < vihj >∞)

• Contrastive Divergence (1-step) learning:

∆Wij = ǫ(< vihj >data − < vihj >1)

4

What a single RBM learns

• Random sample of the RBM’s receptive fields (W) for MNIST (left)
and Olivetti (right).

• Input data

• Learned W

5

Learning Stacks of RBM’s

W

W

W

W

1

2000

RBM

2

2000

1000

500

RBM500

RBM

1000 RBM

3

4

30

• A single layer of binary features generally
cannot perfectly model the structure in the data.

• Perform greedy, layer-by-layer learning:

– Learn and Freeze W1.
– Treat the existing feature detectors, driven

by training data, σ(W T
1 V) as if they were data.

– Learn and Freeze W2.
– Greedily learn as many layers of features

as desired. .

• Under certain conditions adding an extra layer
always improves a lower bound on the log
probability of data (explained later).

• Each layer of features captures strong high-order
correlations between the activities of units in the
layer below. .

6

Nonlinear Dimensionality Reduction

W

W

W

W

W

W

W

W

500

1000

2000

500

2000

Unrolling

Encoder

1

2

3

30

4

3

2

1

Code layer

Decoder

4

1000

T

T

T

T

• Perform greedy, layer-by-layer pretraining.

• After pretraining multiple layers, the model is
unrolled to create a deep autoencoder.

• Initially encoder and decoder networks use the
same weights.

• The global fine-tuning uses backpropagation
through the whole autoencoder to fine-tune the
weights for optimal reconstruction. .

• Backpropagation only has to do local search.

• We used a 625-2000-1000-500-30 autoencoder to
extract 30-D real-valued codes for Olivetti face
patches (7 hidden layers is usually hard to train).

• We used a 784-1000-500-250-30 autoencoder to
extract 30-D real-valued codes for MNIST images.

7

The Big Picture

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

W

W

W +ε1

2000

RBM

2

2000

1000

500

RBM500

1000

1000

500

2000

2000

500500

1000

2000

500

2000

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine−tuning

4 4

2 2

3 3

4 5

3 6

2 7

1 8

Encoder

1

2

3

30

4

3

2

1

Code layer

Decoder

4

1000

1 1

T

T

T

T T

T

T

T

Show Demo.

8

Reuters Corpus: Learning 2-D code space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
 Borrowings

Disasters and
Accidents

Energy Markets

LSA 2−D Topic Space

• We use a 2000-500-250-125-2 autoencoder to convert test documents
into a two-dimensional code.

• The Reuters Corpus Volume II contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

• We used a simple “bag-of-words” representation. Each article is
represented as a vector containing the counts of the most frequent
2000 words in the training dataset.

9

Results for 10-D codes

• We use the cosine of the angle between two codes as a measure of
similarity.

• Precision-recall curves when a 10-D query document from the test
set is used to retrieve other test set documents, averaged over
402,207 possible queries.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Autoencoder 10D
LSA 10D
LSA 50D
Autoencoder 10D
prior to fine−tuning

10

Deep Belief Nets for Classification

W +εW

W

W

W +ε

W +ε

W +ε

W

W

W

W

1 11

500 500

500

2000

500

500

2000

500
2

500

RBM

500

2000

3

Pretraining Unrolling Fine−tuning

4 4

2 2

3 3

1

2

3

4

RBM

10

Softmax Output

10
RBM

T

T

T

T

T

T

T

T

• After layer-by-layer pretraining of a 784-500-500-2000-10 network,
discriminative fine-tuning achieves an error rate of 1.2% on MNIST.
SVM’s get 1.4% and randomly initialized backprop gets 1.6%.

• Clearly pretraining helps generalization. It ensures that most of the
information in the weights comes from modeling the input data.

• The very limited information in the labels is used only to slightly
adjust the final weights.

11

A Regression Task

• Predicting the orientation of a face patch.

