
NONLINEAR DIMENSIONALITY REDUCTION
USING NEURAL NETWORKS

Ruslan Salakhutdinov
University of Toronto, Machine Learning Group

Joint work with Geoff Hinton

1

Drawbacks of Existing Methods

• Linear Methods:
– If the data lie on an embedded low-dimensional nonlinear

manifold then linear methods cannot recover this structure.

• Proximity based methods are more powerful, BUT
– computational cost scales quadratically with the number of

observations.
– cannot be applied to very large high-dimensional data sets.

• Nonlinear mapping algorithms, such as autoencoders:
– painfully slow to train.
– prone to getting stuck in local minima.

2

Pretraining and Fine-Tuning Deep Autoencoders

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

RBM500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine−tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

• First learn good generative model of data.
• Then fine-tuned using backpropagation of error derivatives.

3

Training an Autoencoder

• The standard way to train autoencoders is to use a
back-propagation algorithm to reduce reconstruction error.

• Autoencoders with multiple hidden layers seldom work well:
– initial random weights are large → backprop finds poor local

minima.
– initial random weights are small → optimization takes very

long time.

– initial weights are close to a solution → backprop works well.

• How can we learn these initial weights?

4

Restricted Boltzmann Machines

i

j

W

v

h

bias

• We can model an ensemble of binary images
using Restricted Boltzmann Machine (RBM).

• RBM is a two-layer network in which visible,
binary stochastic pixels v are connected
to hidden binary stochastic feature detectors h.

• A joint configuration (v,h) has an energy:

E(v,h) = −
∑

i∈pixels

bivi −
∑

j∈features

bjhj −
∑

i,j

vihjwij

• The probability that the model assigns to v is

p(v) =
∑

h∈H

p(v,h) =

∑
h exp(−E(v,h))∑

u,g exp(−E(u,g))

5

Inference and Learning

i i

j

i

j

data
1

<v h >i

j

j <v h >i j <v h >i j inf

• Conditional distributions over hidden and visible units are given
by logistic function:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i viwij)

p(vi = 1|h) =
1

1 + exp(−bi −
∑

j hjwji)

• Maximum Likelihood learning:
∆wij = ε(< vihj >data − < vihj >∞)

• Contrastive Divergence (1-step) learning:
∆wij = ε(< vihj >data − < vihj >1)

6

RBM for continuous data

i

j

W

v

h

bias

• Hidden units remain binary.

• The visible units are replaced by linear
stochastic units that have Gaussian noise.

• The energy becomes:

E(v,h) =
∑

i∈pixels

(vi − bi)
2

2σ2
i

−
∑

j∈features

bjhj −
∑

i,j

vi

σi
hjwij

• Conditional distributions over hidden and visible units are:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i wijvi/σi)

vi|h ∼ N (bi +
∑

j

σihjwij, σ
2
i)

7

Learning Multiple Layers - Pretraining

W

W

W

W

1

2000

RBM

2

2000

1000

500

RBM500

RBM

1000 RBM

3

4

30

• A single layer of binary features generally
cannot perfectly model the structure in the data.

• Perform greedy, layer-by-layer learning:
– Learn and Freeze W1.
– Treat the existing feature detectors, driven

by training data, W T
1 V as if they were data.

– Learn and Freeze W2.
– Proceed recursive greedy learning as many

times as desired. .

• Under certain conditions adding an extra layer
always improves a lower bound on the log
probability of data. (In our case, these conditions
are violated) .

• Each layer of features captures strong
high-order correlations between the activities of
units in the layer belows. .

8

Unrolling and Fine-tuning

W

W

W

W

W

W

W

W

500

1000

1000

2000

500

2000

T

4
T

Unrolling

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder
• After pretraining multiple layers, the model is
unrolled. .

• Initially encoder and decoder networks use the
same weights. .

• The global fine-tuning uses backpropagation
through the whole autoencoder to fine-tune the
weights for optimal reconstruction. .

• Backpropagation only has to do local search.

