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1 Derivations of the M-step in EM learning of TAs

The objective function Q of the EM algorithm is the expected complete log-likelihood, taken over
the posterior distribution of the latent factors, and summed over N training cases:
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The closed-form M-step update equations are:
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2 Convergence of Gibbs Sampling

Posterior inference in TA using alternating Gibbs sampling is efficient. We present trace plots of
the 6 random latent factors of two TAs in the figure below. Left panel is from a TA learned on
2D synthetic datasets of Sec. 4, while the right panel is from a TA modeling high dimensional face
images under illumination variations. The plots demonstrate that samples mixes very quickly after
around 20 Gibbs iterations.

Figure 1: left: MCMC trace plot for TA learning on synthetic data. right:MCMC trace plot for TA
learning on high dimensional face images.

We also looked at how posterior inference converges in a 200 component MTA trained on 8 x 8
natural image patches.

2



Figure 2: Gibbs sampling quickly converges around 20 iterations. 9 components were randomly
picked from a MTA with 200 components trained on natural image patches. For each component,
we randomly selected 6 latent factors (one for every color).

3 Annealed Importance Sampling for TA

We can treat the problem of estimating log p(x) as calculating the partition function of unnormalized
posterior distribution p∗(z|x) , p(x, z), where p∗(·) denotes an unnormalized distribution. The
basic Importance Sampling gives:
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Annealed Importance Sampling specifies a set of intermediate distributions, where β varies from 0.0
to 1.0.

pβ(z) ∝ q(z)1−βp∗(z|x)β (15)
For TAs, the log of the tractable base distribution q(z) is:
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which is simply the prior distribution over the latent factors.

Since we are using the prior as the base distribution and the unnormalized posterior distribution is
the distribution of interest, we can write the intermediate distribution as:

pβ({zj}) ∝ q({zj})1−βp(x, {zj})β = p({zj})pβ(x|{zj}) (17)
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Algorithm 1 AIS for TA

let k = 1, 2, . . . ,K, βk=1 = 0, βk=K = 1.
for i = 1 to M do

Draw Z2 from q(Z)
w(i) =

pβ2 (Z2)

pβ1 (Z2)

for k = 2 to K − 1 do
Sample Zk+1 from Tβk(Z ′ ← Zk)
w(i) = w(i) × pβk+1

(Zk+1)

pβk (Zk+1)

end for
end for
p(x) ' 1

M

∑M
i w(i)

Figure 3: left: AIS algorithm for TA. right: Experimental validation of AIS on a small model, where
100,000 Monte Carlo samples estimate the “true” log-likelihood.
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For AIS, we also need a MCMC operator which leaves pβ({z1, z2, . . . , zJ}) invariant. We use a
Gibbs sampler, which simply performs alternating Gibbs sampling of the TA’s posterior where the
original diagonal noise Ψ is modified to be βΨ. We denote this operator as Tβ(z′ ← z).

In Fig. 3 (left), We present the AIS algorithm. For clarity, we use Zk to denote the set of all latent
factors Z = {zj} of the k-th intermediate distribution, k = 1, 2, . . . ,K. M is the number of
independent AIS chains.

On the right panel of Fig. 3, we experimented with the variance of the AIS estimator. Using a small
model of TA{2,2,2} trained on a 2D dataset from Sec. 4.1 of the main paper, we ran AIS algorithm
with varying number of intermediate distributions to estimate the average data log-likelihood. M is
set to 10 in all experiments. In the plot, we can see that the variance of the estimator quickly shrinks
to less than 0.1 nats as we use 500 or more intermediate distributions. The dashed line represent
the estimated log-likelihood by sampling from the prior (Sec. 3.3 of main paper), using 100,000
samples. Since we are sampling from only 2 dimensions, this Monte Carlo estimator has very low
variance and its value is taken to be the true data log-likelihood.

4 Experiments - Synthetic Data

We present both the training and test average log-likelihood on 4 2D synthetic datasets in Table 1.
The first two is presented in the main paper. (M)TAs are better models for complicated density and
just as good as MFAs on the simpler ones.
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(a) Data i (b) Data ii

(c) Samples from TA (d) Samples from FA (e) Samples from TA (f) Samples from FA

Figure 4: TA vs. FA on 2D synthetic data.

(a) Data iii (b) Data iv

(c) Samples from MTA (d) Samples from MFA (e) Samples from MTA (f) Samples from MFA

Figure 5: MTA vs. MFA on 2D synthetic data. A mixture of two components are used in both MTA
and MFA.

Data i and ii are generated by a randomly initialized TA model, while Data iii and iv are generated
by a randomly initialized MFA model.
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Dataset i ii iii iv
MTA -2.62 (-2.58) -2.04 (-1.90) -1.81 (-1.75) -2.76 (-2.74)
MFA -2.85 (-2.78) -2.48 (-2.37) -1.82 (-1.76) -2.75 (-2.73)

Table 1: Average test and (training) log-likelihood in nats of Mixture of Tensor Analyzers and Mix-
ture of Factor Analyzers on the 2D synthetic datasets.
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