-66.84 43.48 14.22 30.01−57.14 −35.75

• Labeled Training Data:
Input: 1000 labeled training patches Output: orientation

from Olivetti faces of 30
training people.

• Labeled Test Data:
Input: 1000 labeled test patches . Predict: orientation

from Olivetti faces of 10
new people.

• Gaussian Processes with Gaussian kernel (using Radford Neal’s
software) achieves a RMSE of 16.35◦ (±0.45◦).

12

Deep Belief Nets for Regression

-66.84 43.48 14.22 30.01−57.14 −35.75 Unlabeled

• Additional Unlabeled Training Data: 12000 face patches from 30
training people.

• Pretrain a stack of RBM’s: 784-1000-500.

• Features were extracted with no idea of the final task.

Train a dumb linear regression model RMSE 13.73◦.
on the top-level features using
the labeled 1000 training cases:

The same GP on the top-level features: RMSE 10.06◦ (±0.36◦).

13

The Generative View of Stacks of RBM’s

W
W

W

W

W

W

W

etc.

FrozenT

Frozen

T

T

v0

h h0

v1

h1

v

• When Wfrozen = W, the two models are the same.

• The weights Wfrozen define p(v0|h0,Wfrozen) but also indirectly
define p(h0).

• Idea: Freeze bottom layer of weights at Wfrozen and change higher
layers to build a better model for p(h0), that is closer to the posterior
hidden features produced by Wfrozen applied to the data
p(h0|v0,W

T
frozen).

• As we learn a new layer, the inference becomes incorrect, but the
bound on the log probability of the data increases (see Hinton et.al.).

14

The Generative View of Stacks of RBM’s

W

W

W

W

Likelihood x (W v0)σPrior =

etc.

W +20 +20

+20 +20

W

Complementary
Prior

W

T

Frozen

T

h

v

Frozen
T

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

h0

h1

v0

v1

T

Frozen

• What about explaining away?

• A complementary prior exactly cancels out correlations created by
explaining away! So the posterior factors.

15

Two Alternatives to Our Method

Prior W

W

W1

2

3

Likelihood
W1

Factorial
Prior

h1

h2

v0

h0

v0

h0

• Alternative 1:

– Without complementary prior, learning one layer at a time is hard
because of explaining away.

• Alternative 2:

– If we start with different weights in each layer and try to learn
them all at once, we have major problems.

– Just to calculate the prior for h0 requires integration over all
higher-level hidden configurations! Good luck with that.

16

Semantic Hashing

W +ε

W +ε

W +ε

W

W

W

W

W

W

W

W

W +ε

W +ε

W +ε

W

2000

500

500

2000

500

2000
1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

2000
1

2

500
2

1

3

Code Layer

2

500

1

3

20

Fine−tuning

2

1

3 4

5

6

Code Layer20

UnrollingRecursive Pretraining

500
RBM

500

500
RBM

3

RBM
20

Bag of Words

T

T

T T

T

T

• Learn to map documents into semantic 20-D binary code and use
these codes as memory addresses.

• We have the ultimate retrieval tool: Given a query document,
compute its 20-bit address and retrieve all of the documents stored at
the similar addresses with no search at all.

17

Semantic Hashing
Reuters 2−D Embedding of 20−bit codes

Accounts/Earnings

Government
Borrowing

European Community
Monetary/Economic

Disasters and
Accidents

Energy Markets

Semantically
Similar
Documents

Memory

Document

f

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

• We used a simple C implementation on Reuters dataset (402,212
training and 402,212 test documents).

• For a given query, it takes about 0.5 milliseconds to create a short-list
of about 3,000 semantically similar documents.

• It then takes 10 milliseconds to retrieve the top few matches from
that short-list using TF-IDF, and it is more accurate than full TF-IDF.

• Locality-Sensitive Hashing takes about 500 milliseconds, and is less
accurate.

• Our method is 50 times faster than the fastest existing method and is
more accurate.

18

THE END

19