9

Results

� �

�

• A Top left panel (by row): Random samples of curves from the test dataset; reconstructions produced by the
6-dimensional deep autoencoder (784-400-200-100-50-25-6); reconstructions by “logistic PCA” using 6

components; reconstructions by logistic and standard PCA using 18 components. The average squared error
per image for the last four rows is 1.44, 7.64, 2.45, 5.90.

• B Top right panel (by row): A random test image from each class; reconstructions by the 30-dimensional
autoencoder (784-1000-500-250-30); reconstructions by 30-dimensional logistic PCA and standard PCA. The
average squared errors for the last three rows are 3.00, 8.01, and 13.87.

• C Bottom panel (by row): Random samples from the test dataset; reconstructions by the 30-dimensional
autoencoder (625-2000-1000-500-30); reconstructions by 30-dimensional PCA. The average squared errors are
126 and 135.

10

Results

• Random sample of recognition receptive fields before and after fine-tuning
for MNIST digits.

• Random sample of recognition and generative receptive fields for unaligned
Olivetti faces after fine-tuning:

11

Document Retrieval

• We use a 2000-500-250-125-10 autoencoder to convert a document
into a low-dimensional code.

• The 20 newsgroup corpus contains 18,845 postings (11,314
training and 7,531 test) taken from the Usenet newsgroup
collection.

• The Reuters Corpus Volume II contains 804,414 newswire stories.
The data was randomly split into 402,207 training and 402,207
test articles.

• We used a simple “bag-of-words” representation in which each
posting is represented as a vector containing most frequent 2000
word counts in the training dataset.

12

20 newsgroup corpus: Learning 2-D topic space
Autoencoder 2−D Topic Space

talk.religion.misc

comp.graphics

sci.cryptography

misc.forsale

rec.sport.hockey

talk.politics.mideast

LSA 2−D Topic Space

• Latent Semantics Analysis (LSA) uses SVD to get a low-rank
approximation of the log of term-frequency matrix:

log(1 + M (doc, w)) ∼ USV

U = |doc| × d, S = d × d, V = d × |w|.
• A test query q is represented as d-dim vector S−1V log (1 + q).

13

Reuters Corpus: Learning 2-D topic space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
 Borrowings

Disasters and
Accidents

Energy Markets

LSA 2−D Topic Space

14

Precision-Recall Curves: 10-D topic space

• We use the cosine of the angle between two codes as a measure of
similarity.

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

ci
si

o
n

 (
%

)

Autoencoder 10D
LSA 10D
LSA 50D
Autoencoder 10D
prior to fine−tuning

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100

10

20

30

40

50

Recall (%)

P
re

ci
si

o
n

 (
%

)

Autoencoder 10D
LSA 10D
LSA 50D
Autoencoder 10D
prior to fine−tuning

20 Newsgroup Reuters RCV2

• Precision-recall curves when a 10-D query document from the test
set is used to retrieve other test set documents, averaged over
7,531 (20 Newsgroup) and 402,207 (RCV2) possible queries.

15

Conclusion

• Autoencoders are very effective for non-linear dimensionality
reduction.

• They give mappings in both directions between the data space
and the code space

• Both pretraining and fine-tuning scale linearly in time and space
with the number of training vectors.

• So we can apply autoencoders to large datasets.

16

Details of the pretraining

• All datasets were subdivided into mini-batches, each containing
100 data vectors.

• Each hidden layer was greedily pretrained for 50 passes through
the entire training set.

• The weights were updated using a learning rate of 0.1.

• Weights were initialized with small random values sampled from
N (0, 0.01)

17

Details of fine-tuning

• For the fine-tuning, we used conjugate gradients ”minimize” on
larger minibatches containing 1000 data vectors.

• To check for overfitting, we fine-tuned each autoencoder on a
fraction of the training data and tested its performance on the
remainder validation set.

• For the hand-written digits, we used 200 epochs of fine-tuning
and no overfitting was observed.

• For the faces we used 20 epochs and there was slight overfitting.

• For the documents we used 50 epochs (both for 20 Newsgroups
and Reuters RCV2). Slight overfitting was observed for the 20
newsgroup data.

18

